

Stormwater Management Report

Submitted to: Wake County, NC

Prepared for: Bullard Restaurant Group 6000 Rogers Road Rolesville, North Carolina

Sambatek Project Ref.: BUL-2103

VICINITY MAP

Prepared by: SAMBATEK NC PC 8312 Creedmoor Road Raleigh, North Carolina 27613

Date: 12/10/2024

Table of Contents:

Project Narrative	1
Adjacent Areas	
Existing Conditions	
Proposed Conditions	
Stormwater Quality Treatment	
Stormwater Quantity Treatment	2
Stormwater SCM Maintenance	2
Calculation Methodology	2

List of Appendices:

Appendix A - Maps & Exhibits (USDA HSG, FEMA, USGS Topo, Drainage)

Appendix B - Hydrograph Calculations Report

Appendix C – Runoff Volume Control Drawdown Calculation

Appendix D – Wake County Municipal Stormwater Tool Report

Appendix E - 10-Year HGL Calculations

Appendix F – Wet Pond Maintenance Agreement

Project Narrative

This report has been prepared for the proposed development of a commercial parcel located at 6000 Rogers Road, Rolesville, NC 27571. This project has been designed to meet Wake County stormwater requirements and proposes to drain to an existing wet pond stormwater control measure (SCM) located immediately adjacent to the subject parcel. The property coordinates are 35.923086°, -78.468297°. The development of this 2.07-acre site will result in the development of 1.36 acres of impervious area. The site currently drains to an existing wet pond SCM. The proposed development of this site will maintain pre-development drainage patterns and the wet pond has been evaluated and confirmed to have available capacity to address the increase in runoff resultant from this project. The remaining sections of this report will discuss the details and findings of this analysis.

Adjacent Areas

The adjacent properties are as follows:

- Granite Falls Blvd. runs across the northern property boundary.
- Rogers Rd. runs across the northeast property boundary.
- Commercial development occupies the southeast property boundary.
- Residential townhomes occupy the south and southwest property boundaries.

Existing Conditions

Under the existing conditions, stormwater runoff sheet flows from southeast to northwest into the existing wet pond SCM that was constructed as part of the 2018 Granite Fall Boulevard project (design by John A. Edwards Co). This wet pond facility receives runoff from not only this site, but from a greater 5.89-acre (total) area consisting of mixed use commercial and townhouse developments, as well as a portion of Granite Falls Boulevard. The existing ground cover consists of primarily well-maintained open space/grasses, as well as a wooded area. On-site soils consist of RgC - Rawlings-Rion complex (HSG C) and Ur - Urban land (HSG D). A full accounting of the areas, ground covers, and hydrologic soil groupings within the area of analysis included in this study can be found in the appendices of this report.

Proposed Conditions

The proposed development of this parcel includes the construction of a multi-tenant commercial retail building with two restaurants and the required parking, utilities, landscaping, and stormwater collection infrastructure necessary to tie-in to the existing and surrounding areas. Please see the included construction plan set and appendices of this report for further information.

Stormwater Quality Treatment

This site drains to an existing wet pond SCM which is providing water quality treatment for a total of 5.89 acres of mixed-use commercial, residential, and roadway developments. This wet pond SCM was evaluated to ensure that it has available capacity to provide water quality treatment for this project. Using the Wake County Municipal Stormwater Tool, the wet pond was evaluated under its existing, asbuilt conditions, and was found to have available capacity to provide water quality treatment for the proposed development with no required revisions. Please see appendix D for a full report of the findings of the Wake County Municipal Stormwater Tool demonstrating this capacity.

Stormwater Quantity Treatment

The Wake County stormwater quantity volume and peak flow control requirements for this proposed development are met by the existing wet pond SCM. The wet pond SCM was modeled digitally and routing calculations were performed under proposed conditions. These calculations indicate that the existing wet pond SCM has available capacity to provide stormwater volume and peak flow control in its existing configuration. Stormwater runoff volume for the first inch of rainfall is retained and drained over a period of 48 - 120 hours and peak flow for the 1-year, 2-year, and 10-year, 24-hour design storms is controlled to below pre-development peak flow rates for the respective design storms. Please see appendix B and C for further information and supporting calculations.

Stormwater SCM Maintenance

Frequent, thorough, and consistent inspections and maintenance are critical to the successful operation of the wet pond SCM. Inspections reveal the operational status of the system and identify necessary maintenance items. The owner of this property is responsible for providing postconstruction maintenance and inspections for the wet pond SCM in accordance with Wake County requirements. Please see appendix F for further information.

Calculation Methodology

- The rainfall data was taken from NOAA Atlas 14 for the parcel address and input into the Hydraflows Hydrographs extension of AutoCAD Civil 3D to prepare site specific hydrographs.
- The Storm & Sewer Analysis extension of AutoCAD Civil3D was utilized to prepare hydraulic grade line calculations for the proposed onsite stormwater conveyance infrastructure. Please reference Appendix E within this report for additional information.
- Soils data for the site was taken from the NRCS USDA web soil survey website (http://websoilsurvey.nrcs.usda.gov/). The hydrological soil group classifications assigned by NRCS USDA were utilized as they were listed. SCS Method Curve Numbers were selected based upon visual inspection of the existing ground cover conditions.
- Water quality calculations were performed using the latest copy of the Wake County Municipal Stormwater tool, accessed on December 8, 2024.

Appendix A:

Maps

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24,000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D **Soil Rating Polygons** Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil Water Features line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed В Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map С measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US** Routes Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available Local Roads Maps from the Web Soil Survey are based on the Web Mercator 0 projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: Wake County, North Carolina Survey Area Data: Version 26, Sep 9, 2024 C/D Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. D Not rated or not available Date(s) aerial images were photographed: Apr 24, 2022—May 9, 2022 **Soil Rating Points** The orthophoto or other base map on which the soil lines were Α compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. В B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
HeB	Helena sandy loam, 2 to 6 percent slopes	D	1.4	2.3%
RgB	Rawlings-Rion complex, 2 to 6 percent slopes	С	4.3	7.2%
RgC	Rawlings-Rion complex, 6 to 10 percent slopes	С	15.8	26.4%
Ur	Urban land		32.6	54.4%
WaB	Wake-Rolesville complex, 2 to 6 percent slopes, very rocky	D	0.2	0.4%
WaD	Wake-Rolesville complex, 10 to 15 percent slopes, very rocky	D	4.0	6.7%
WfB	Wedowee-Saw complex, 2 to 6 percent slopes	В	1.6	2.7%
Totals for Area of Inter	rest		59.9	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The pin displayed on the map is an approximate point selected by the user and does not represent

an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 12/10/2024 at 7:24 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

QV

Grid Zone Designation 17S

NORTH CAROLINA

QUADRANGLE LOCATION

1 Grissom 2 Franklinton

X:\BUL - Bullard, Inc\2103 - Rolesville, NC\Engineering\STORMWATER\MAPS\Neal's DAs\DA Analysis - 2018.dwg,

PROPOSED RETAIL AND
ESTAURANT DEVELOPMENT
6000 ROGERS ROAD

BUL-2103

BME: DA-AN-PRE

N BY: STH

1"= 20'

12-10-2024

FNO.

EX-2

1 inch = 60 ft.

SOILS LEGEND

1776 1776 1877 1878 HSD G (WOODED AREA)

HSG D (IMPERVIOUS AREA)

HSG D (GRASSED AREA)

POND AREA

HSG-C (IMPERVIOUS AREA)

HSG-C (GRASS AREA)

Appendix B:

Hydrograph Calculations Report

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd.	Hydrograph	Inflow				Peak Out	flow (cfs)		ipiis Exteri		Hydrograph
No.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		14.65	21.63			42.53				Pre-Development
3	SCS Runoff		4.262	6.983			15.52				Post-Development Bypass
4	SCS Runoff		17.77	22.57			35.42				Post-Development Detained
5	Reservoir	4	2.609	3.895			17.98				Prop. Development Pond
6	Combine	3, 5	5.396	9.702			31.33				Proposed Development

Proj. file: \\sambatek-fs2\Data2\BUL - Bullard, Inc\2103 - Rolesville, NC\Engineeri而ges证例只M2VA可任度100中已\2024-12-03 Verification

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

iya. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	14.65	2	720	34,125				Pre-Development
3	SCS Runoff	4.262	2	720	10,666				Post-Development Bypass
4	SCS Runoff	17.77	2	718	41,502				Post-Development Detained
5	Reservoir	2.609	2	734	40,511	4	403.18	21,944	Prop. Development Pond
6	Combine	5.396	2	722	51,177	3, 5			Proposed Development

\\sambatek-fs2\Data2\BUL - Bullard, Inc\210\beta Retules Preside id C1EYejaneering\STORTMASSTEFR\MODE 120024-12-03 Verification Modelin

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 12 / 10 / 2024

Hyd. No. 1

Pre-Development

Hydrograph type = SCS Runoff Peak discharge = 14.65 cfsStorm frequency = 1 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 34.125 cuft Curve number = 75* Drainage area = 10.800 acBasin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 7.00 \, \text{min}$ = User Total precip. = 2.86 inDistribution = Type II Storm duration = 24 hrs = 484 Shape factor

^{*} Composite (Area/CN) = [(0.770 x 98) + (3.650 x 65) + (2.530 x 79) + (1.140 x 73) + (2.710 x 79)] / 10.800

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 12 / 10 / 2024

Hyd. No. 3

Post-Development Bypass

Hydrograph type = SCS Runoff Peak discharge = 4.262 cfsStorm frequency Time to peak = 720 min = 1 yrsTime interval = 2 min Hyd. volume = 10.666 cuft Drainage area = 4.930 acCurve number = 69* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 7.00 \, \text{min}$ = User Total precip. = 2.86 inDistribution = Type II Storm duration = 24 hrs = 484 Shape factor

^{*} Composite (Area/CN) = $[(0.170 \times 98) + (3.500 \times 65) + (0.240 \times 80) + (1.020 \times 77)] / 4.930$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 12 / 10 / 2024

Hyd. No. 4

Post-Development Detained

Hydrograph type = SCS Runoff Peak discharge = 17.77 cfsStorm frequency = 1 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 41.502 cuft Drainage area Curve number = 5.890 ac= 91* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 7.00 \, \text{min}$ = User Total precip. = 2.86 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(3.660 \times 98) + (0.260 \times 74) + (1.850 \times 80) + (0.120 \times 100)] / 5.890$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 12 / 10 / 2024

Hyd. No. 5

Prop. Development Pond

Hydrograph type Peak discharge = 2.609 cfs= Reservoir Storm frequency Time to peak = 734 min = 1 yrsTime interval = 2 min Hyd. volume = 40,511 cuftInflow hyd. No. = 4 - Post-Development Detained Max. Elevation = 403.18 ft= As-Built Pond Max. Storage Reservoir name = 21,944 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 12 / 10 / 2024

Pond No. 1 - As-Built Pond

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 400.50 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	400.50	5,694	0	0
0.50	401.00	7,092	3,197	3,197
1.50	402.00	8,389	7,741	10,937
2.50	403.00	9,757	9,073	20,010
3.50	404.00	11,194	10,476	30,486
4.50	405.00	12,700	11,947	42,433

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	1.75	12.00	0.00	Crest Len (ft)	= 16.00	Inactive	Inactive	0.00
Span (in)	= 18.00	1.75	12.00	0.00	Crest El. (ft)	= 404.11	406.00	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.33	2.60	3.33	3.33
Invert El. (ft)	= 398.36	400.61	402.26	0.00	Weir Type	= 1	Broad		
Length (ft)	= 117.40	0.50	0.50	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 1.00	0.10	0.10	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Storage / Discharge Table

5 -		3 -											
Stage ft	Storage cuft	Elevation ft	CIv A cfs	CIv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	400.50	0.00	0.00	0.00		0.00	0.00					0.000
0.05	320	400.55	10.03 ic	0.00	0.00		0.00	0.00					0.000
0.10	639	400.60	10.03 ic	0.00	0.00		0.00	0.00					0.000
0.15	959	400.65	10.03 ic	0.00 ic	0.00		0.00	0.00					0.003
0.20	1,279	400.70	10.03 ic	0.01 ic	0.00		0.00	0.00					0.011
0.25	1,598	400.75	10.03 ic	0.02 ic	0.00		0.00	0.00					0.021
0.30	1,918	400.80	10.03 ic	0.03 ic	0.00		0.00	0.00					0.028
0.35	2,238	400.85	10.03 ic	0.03 ic	0.00		0.00	0.00					0.033
0.40	2,557	400.90	10.03 ic	0.04 ic	0.00		0.00	0.00					0.037
0.45	2,877	400.95	10.03 ic	0.04 ic	0.00		0.00	0.00					0.042
0.50	3,197	401.00	10.03 ic	0.05 ic	0.00		0.00	0.00					0.045
0.60	3,971	401.10	10.03 ic	0.05 ic	0.00		0.00	0.00					0.052
0.70	4,745	401.20	10.03 ic	0.06 ic	0.00		0.00	0.00					0.058
0.80	5,519	401.30	10.03 ic	0.06 ic	0.00		0.00	0.00					0.063
0.90	6,293	401.40	10.03 ic	0.07 ic	0.00		0.00	0.00					0.068
1.00	7,067	401.50	10.03 ic	0.07 ic	0.00		0.00	0.00					0.073
1.10	7,841	401.60	10.03 ic	0.08 ic	0.00		0.00	0.00					0.077
1.20	8,615	401.70	10.03 ic	0.08 ic	0.00		0.00	0.00					0.081
1.30	9,389	401.80	10.03 ic	0.08 ic	0.00		0.00	0.00					0.085
1.40	10,163	401.90	10.03 ic	0.09 ic	0.00		0.00	0.00					0.089
1.50	10,103	402.00	10.03 ic	0.09 ic	0.00		0.00	0.00					0.092
1.60	11,844	402.10	10.03 ic	0.00 ic	0.00		0.00	0.00					0.096
1.70	12,752	402.10	10.03 ic	0.10 ic	0.00		0.00	0.00					0.090
1.80	13,659	402.30	10.03 ic	0.10 ic	0.00 0.01 ic		0.00	0.00					0.099
1.90	14,566	402.40	10.03 ic	0.10 lc	0.01 ic		0.00	0.00					0.110
2.00	15,474	402.50	10.03 ic	0.11 ic	0.09 ic		0.00	0.00					0.151
2.10	16,381	402.60	10.03 ic	0.11 ic	0.23 ic 0.48 ic		0.00	0.00					0.589
2.10	17,288	402.70	10.03 ic	0.11 ic	0.46 ic		0.00	0.00					0.369
2.30	18,195	402.70	10.03 ic	0.11 ic	1.10 ic		0.00	0.00					1.217
2.40	19,103	402.80	10.03 ic	0.12 ic	1.10 ic 1.46 ic		0.00	0.00					1.584
2.40	20.010	402.90	10.03 ic	0.12 ic	1.46 ic 1.83 ic		0.00	0.00					1.950
	-,												
2.60	21,058	403.10	10.03 ic	0.13 ic	2.20 ic		0.00	0.00					2.328
2.70	22,105	403.20	10.03 ic	0.13 ic	2.53 ic		0.00	0.00					2.660
2.80	23,153	403.30	10.03 ic	0.13 ic	2.78 ic		0.00	0.00					2.909
2.90	24,200	403.40	10.03 ic	0.13 ic	3.02 ic		0.00	0.00					3.158
3.00	25,248	403.50	10.03 ic	0.13 ic	3.25 ic		0.00	0.00					3.388
3.10	26,295	403.60	10.03 ic	0.14 ic	3.47 ic		0.00	0.00					3.603
											Continue	es on nex	t nage

Continues on next page...

As-Built Pond

Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	CIv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
3.20	27,343	403.70	10.03 ic	0.14 ic	3.67 ic		0.00	0.00					3.806
3.30	28,390	403.80	10.03 ic	0.14 ic	3.86 ic		0.00	0.00					3.998
3.40	29,438	403.90	10.03 ic	0.14 ic	4.04 ic		0.00	0.00					4.182
3.50	30,486	404.00	10.03 ic	0.15 ic	4.21 ic		0.00	0.00					4.357
3.60	31,680	404.10	10.03 ic	0.15 ic	4.38 ic		0.00	0.00					4.526
3.70	32,875	404.20	10.03 ic	0.15 ic	4.54 ic		1.44	0.00					6.127
3.80	34,070	404.30	10.03 ic	0.15 ic	4.69 ic		4.41	0.00					9.259
3.90	35,264	404.40	13.29 oc	0.13 ic	4.84 ic		8.32	0.00					13.29
4.00	36,459	404.50	16.57 oc	0.07 ic	3.52 ic		12.98	0.00					16.57
4.10	37,654	404.60	17.72 oc	0.04 ic	1.93 ic		15.75 s	0.00					17.72
4.20	38,848	404.70	18.03 oc	0.03 ic	1.50 ic		16.50 s	0.00					18.03
4.30	40,043	404.80	18.27 oc	0.03 ic	1.22 ic		17.01 s	0.00					18.26
4.40	41,238	404.90	18.46 oc	0.02 ic	1.03 ic		17.41 s	0.00					18.46
4.50	42,433	405.00	18.64 oc	0.02 ic	0.88 ic		17.73 s	0.00					18.64

...End

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 12 / 10 / 2024

Hyd. No. 6

Proposed Development

Hydrograph type = Combine Peak discharge = 5.396 cfsTime to peak Storm frequency = 1 yrs= 722 min Time interval = 2 min Hyd. volume = 51,177 cuftInflow hyds. Contrib. drain. area = 4.930 ac= 3, 5

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	21.63	2	720	49,653				Pre-Development
3	SCS Runoff	6.983	2	720	16,538				Post-Development Bypass
4	SCS Runoff	22.57	2	718	53,320				Post-Development Detained
5	Reservoir	3.895	2	732	52,325	4	403.75	27,831	Prop. Development Pond
6	Combine	9.702	2	720	68,863	3, 5			Proposed Development

\\sambatek-fs2\Data2\BUL - Bullard, Inc\210\3 Retules Wher job CZEY epimeering \STO RMIAS TEF, R\MODE 120224-12-03 Verification Modelin

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 12 / 10 / 2024

Hyd. No. 1

Pre-Development

Hydrograph type = SCS Runoff Peak discharge = 21.63 cfsStorm frequency = 2 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 49.653 cuft Curve number = 75* Drainage area = 10.800 acBasin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 7.00 \, \text{min}$ = User Total precip. = 3.45 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(0.770 x 98) + (3.650 x 65) + (2.530 x 79) + (1.140 x 73) + (2.710 x 79)] / 10.800

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 12 / 10 / 2024

Hyd. No. 3

Post-Development Bypass

Hydrograph type = SCS Runoff Peak discharge = 6.983 cfsStorm frequency = 2 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 16.538 cuft Curve number Drainage area = 4.930 ac= 69* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 7.00 \, \text{min}$ = User Total precip. = 3.45 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(0.170 \times 98) + (3.500 \times 65) + (0.240 \times 80) + (1.020 \times 77)] / 4.930$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 12 / 10 / 2024

Hyd. No. 4

Post-Development Detained

Hydrograph type = SCS Runoff Peak discharge = 22.57 cfsStorm frequency = 2 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 53.320 cuftCurve number Drainage area = 5.890 ac= 91* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 7.00 \, \text{min}$ = User Total precip. = 3.45 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(3.660 \times 98) + (0.260 \times 74) + (1.850 \times 80) + (0.120 \times 100)] / 5.890$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 12 / 10 / 2024

Hyd. No. 5

Prop. Development Pond

Hydrograph type Peak discharge = 3.895 cfs= Reservoir Storm frequency = 2 yrsTime to peak = 732 min Time interval = 2 min Hyd. volume = 52,325 cuft= 4 - Post-Development DetainedMax. Elevation Inflow hyd. No. $= 403.75 \, \text{ft}$ = As-Built Pond Reservoir name Max. Storage = 27,831 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 12 / 10 / 2024

Hyd. No. 6

Proposed Development

Hydrograph type = Combine Peak discharge = 9.702 cfsTime to peak Storm frequency = 2 yrs= 720 min Time interval = 2 min Hyd. volume = 68,863 cuft Inflow hyds. = 3, 5 = 4.930 ac Contrib. drain. area

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

lyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	42.53	2	718	97,295				Pre-Development
3	SCS Runoff	15.52	2	720	35,550				Post-Development Bypass
4	SCS Runoff	35.42	2	718	85,970				Post-Development Detained
5	Reservoir	17.98	2	726	84,967	4	404.68	38,665	Prop. Development Pond
6	Combine	31.33	2	722	120,517	3, 5			Proposed Development

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 12 / 10 / 2024

Hyd. No. 1

Pre-Development

Hydrograph type = SCS Runoff Peak discharge = 42.53 cfsStorm frequency = 10 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 97.295 cuft Drainage area = 10.800 acCurve number = 75* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 7.00 \, \text{min}$ = User Total precip. = 5.04 inDistribution = Type II Storm duration = 24 hrs = 484 Shape factor

^{*} Composite (Area/CN) = [(0.770 x 98) + (3.650 x 65) + (2.530 x 79) + (1.140 x 73) + (2.710 x 79)] / 10.800

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 12 / 10 / 2024

Hyd. No. 3

Post-Development Bypass

Hydrograph type = SCS Runoff Peak discharge = 15.52 cfsStorm frequency = 10 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 35.550 cuftCurve number Drainage area = 4.930 ac= 69* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 7.00 \, \text{min}$ = User Total precip. = 5.04 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(0.170 \times 98) + (3.500 \times 65) + (0.240 \times 80) + (1.020 \times 77)] / 4.930$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 12 / 10 / 2024

Hyd. No. 4

Post-Development Detained

Hydrograph type = SCS Runoff Peak discharge = 35.42 cfsStorm frequency = 10 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 85.970 cuft Drainage area Curve number = 5.890 ac= 91* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 7.00 \, \text{min}$ = User Total precip. = 5.04 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(3.660 \times 98) + (0.260 \times 74) + (1.850 \times 80) + (0.120 \times 100)] / 5.890$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 12 / 10 / 2024

Hyd. No. 5

Prop. Development Pond

Hydrograph type Peak discharge = 17.98 cfs= Reservoir Storm frequency = 10 yrsTime to peak = 726 min Time interval = 2 min Hyd. volume = 84,967 cuft Inflow hyd. No. = 4 - Post-Development Detained/Max. Elevation = 404.68 ft= As-Built Pond Reservoir name Max. Storage = 38,665 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 12 / 10 / 2024

Hyd. No. 6

Proposed Development

Hydrograph type = Combine Peak discharge = 31.33 cfsStorm frequency Time to peak = 10 yrs= 722 min Time interval = 2 min Hyd. volume = 120,517 cuft Inflow hyds. Contrib. drain. area = 4.930 ac= 3, 5

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 12 / 10 / 2024

Return Period	Intensity-Du	quation Coefficients	(FHA)	
(Yrs)	В	D	E	(N/A)
1	59.7930	12.4000	0.8801	
2	71.2172	12.9000	0.8806	
3	0.0000	0.0000	0.0000	
5	69.6789	12.6000	0.8322	
10	67.8359	12.0000	0.7923	
25	62.7327	11.1000	0.7421	
50	56.2745	10.0000	0.6940	
100	53.6025	9.4000	0.6625	

File name: BUL2103 - 2024 IDF.IDF

Intensity = B / (Tc + D)^E

Intensity Values (in/hr)												
5 min	10	15	20	25	30	35	40	45	50	55	60	
4.84	3.88	3.25	2.80	2.47	2.21	2.00	1.83	1.69	1.57	1.47	1.38	
5.61	4.52	3.80	3.28	2.90	2.60	2.36	2.16	2.00	1.86	1.74	1.63	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
6.41	5.20	4.41	3.84	3.41	3.07	2.80	2.58	2.39	2.23	2.09	1.97	
7.19	5.86	4.98	4.35	3.88	3.51	3.21	2.96	2.76	2.58	2.42	2.29	
7.98	6.53	5.57	4.89	4.38	3.98	3.65	3.39	3.16	2.97	2.80	2.65	
8.59	7.04	6.03	5.31	4.77	4.35	4.01	3.73	3.49	3.28	3.11	2.95	
9.16	7.52	6.46	5.71	5.14	4.70	4.34	4.05	3.80	3.58	3.39	3.23	
	4.84 5.61 0.00 6.41 7.19 7.98 8.59	4.84 3.88 5.61 4.52 0.00 0.00 6.41 5.20 7.19 5.86 7.98 6.53 8.59 7.04	4.84 3.88 3.25 5.61 4.52 3.80 0.00 0.00 0.00 6.41 5.20 4.41 7.19 5.86 4.98 7.98 6.53 5.57 8.59 7.04 6.03	4.84 3.88 3.25 2.80 5.61 4.52 3.80 3.28 0.00 0.00 0.00 0.00 6.41 5.20 4.41 3.84 7.19 5.86 4.98 4.35 7.98 6.53 5.57 4.89 8.59 7.04 6.03 5.31	5 min 10 15 20 25 4.84 3.88 3.25 2.80 2.47 5.61 4.52 3.80 3.28 2.90 0.00 0.00 0.00 0.00 0.00 6.41 5.20 4.41 3.84 3.41 7.19 5.86 4.98 4.35 3.88 7.98 6.53 5.57 4.89 4.38 8.59 7.04 6.03 5.31 4.77	5 min 10 15 20 25 30 4.84 3.88 3.25 2.80 2.47 2.21 5.61 4.52 3.80 3.28 2.90 2.60 0.00 0.00 0.00 0.00 0.00 0.00 6.41 5.20 4.41 3.84 3.41 3.07 7.19 5.86 4.98 4.35 3.88 3.51 7.98 6.53 5.57 4.89 4.38 3.98 8.59 7.04 6.03 5.31 4.77 4.35	5 min 10 15 20 25 30 35 4.84 3.88 3.25 2.80 2.47 2.21 2.00 5.61 4.52 3.80 3.28 2.90 2.60 2.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.41 5.20 4.41 3.84 3.41 3.07 2.80 7.19 5.86 4.98 4.35 3.88 3.51 3.21 7.98 6.53 5.57 4.89 4.38 3.98 3.65 8.59 7.04 6.03 5.31 4.77 4.35 4.01	5 min 10 15 20 25 30 35 40 4.84 3.88 3.25 2.80 2.47 2.21 2.00 1.83 5.61 4.52 3.80 3.28 2.90 2.60 2.36 2.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.41 5.20 4.41 3.84 3.41 3.07 2.80 2.58 7.19 5.86 4.98 4.35 3.88 3.51 3.21 2.96 7.98 6.53 5.57 4.89 4.38 3.98 3.65 3.39 8.59 7.04 6.03 5.31 4.77 4.35 4.01 3.73	5 min 10 15 20 25 30 35 40 45 4.84 3.88 3.25 2.80 2.47 2.21 2.00 1.83 1.69 5.61 4.52 3.80 3.28 2.90 2.60 2.36 2.16 2.00 0.00 0	5 min 10 15 20 25 30 35 40 45 50 4.84 3.88 3.25 2.80 2.47 2.21 2.00 1.83 1.69 1.57 5.61 4.52 3.80 3.28 2.90 2.60 2.36 2.16 2.00 1.86 0.00 0.0	5 min 10 15 20 25 30 35 40 45 50 55 4.84 3.88 3.25 2.80 2.47 2.21 2.00 1.83 1.69 1.57 1.47 5.61 4.52 3.80 3.28 2.90 2.60 2.36 2.16 2.00 1.86 1.74 0.00<	

Tc = time in minutes. Values may exceed 60.

 $- Rolesvill \underline{e}, \underline{NC} \\ \underline{Engineering} \\ \underline{STORMWATER} \\ \underline{MODEL} \\ \underline{2024-12-03} \ Verification \ \underline{Modeling} \\ \underline{BUL-2103-2024} \ \underline{Evt} \ \underline{Mgr.pcp} \\ \underline{evt} \\ \\ \underline{ev$

	Rainfall Precipitation Table (in)										
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr			
SCS 24-hour	2.86	3.45	0.00	4.34	5.04	5.99	6.75	7.53			
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Custom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			

Appendix C:

Runoff Volume Control Drawdown Calculation

Project Number: BUL 2103

Project Name: Retail and Restaurant Development
Project Location: 6000 Rogers Road, Rolesville, NC

Date: 10-Dec-24

Wet Pond WQv Storage Stage Area & Volume:

Stage:	Elevation (ft AMSL):	Contour Area (sf):	Incremental Storage (cf):	Total Storage (cf):
0	400.5	5,694	-	-
1	401	7,092	3,190	3,190
2	402	8,389	7,731	10,922
3	403	9,757	9,064	19,986
4	404	11,194	10,467	30,453
5	405	12,700	11,939	42,392

Provided Water Quality Treatment Volume:

Required Water Quality Volume Per Wake County Municipal Stormwater Tool

= 7,495 cubic feet

Water Quality Volume
Provided = 13,582 cubic feet

Draw Down Calculation:

 $Q = Cd * A * (2*g * Ho) ^ 0.5$ T = WQv / Q / 86400 (sec/day)

Coefficient of Discharge,

Cd = 0.6 (unitless)

Diameter of Drawdown

Orifice, D = 1.75 inches

Orifice Cross Sectional

Area, A = 0.017 square feet
Orifice Invert Elevation = 400.5 ft. AMSL
Stage Elevation of DV = 402.25 ft. AMSL

Average Elevation Head

During Drawdown = 0.58 feet

Orifice Flow Rate, Q = 0.06 cfs

Drawdown Time, T = 2.56 days

Appendix D:

Wake County Municipal **Design Tool Report**

SITE DATA

Project Information Project Information Project Information Applicant Applicant Contact Number Applicant Contact Number Contact final Municipal Jurisdiction (Select from decident menu) Relevant Last Updated Last Updated Resisting Site Data: Total Last-Project Resisting Resis	NORTH CAROLINA		
Applicant Contact Number Applicant Contact Number Applicant Contact Number Contact Emails Municipal Jurisdiction (Select from dropdown menu): Last Updated: Nonday, Diccember 9, 2024 Site Data: Total Site Area (Ac): Proposed Disturbed Area (Ac): In Jungervious Surface Area (acros): Impervious S			Project Information
Applicant Contact Name: Applicant Contact Name: Contact Email: Municipal Jurisdiction (Select from dropdown memb): Last Updated: Total Site Area (Ac): Esting LastePod Area (Ac): Proposed Disturbed Area (Ac): Impervious Surface Area (Recip): 3,83 Type of Development (Select from Dropdown memb): Non-Reactiontial Parcent Built Upon Area (Bulb): Proposed Disturbed Area (Ac): Impervious Surface Area (Recip): Proposed Disturbed Area (Ac): Impervious Surface Area (Recip): Proposed Disturbed Area (Bulb): Proposed Disturbed Area (Bulb): Proposed Development (Select from Dropdown memb): Non-Reactiontial Parcent Built Upon Area (Bulb): Proposed Disturbed Area (Bulb): Disturbed Proposed Disturbed Propos		Project Name:	Proposed Retail and Restaurant Development
Applicant Contact Number Contact Email: Municipal Jurisdiction (Select from Oropdown menu): Last Updated: Sito Data: Total Site Area (Ac): Existing Lakel/Pond Area (Ac): Proposed Disturbed Area (Ac): Impervious Surince Area (Ac): Impervious Surince Area (Ac): Proposed Disturbed Area (Ac): Impervious Surince Area (Ac): Proposed Disturbed Area (Ac): Impervious Surince Area (Ac): Proposed Disturbed Area (Ac): Proposed Disturbed Area (Ac): Impervious Surince Area (Ac): Proposed Disturbed Area (Ac): Proposed Distu		Applicant:	Bullard Restaurant Group
Contact Email: Municipal Jurisdiction (Select from dropdown manu): Last Updated: Total Site Area (Ac): Esizing LakePond Area (Ac): Proposed Disturbed Area (Ac): Impervious Surface Area (acro): Type of Development (Select from Dropdown manu): Percent Built Upon Area (BAL): Proposed project a site expansion? Non-Residential Percent Built Upon Area (BAL): Is the proposed project a site expansion? No Number of Drainage Areas on Site: 1-Year, 24-Hour Storm (Inches) (See NOAA Website): 2-Year, 24-Hour Storm (Inches) (See NOAA Website): 3-45 10-Year, 24-Hour Storm (Inches) (See NOAA Website): Total Acreage in Lots: Number of Lots: Average Lot Size (SP): Average Inches: Total Impervious Surface Area en Lot (SP): Average Inches: Average Lot Size (SP): Average Inches: Stormwater Narrative (limit to 1,200 characters - attach additional pages with submittal if necessary): This proposed retail and reataurant development is on a parca of fand located immediately adjacent to the Gravite Falls Roulevard (to north) and Rogers Road (to east) in Rolevarlle, NC. This proposed retail and reataurant development is on a parca of fand located immediately adjacent to the Gravite Falls Roulevard (to north) and Rogers Road (to east) in Rolevarlle, NC. This proposed retail and reataurant development is on a parca of fand located immediately adjacent to the Gravite Falls Roulevard (to north) and Rogers Road (to east) in Rolevarlle, NC. This proposed retail and reataurant development is on a parca of fand located immediately adjacent to the Gravite Falls Roulevard (to north) and Rogers Road (to east) in Rolevarlle, NC. This proposed retail and reataurant development is on a parca of fand located immediately adjacent to the Gravite Falls Roulevard (to north) and Rogers Road (to east) in Rolevarlle, NC. This proposed retail and reataurant development is on a parca of fand located immediately adjacent to the Gravite Falls Roulevard (to north) and Rogers Road (to east) in Rolevarlle, NC. This proposed retail and reata		Applicant Contact Name:	
Municipal Jurisdiction (Select from dropdown menu): Last Updated: Total Site Area (Ac): Total Site Area (Ac): Proposed Potal Proposed Pot		Applicant Contact Number:	
Last Updated: Site Data:		Contact Email:	
Site Data: Total Site Area (AC): Existing Lake/Pond Area (AC): Proposed Disturbed Area (AC): Type of Development (Select from Dropdown menu): Non-Residential Percent Built Upon Area (BUA): Project Density: Project Density: Pligh Is the proposed project a site expansion? Number of Drainage Areas on Site: 1 1-Year, 24-Hour Storm (inches) (See NOAA Website): 2 286 2 Year, 24-Hour Storm (inches) (See NOAA Website): 3 .45 10-Year, 24-Hour Storm (inches) (See NOAA Website): 5 .504 Lot Data (if applicable): Total Impervious Surface Area on Lots: Number of Lot		Municipal Jurisdiction (Select from dropdown menu):	Rolesville
Total Site Area (Ac): Existing Lake/Pond Area (Ac): Proposed Delutrized Area (Ac): Impervious Surface Area (Ac): Impervious Surface Area (Ac): Impervious Surface Area (Ac): Type of Development (Select from Dropdown menu): Non-Residential Percent Bult Upon Area (BLA): Project Density: Is the proposed project a site expansion? Number of Dranage Areas on Site: 1 1 1-Year, 24-Hour Storm (inches) (See NOAA Website): 2.86 NOAA 2-Year, 24-Hour Storm (inches) (See NOAA Website): 3.45 10-Year, 24-Hour Storm (inches) (See NOAA Website): Total Acreage in Lots: Number of Lots: Number o		Last Updated:	Monday, December 9, 2024
Existing Lake/Pond Area (Ac): Proposed Disturbed Area (Ac): Impervious Surface Area (acre): Stormwater Narrative (limit to 1,200 characters - attach additional pages with submittal if necessary): This proposed retail and restaurant development is on a parcel of land located immediately adjacent to the Granile Falis Boulevard (to north) and Rogers Road (to east) in Rolesville, NC. This proposed retail and restaurant development is on a parcel of land located immediately adjacent to the Granile Falis Boulevard (to north) and Rogers Road (to east) in Rolesville, NC. This proposed retail and restaurant development is on a parcel of land located immediately adjacent to the Granile Falis Boulevard (to north) and Rogers Road (to east) in Rolesville, NC. This proposed retail and restaurant development is on a parcel of land located immediately adjacent to the Granile Falis Boulevard (to north) and Rogers Road (to east) in Rolesville, NC. This proposed retail and restaurant development is on a parcel of land located immediately adjacent to the Granile Falis Boulevard (to north) and Rogers Road (to east) in Rolesville, NC. This proposed retail and restaurant development is on a parcel of land located immediately adjacent to the Granile Falis Boulevard (to north) and Rogers Road (to east) in Rolesville, NC. This proposed retail and restaurant development is on a parcel of land located immediately adjacent to the Granile Falis Boulevard (to north) and Rogers Road (to east) in Rolesville, NC. This proposed rote retain existing dranape patterns, with the site continuing to dran to an existing wet pond stormwater control measure. This wetper dom deficiency improvious area and was found to be in compliance with the compliance with the site continuing to dran to an existing dranape patterns, with the site continuing to dran to an existing dranape to immediate the proposed retail and vaste out to immediate the proposed retail and continuent of the Granile Falis Boulevard (to north) and Rogers Road (to east) in Rolesville, NC			Site Data:
Proposed Disturbed Area (Ac): Impervious Surface Area (acre): 3.83 Type of Development (Select from Dropdown menu): Non-Residential Percent Built Upon Area (BUA): S5% Project Density: High Is the proposed project a site expansion? No Number of Drainage Areas on Site: 1.Year, 24-Hour Storm (inches) (See NOAA Website): 2.86 2.Year, 24-Hour Storm (inches) (See NOAA Website): 3.45 10-Year, 24-Hour Storm (inches) (See NOAA Website): NOAA 2.Year, 24-Hour Storm (inches) (See NOAA Website): 10-Year, 24-Hour Storm (inches) (See NOAA Website): Number of Lots: NoAA Average Impervious Surface Area on Lots (SF): Average Impervious Surface Area Per Lot (SF): Noa Stormwater Narrative (limit to 1,200 characters - attach additional pages with submittal if necessary): This proposed retail and restaurant development is on a parcel of land located immediately adjacent to the Granite Falls Boulevard (to north) and Rogers Road (to east) in Rolesville, NC. This project proposed to retain existing drainage patterns, with the site continuing to drain to an existing very lond stormwater control measure. This we top not was evaulated to ensure it has available capacity to address the increase in north prode very proped impervious area and was found to be in compliance by north was evaulable to ensure it has available capacity to address the increase in north north north necessary with nor required modifications. Please see the stormwater who north necessary with nor required modifications. Please see the stormwater whom here required modifications.		Total Site Area (Ac):	10.81
Impervious Surface Area (acro): Type of Development (Select from Dropdown menu): Percent Built Upon Area (BUA): Sissing Project Density: Is the proposed project a site expansion? Number of Drainage Areas on Site: 1-1-Year, 24-Hour Storm (inches) (See NOAA Website): 2-Year, 24-Hour Storm (inches) (See NOAA Website): 3.45 10-Year, 24-Hour Storm (inches) (See NOAA Website): 10-Year, 24-Hour St		Existing Lake/Pond Area (Ac):	0.12
Type of Development (Select from Dropdown menu): Percent Built Upon Area (BUA): Project Density: Is the proposed project a site expansion? No Number of Drainage Areas on Site: 1Year, 24-Hour Storm (inches) (See NOAA Website): 2.86 2Year, 24-Hour Storm (inches) (See NOAA Website): 3.45 10-Year, 24-Hour Storm (inches) (See NOAA Website): Total Acreage in Lots: Number of Lots: Number of Lots: Number of Lots: Average Lot Size (SF): Average In John Average Lot Size (SF): Average Impervious Surface Area on Lots (SF): Average Impervious Surface Area on Lots (SF): Stormwater Narrative (limit to 1,200 characters - attach additional pages with submittal if necessary): This proposed retail and restaurant development is on a parcel of land located immediately adjacent to the Granite Falls Boulevard (to north) and Rogers Road (to east) in Rolevville, NC. This project proposed to retain existing drainage patterns, with the site continuing to drain to an existing very lond side required to ensure it has available capacity to address the increase in north nor resulting from the projects proposed in pervious area and was found to be in compliance with nor required modifications. Please see the stormwater required modifications.		Proposed Disturbed Area (Ac):	1.80
Percent Built Upon Area (BUA): Project Density: High Is the proposed project a site expansion? No Number of Drainage Areas on Site: 1.4Yaar, 24-Hour Storm (inches) (See NOAA Website): 2.49ar, 24-Hour Storm (inches) (See NOAA Website): 3.45 10-Yaar, 24-Hour Storm (inches) (See NOAA Website): Lot Data (if applicable): Total Acreage in Lots: Number of Lots: Number of Lots: Average Lot Size (SF): n/a Average Lot Size (SF): n/a Average Impervious Surface Area on Lots (SF): n/a Stormwater Narrative (limit to 1,200 characters - attach additional pages with submittal if necessary): This proposed retail and restaurant development is on a parcel of land located immediately adjacent to the Grante Falls Boulevard (to north) and Rogers Road (to east) in Rolesville, NC. This project proposed to retain existing drainage patterns, with the site continuing to drain to an existing wet pond stormwater control measure. This wet pond was evaluated to ensure it has available to project proposed to retain existing drainage patterns, with the site continuing to drain to an existing wet pond stormwater control measure. This wet pond was evaluated to ensure it has available to project proposed to retain existing drainage patterns, with the site continuing to drain to an existing vet pond stormwater control measure. This wet pond was evaluated to ensure it has available to search to the site of the control of be in compliant on the project proposed memorias rear and was found to be in compliant on the orequired modifications. Please see the stomwater		Impervious Surface Area (acre):	3.83
Project Density: Is the proposed project a site expansion? Number of Drainage Areas on Site: 1.Year, 24-Hour Storm (inches) (See NOAA Website): 2.86 2-Year, 24-Hour Storm (inches) (See NOAA Website): 3.45 10-Year, 24-Hour Storm (inches) (See NOAA Website): 5.04 Lot Data (if applicable): Total Acreage in Lots: Number of Lots: Average In Lots: Average Lot Size (SF): Average Impervious Surface Area on Lots (SF): Average Impervious Surface Area on Lots (SF): Average Impervious Surface Area Per Lot (SF): Average Impervio		Type of Development (Select from Dropdown menu):	Non-Residential
Is the proposed project a site expansion? Number of Drainage Areas on Site: 1. Year, 24-Hour Storm (inches) (See NOAA Website): 2.86 2. Year, 24-Hour Storm (inches) (See NOAA Website): 3.45 10-Year, 24-Hour Storm (inches) (See NOAA Website): 5.04 Lot Data (if applicable): Total Acreage in Lots: Number of Lots: Average Lot Size (SF): Average Impervious Surface Area on Lots (SF): Average Impervious Surface Area on Lots (SF): Stormwater Narrative (limit to 1,200 characters - attach additional pages with submittal if necessary): This proposed retail and restaurant development is on a parcel of land located immediately adjacent to the Granite Falls Boulevard (to north) and Rogers Road (to east) in Rolesville, NC. This project proposed to retain existing drainage patterns, with the site continuing to drain to an existing wet pond stormwater roortorl measurer. This wet pond was evaulated to ensure it has available capacity to address the increase in runoff resulting from this project proposed droit has nexisting drainage patterns, with the site continuing to drain to an existing wet pond stormwater control measurer. This wet pond was evaulated to ensure it has available capacity to address the increase in runoff resulting from this project proposed do retain existing drainage patterns, with the site continuing to drain to an existing wet pond stormwater control measurer. This wet pond was evaulated to ensure it has available capacity to address the increase in runoff resulting from this project proposed in pervious area and was found to be in complement thin required measurer.		Percent Built Upon Area (BUA):	35%
Number of Drainage Areas on Site: 1-Year, 24-Hour Storm (inches) (See NOAA Website): 2-Year, 24-Hour Storm (inches) (See NOAA Website): 3-45 10-Year, 24-Hour Storm (inches) (See NOAA Website): 5-04 Lot Data (if applicable): Total Acreage in Lots: Number of Lots: Num		Project Density:	High
1-Year, 24-Hour Storm (inches) (See NOAA Website): 2-Year, 24-Hour Storm (inches) (See NOAA Website): 3-3-45 10-Year, 24-Hour Storm (inches) (See NOAA Website): 5-04 Lot Data (if applicable): Total Acreage in Lots: Number of Lots: Number of Lots: Number of Lots: Number of Lots: Naverage Lot Size (SF): n/a Average Impervious Surface Area on Lots (SF): Average Impervious Surface Area Per Lot (SF): Stormwater Narrative (limit to 1,200 characters - attach additional pages with submittal if necessary): This proposed retail and restaurant development is on a parcel of land located immediately adjacent to the Granite Falls Boulevard (to north) and Rogers Road (to east) in Rolesville, NC. This project proposed to retain existing drainage patterns, with the site continuing to drain to an existing we pond stormwater control measure. This wet pond was evaluated to ensure it has available capacity to address the increase in runoff resulting from this projects proposed in retain existing drainage patterns, with the site continuing to drain to an existing we pond stormwater control measure. This wet pond was evaluated to ensure it has available capacity to address the increase in runoff resulting from this projects proposed imprevious area and was found to be in configured modifications. Please see the stormwater		Is the proposed project a site expansion?	No
NOAA 2-Year, 24-Hour Storm (inches) (See NOAA Website): 10-Year, 24-Hour Storm (inches) (See NOAA Website): 5.04 Lot Data (if applicable): Total Acreage in Lots: Number of Lots: Average Lot Size (SF): 1/a Total Impervious Surface Area on Lots (SF): Average Impervious Surface Area Per Lot (SF): Stormwater Narrative (limit to 1,200 characters - attach additional pages with submittal if necessary): This proposed retail and restaurant development is on a parcel of land located immediately adjacent to the Granite Falls Boulevard (to north) and Rogers Road (to east) in Rolesville, NC. This project proposed to retain existing drainage patterns, with the site continuing to drain to an existing wet pond stormwater control measure. This wet pond was evaulated to ensure it has available capacity to address the increase in runoff resulting from this projects proposed end was found to be in compliance with no required modifications. Please see the stormwater		Number of Drainage Areas on Site:	1
10-Year, 24-Hour Storm (inches) (See NOAA Website): Lot Data (if applicable):		1-Year, 24-Hour Storm (inches) (See NOAA Website):	2.86
Lot Data (if applicable): Total Acreage in Lots: Number of Lots: Number of Lots: Average Lot Size (SF): Total Impervious Surface Area on Lots (SF): Average Impervious Surface Area Per Lot (SF): Stormwater Narrative (limit to 1,200 characters - attach additional pages with submittal if necessary): This proposed retail and restaurant development is on a parcel of land located immediately adjacent to the Granite Falls Boulevard (to north) and Rogers Road (to east) in Rolesville, NC. This project proposed to retain existing drainage patterns, with the site continuing to drain to an existing wet pond stormwater control measure. This wet pond was evaulated to ensure it has available capacity to address the increase in runoff resulting from this projects proposed imprevious area and was found to be in compliance with no required modifications. Please see the stormwater	NOAA	2-Year, 24-Hour Storm (inches) (See NOAA Website):	3.45
Total Acreage in Lots: Number of Lots: n/a		10-Year, 24-Hour Storm (inches) (See NOAA Website):	5.04
Number of Lots: Average Lot Size (SF): Average Impervious Surface Area on Lots (SF): Average Impervious Surface Area Per Lot (SF): Stormwater Narrative (limit to 1,200 characters - attach additional pages with submittal if necessary): This proposed retail and restaurant development is on a parcel of land located immediately adjacent to the Granite Falls Boulevard (to north) and Rogers Road (to east) in Rolesville, NC. This project proposed to retain existing drainage patterns, with the site continuing to drain to an existing wet pond stormwater control measure. This wet pond was evaulated to ensure it has available capacity to address the increase in runoff resulting from this project's proposed impervious area and was found to be in compliance with no required modifications, Please see the stormwater			Lot Data (if applicable):
Average Lot Size (SF): Total Impervious Surface Area on Lots (SF): Average Impervious Surface Area Per Lot (SF): Stormwater Narrative (limit to 1,200 characters - attach additional pages with submittal if necessary): This proposed retail and restaurant development is on a parcel of land located immediately adjacent to the Granite Falls Boulevard (to north) and Rogers Road (to east) in Rolesville, NC. This project proposed to retain existing drainage patterns, with the site continuing to drain to an existing wet pond stormwater control measure. This wet pond was evaulated to ensure it has available capacity to address the increases in runoff resulting from this projects proposed impervious area and was found to be in compliance with no required modifications. Please see the stormwater		Total Acreage in Lots:	n/a
This proposed retail and restaurant development is on a parcel of land located immediately adjacent to the Granite Falls Boulevard (to north) and Rogers Road (to east) in Rolesville, NC. This proposed to retain existing drainage patterns, with the site continuing to drain to an existing wet pond stormwater control measure. This wet pond was evaluated to ensure it has available capacity to address the increase in runoff resulting from this projects proposed imperious area and was found to be in compliance with no required modifications. Please see the stormwater		Number of Lots:	n/a
Average Impervious Surface Area Per Lot (SF): Stormwater Narrative (limit to 1,200 characters - attach additional pages with submittal if necessary): This proposed retail and restaurant development is on a parcel of land located immediately adjacent to the Granite Falls Boulevard (to north) and Rogers Road (to east) in Rolesville, NC. This project proposed to retain existing drainage patterns, with the site continuing to drain to an existing wet pond stormwater control measure. This wet pond was evaulated to ensure it has available capacity to address the increase in runoff resulting from this projects proposed draves the increase in runoff resulting from this projects proposed drave was found to be in compliance with no required modifications, Please see the stormwater			n/a
This proposed retail and restaurant development is on a parcel of land located immediately adjacent to the Granite Falls Boulevard (to north) and Rogers Road (to east) in Rolesville, NC. This project proposed to retain existing drainage patterns, with the site continuing to drain to an existing wet pond stormwater control measure. This wet pond was evaulated to ensure it has available capacity to address the increase in runoff resulting from this project's proposed in previous area and was found to be in compliance with no required modifications. Please see the stormwater			
This proposed retail and restaurant development is on a parcel of land located immediately adjacent to the Granite Falls Boulevard (to north) and Rogers Road (to east) in Rolesville, NC. This project proposed to retain existing drainage patterns, with the site continuing to drain to an existing wet pond stormwater control measure. This wet pond was evaulated to ensure it has available capacity to address the increase in runoff resulting from this project's proposed impervious area and was found to be in compliance with no required modifications. Please see the stormwater		·	
project proposed to retain existing drainage patterns, with the site continuing to drain to an existing wet pond stormwater control measure. This wet pond was evaulated to ensure it has available capacity to address the increase in runoff resulting from this project's proposed impervious area and was found to be in compliance with no required modifications. Please see the stormwater		Stormwater Narrative (limit to 1,200	characters - attach additional pages with submittal if necessary):
	project proposed capacity to addres	to retain existing drainage patterns, with the site continuing to ss the increase in runoff resulting from this project's proposed	drain to an existing wet pond stormwater control measure. This wet pond was evaulated to ensure it has available

SITE DATA Page 1

DRAINAGE AREA 1 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	Р	RE-DEVE	LOPME	NT	POST-DEVELOPMENT					
Drainage Area (Acres)=		10	.81		10.81					
Site Acreage within Drainage=		10	.69			10).69			
One-year, 24-hour rainfall (in)=				2.	86					
Two-year, 24-hour rainfall (in)=				3.	45					
Ten-year, 24-hour storm (in)=				5.	04					
Total Lake/Pond Area (Acres)=	0.00 0.12									
Lake/Pond Area not in the Tc flow path (Acres)=		0.	00			0	.00			
Site Land Use (acres):	Α	В	С	D	Α	В	С	D		
Pasture			3.65				3.50			
Woods, Poor Condition										
Woods, Fair Condition			1.14	2.71						
Woods, Good Condition								1.02		
Open Space, Poor Condition										
Open Space, Fair condition										
Open Space, Good Condition				2.53			0.26	2.09		
Reforestation (in dedicated OS)										
Connected Impervious										
Disconnected Impervious			0.24	0.54			1.24	2.58		
SITE FLOW	PR	E-DEVEL			POS	T-DEVE	LOPMEN			
Sheet Flow				0						
Length (ft)=										
Slope (ft/ft)=										
Surface Cover:										
n-value=										
T _t (hrs)=										
Shallow Flow					L					
Length (ft)=		714	1.00		714.00					
Slope (ft/ft)=		0.0)22		0.022					
Surface Cover:		Unp	aved			Unp	aved			
Average Velocity (ft/sec)=			39				.39			
T _t (hrs)=		0.	08			0	.08			
Channel Flow 1										
Length (ft)=		282	2.00			28	2.00			
Slope (ft/ft)=		0.0	046			0.	046			
Cross Sectional Flow Area (ft²)=		7.	57			7	.57			
Wetted Perimeter (ft)=		25	.76			25	5.76			
Channel Lining:		We	eds			We	eeds			
n-value=		0.0	040			0.	040			
Hydraulic Radius (ft)=		0.	29		0.29					
Average Velocity (ft/sec)=		3.	53		3.53					
T_t (hrs)=		0.	02				.02			

DA1 Page 1

DRAINAGE AREA 1 STORMWATER PRE-POST CALCULATIONS

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=	#VALUE!	#VALUE!
T _t (hrs)=	#VALUE!	#VALUE!
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		#VALUE!
T _t (hrs)=		#VALUE!
Tc (hrs)=	0.12	0.12
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number=		
Somposite ourve Number	78	84
Disconnected Impervious Adjustment	78	84
·	78	
Disconnected Impervious Adjustment		32
Disconnected Impervious Adjustment Disconnected impervious area (acre) =	3.6	32
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =	3.6	82 4
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA	3.8	82 4
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	3.8	82 4
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow)	3.1 8 14,	82 4 7775
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	3.8 8 14,	1.40 54,453
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) =	3.8 8 14, 1.05 40,589	1.40 54,453
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year) = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*1-year = Volume of runoff (ft³) = Volume change (ft³) =	1.05 40,589	1.40 54,453
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} =	1.05 40,589	1.40 54,453
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	1.05 40,589 13,4	1.40 54,453 864
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year) = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*1-year = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q1-year = 2-year, 24-hour storm (LID) Runoff (inches) = Q*2-year =	1.05 40,589 13,4	1.40 54,453 864 22.665
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) =	1.48 57,364	1.40 54,453 864 22.665
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = Volume of runoff (ft³) = Peak Discharge (cfs)= Q* _{2-year} =	1.48 57,364	1.40 54,453 864 22.665
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year) = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q1-year = Volume of runoff (ft³) = Peak Discharge (cfs) = Q*_2-year = Volume of runoff (ft³) = Peak Discharge (cfs) = Q2-year =	1.05 40,589 13,4 16.894 1.48 57,364 23.876	1.40 54,453 864 22.665 1.90 73,546 30.611

DA1 Page 2

<u>DA SITE SUMMARY</u> STORMWATER PRE-POST CALCULATIONS

et Curve Numb	TION Site 0. 4 (acres) = d Areas) = t Density = t Toensity = try (TCN) = t toensity = t t toensity = t toensi	Area 00 00 00 69	0	35 Hi	DA8	Target CN N/A N/A N/A	DA10	
Site Data Soll COMPOS Total Site Are ting Lakes/Pon Project Curve Numb CNadjer TCN Require rogen Loading	TION Site 0. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	Area 00 00 00 69	C C C 4	% 9% 9% 9% 9% 9% 10 33 Hi		Target CN N/A N/A		
Site Data Site Data Total Site Are ting Lakes/Pon Projec et Curve Numb CNadj er TCN Require	TION Site 0. 0. 5. a (acres) = d Areas) = t Density = ter (TCN) = usted (1-year) = ment= ft ³ =	Area 00 00 00 69	0	0% 0% 7% 3% 10 38	5% igh	N/A N/A		
Site Data Soll COMPOS Total Site Are ting Lakes/Pon Projec et Curve Numb CNadj er TCN Require	Site	Area 00 00 00 69	0	0% 0% 7% 3% 10 38	5% igh	N/A N/A		
Site Data Soll COMPOS Total Site Are ting Lakes/Pon Projec et Curve Numb CNadj er TCN Require	Site	Area 00 00 00 69	0	0% 0% 7% 3% 10 38	5% igh	N/A N/A		
Site Data Soll COMPOS Total Site Are ting Lakes/Pon Projec et Curve Numb CNadj er TCN Require	Site	Area 00 00 00 69	0	0% 0% 7% 3% 10 38	5% igh	N/A N/A		
Total Site Are ting Lakes/Pon Project et Curve Numb CN _{adj} er TCN Require	Site 0. 0. 5. 5. a (acres) = d Areas) = t Density = tr (TCN) = tr	00 00 00 00 69	0	0% 0% 7% 3% 10 38	5% igh	N/A N/A	!	
Total Site Are ting Lakes/Pon Project et Curve Numb CN _{adj} er TCN Require	Site 0. 0. 5. 5. a (acres) = d Areas) = t Density = tr (TCN) = tr	00 00 00 00 69	0	0% 0% 7% 3% 10 38	5% igh	N/A N/A	!	
Total Site Are ting Lakes/Pon Project et Curve Numb CN _{adj} er TCN Require	Site 0. 0. 5. 5. a (acres) = d Areas) = t Density = tr (TCN) = tr	00 00 00 00 69	0	0% 0% 7% 3% 10 38	5% igh	N/A N/A	!	
Total Site Are ting Lakes/Pon Project et Curve Numb CN _{adj} er TCN Require	Site 0. 0. 5. 5. a (acres) = d Areas) = t Density = tr (TCN) = tr	00 00 00 00 69	0	0% 0% 7% 3% 10 38	5% igh	N/A N/A		
Total Site Are ting Lakes/Pon Project et Curve Numb CN _{adj} er TCN Require	Site 0. 0. 5. 5. a (acres) = d Areas) = t Density = tr (TCN) = tr	00 00 00 00 69	0	0% 0% 7% 3% 10 38	5% igh	N/A N/A	!	
Total Site Are ting Lakes/Pon Project et Curve Numb CN _{adj} er TCN Require	Site 0. 0. 5. 5. a (acres) = d Areas) = t Density = tr (TCN) = tr	00 00 00 00 69	0	0% 0% 7% 3% 10 38	5% igh	N/A N/A	<u> </u>	
Total Site Are ting Lakes/Pon Project et Curve Numb CN _{adj} er TCN Require	Site 0. 0. 5. 5. a (acres) = d Areas) = t Density = tr (TCN) = tr	00 00 00 00 69	0	0% 0% 7% 3% 10 38	5% igh	N/A N/A	<u>!</u>	
Total Site Are ting Lakes/Pon Projec et Curve Numb CN _{adj} er TCN Require	Site 0. 0. 5. 5. a (acres) = d Areas) = t Density = tr (TCN) = tr	00 00 00 00 69	0	0% 0% 7% 3% 10 38	5% igh	N/A N/A	!	
et Curve Numb CN _{adj} or TCN Require	0. 0. 5. 5. 4 (acres) = d Areas) = t Density = er (TCN) = usted (1-year) = ment= ft ³ =	00 00 00 00 69	0	0% 0% 7% 3% 10 38	5% igh	N/A N/A		
et Curve Numb CN _{adj} or TCN Require	0. 5. 5. a (acres) = d Areas) = t Density = er (TCN) = sted (1-year)= ment= ft ³ =	00 00 69	4	0% 7% 3% 10 38	5% igh	N/A N/A		
et Curve Numb CN _{adj} or TCN Require	5. 5. a (acres) = d Areas) = t Density = er (TCN) = usted (1-year)= ment= ft ³ =	69	4	7% 3% 10 35 Hi	5% igh	N/A		
et Curve Numb CN _{adj} or TCN Require	5. a (acres) = d Areas) = t Density = er (TCN) = usted (1-year)= ment= ft ³ =	69	-	3% 10 38 Hi	5% igh			
et Curve Numb CN _{adj} or TCN Require	a (acres) = d Areas) = t Density = er (TCN) = usted (1-year)= ment= ft ³ =		5	10 38 Hi	5% igh	N/A		
et Curve Numb CN _{adj} or TCN Require	d Areas) = tt Density = er (TCN) = usted (1-year) = ment= ft ³ =			35 Hi	5% igh			
Project et Curve Numb CN _{adj} er TCN Require rogen Loading	t Density = er (TCN) = usted (1-year)= ment= ft ³ =			Hi	igh			
et Curve Numb CN _{adj} er TCN Require	er (TCN) = usted (1-year)= ment= ft ³ =							
CN _{adj} er TCN Require rogen Loading	usted (1-year)= ment= ft ³ =			N	I/A			
r TCN Require	ment= ft ³ =							
rogen Loading								
TN export	Data							
coefficien (lbs/ac/yr)		Site Acreage				N Export		
1.2			3.50			4.20		
1.6		0.00			0.00			
1.2		0.00			0.00			
0.8		1.02			0.82			
1.0			0.00			0.00		
0.8			0.00			0.00		
0.6			2.35			1.41		
0.6			0.00			0.00		
21.2			3.82			80.98		
		1	8.18		1			
			87.41					
			48.93					
ling Data For I	Expansion	s Only						
Existing					New			
NA					NA			
			+					
NA					NA			
NA					NA			
	IVA NA							
Total Site loading rate (lbs/ac/yr) TOTAL SITE NITROGEN TO MITIGATE (lbs/yr)= NA								
	1.2 0.8 1.0 0.8 0.6 0.6 21.2 ding Data For E Existing NA	1.2 0.8 1.0 0.8 0.6 0.6 21.2 ding Data For Expansion Existing NA	1.2 0.8 1.0 0.8 0.6 0.6 21.2 ding Data For Expansions Only Existing NA	1.2 0.00 0.8 1.02 1.0 0.00 0.8 0.00 0.8 0.00 0.6 2.35 0.6 0.00 21.2 3.82 8.18 87.41 48.93 ding Data For Expansions Only Existing NA	1.2 0.00 0.8 1.02 1.0 0.00 0.8 0.00 0.6 2.35 0.6 0.00 21.2 3.82 8.18 87.41 48.93 ding Data For Expansions Only Existing NA	1.2 0.00 0.8 1.02 1.0 0.00 0.8 0.00 0.6 2.35 0.6 0.00 21.2 3.82 8.18 87.41 48.93 ding Data For Expansions Only Existing New NA NA NA	1.2 0.00 0.00 0.8 1.02 0.82 1.0 0.00 0.00 0.8 0.00 0.00 0.8 0.00 0.00	

SITE SUMMARY Page 1

DRAINAGE AREA 1 BMP CALCULATIONS

DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS											
DA1 Site Acreage=				10.69	9							
DA1 Off-Site Acreage=				0.12	2							
Total Required Storage Volume for Site												
TCN Requirement (ft ³)=												
Total Required Storage Volume for DA1 1" Rainfall for High Density (ft³)=				14,77	75			1				
Will site use underground detention/cistern?	No	Enter % of the year water will be reused=						Note: Supporting information/details should be submitted to demonstrate water usage.				
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA							1				
	HSG		OA1(a) Ac) Off-site	Sub-E (A Site	OA1(b) Ac) Off-site		OA1(c) Ac) Off-site		OA1(d) Ac) Off-site		OA1(e) Ac) Off-site	
Pasture		Site	Oll-site	3.50	Oll-site	Oile	Oll-site	Oile	Oil-site	Oile	Oil-site	
Woods, Poor Condition												
Woods, Fair Condition												
Woods, Good Condition				1.02								
Open Space, Poor Condition				1.02								
Open Space, Fair Condition												
Open Space, Good Condition		2.11		0.24								
Reforestation (in dedicated OS)		2.11		0.24								
		3.66 0.17										
Impervious Sub-DA1(a) BMP(s)		3.66		0.17								
Device Name (As Shown on Plan)	Device Type		Water Quality Volume Volume that will drawdown 2-5 days. (ft³) (ft³)			Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)			
Wet Pond	Wet Detention Basin							25%	78.86	19.71	61.4	
								0%	59.14	0.00		
		7,495			13,582		0%	59.14	0.00			
							0%	59.14	0.00			
							0%	59.14	0.00			
Tot	al Nitrogen remaining leaving the subbasin (lbs):					59	.14		ļ.			
Sub-DA1(b) BMP(s)												
	If Sub-DA1(b) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):											
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fi			Provided blume that will blume that will blume that will blum blum blum blum blum blum blum bl		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)	
								0%	8.76	0.00		
								0%	8.76	0.00		
			1,151			0		0%	8.76	0.00		
								0%	8.76	0.00		
								0%	8.76	0.00		
Tot	al Nitrogen remaining leaving the subbasin (lbs):					8.	76					
Sub-DA1 (c) BMP(s)												
enter th	If Sub-DA1(c) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):											
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fi			Provided olume that would will be seen to be seen that will be seen that will be seen that will be seen to be seen that will be seen to be seen that will be seen that will be seen to be seen that will be seen to be seen that will be seen that will be seen to be seen that will be seen that will be seen to be seen that will be seen to be seen that will be seen to be seen that will be seen that will be seen that will be seen that will be seen to be seen that will be seen that will be seen to be seen to be seen that will be seen to		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)	
								0%	0.00	0.00		
								0%	0.00	0.00		
						0		0%	0.00	0.00		
								0%	0.00	0.00		
								0%	0.00	0.00		
Tot	al Nitrogen remaining leaving the subbasin (lbs):											

DA1_BMPs Page 1

DRAINAGE AREA 1 BMP CALCULATIONS

Sub-DA1(d) BMP(s)									
If Sub-DA1(d) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):								
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)		
				0%	0.00	0.00			
				0%	0.00	0.00			
			0	0%	0.00	0.00			
				0%	0.00	0.00			
				0%	0.00	0.00			
Tota	al Nitrogen remaining leaving the subbasin (lbs):						1		
Sub-DA1(e) BMP(s)									
If Sub-DA1(e) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):								
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)		
				0%	0.00	0.00			
				0%	0.00	0.00			
			0	0%	0.00	0.00			
				0%	0.00	0.00			
				0%	0.00	0.00			
Tota	al Nitrogen remaining leaving the subbasin (lbs):								
	DA	1 BMP SUMMARY							
	Total Volume Treated (ft ³)=		13,582						
	Nitrogen Mitigated(lbs)=		19.71						
1-year, 24-hour storm									
	Post BMP Volume of Runoff (ft ³) _(1-year) =		40,871						
	Post BMP Runoff (inches) = Q* _(1-year) =								
	Post BMP CN _(1-year) =	78							
	Post BMP Peak Discharge (cfs)= Q _{1-year} =		5.396						
2-year, 24-hour storm (LID)									
	Post BMP Volume of Runoff (ft3) _(2-year) =		59,964						
	Post BMP Runoff (inches) = $Q^*_{(2-year)}$ =		1.55						
	Post BMP CN _(2-year) =		79						
	Post BMP Peak Discharge (cfs)= Q _(2-year) =		9.702						
10-year, 24-hour storm (DIA)									
	Post BMP Volume of Runoff (ft ³) _(10-year) =		114,822						
	Post BMP Runoff (inches) = Q* _(10-year) =		2.96						
	Post BMP CN(10-year)=		95						
	·								

DA1_BMPs Page 2

Project Name:	Proposed Retail and Restaurant Development

DA SITE SUMMARY BMP CALCULATIONS

	BMP SUMMARY										
DRAINAGE AREA SUMMARIES											
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10	
Pre-	Developm	ent (1-yea	r, 24-hour s	storm)							
Runoff (in)=Q* _{1-year} =	1.05										
Peak Flow (cfs)=Q _{1-year} =	16.894										
Post-Development (1-year, 24-hour storm)											
Target Curve Number (TCN) =					NA	١					
Post BMP Runoff (inches) = Q* _(1-year) =	1.05										
Post BMP Peak Discharge (cfs)= Q _{1-year} =	5.396										
Post BMP CN _(1-year) =											
Post-BMP Nitrogen Loading											
TOTAL SITE NITROGEN MITIGATED (lbs)=					19.7	' 1					
SITE NITROGEN LOADING RATE (lbs/ac/yr)=					6.3	3					
TOTAL SITE NITROGEN LEFT TO MITIGATE_Wendell Only (lbs)=					29.2	21					

BMP SUMMARY Page 1

DOWNSTREAM IMPACT ANALYSIS SITE SUMMARY

DRAINAGE AREA SUMMARIES										
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
			Pre-Develo	pment						
Peak Discharge (cfs)=Q _{10-year} =	44.75									
Volume of Runoff (ft ³) _(10-year) =	107,523									
			Post-Devel	opment						
10-year, 24-hour storm (DIA)										
Post BMP Peak Discharge (cfs)= Q _(10-year) =	31.33									
Post BMP Volume of Runoff (ft ³) _(10-year) =	114,822									

DIA Page 1

Appendix E:

10-Year HGL Calculations

X:\BUL - Bullard, Inc\2103 - Rolesville, NC\CAD\BUL2103-Inlet DA Map.dwg, 11/1/2024 12:16:14

Catchment Report - 10 Yr. Storm Report

Element	Area	Drainage	Weighted	Rain Gage	Peak	Total	Total	Peak	Time
ID		Node ID	Curve	ID	Rate	Precipitation	Runoff	Runoff	of
			Number		Factor				Concentration
	(acres)					(inches)	(inches)	(cfs)	(days hh:mm:ss)
CA-01	0.17	CB-01	92.00	Rolesville	484	5.70	4.77	1.22	0 00:05:00
CA-02	0.10	CB-02	92.00	Rolesville	484	5.70	4.77	0.72	0 00:05:00
CA-03	0.34	CB-03	92.00	Rolesville	484	5.70	4.77	2.40	0 00:05:00
CA-04	0.13	CB-04	92.00	Rolesville	484	5.70	4.77	0.90	0 00:05:00
CA-05	0.49	CB-05	92.00	Rolesville	484	5.70	4.77	3.48	0 00:05:00

Inlet Report - 10 Yr. Storm Event

Element	X Coordinate	Y Coordinate	Inlet	Catchbasin	Max	Roadway	Roadway	Roadway	Peak	Peak	Peak	Peak	Inlet	Max Gutter	Max Gutter	Max Gutter
ID			Location	Invert	(Rim)	Longitudinal	Cross	Manning's	Flow	Lateral	Flow	Flow	Efficiency	Spread	Water Elev.	Water Depth
				Elevation	Elevation	Slope	Slope	Roughness		Inflow	Intercepted	Bypassing	during	during	during	during
											by Inlet	Inlet	Peak Flow	Peak Flow	Peak Flow	Peak Flow
				(ft)	(ft)	(ft/ft)	(ft/ft)		(cfs)	(cfs)	(cfs)	(cfs)	(%)	(ft)	(ft)	(ft)
CB-01	2157570.88	791311.41	On Sag	411.00	415.50	N/A	0.0200	0.0160	1.22	1.22	N/A	N/A	N/A	5.76	415.72	0.22
CB-02	2157538.77	791369.19	On Sag	410.30	415.50	N/A	0.0200	0.0160	0.72	0.72	N/A	N/A	N/A	2.56	415.66	0.16
CB-03	2157344.62	791433.72	On Sag	404.50	409.50	N/A	0.0500	0.0160	2.40	2.40	N/A	N/A	N/A	5.06	409.80	0.30
CB-04	2157313.69	791385.14	On Grade	402.50	407.50	0.0400	0.0400	0.0160	2.01	0.90	1.79	0.22	88.98	4.32	407.72	0.22
CB-05	2157377.51	791317.65	On Grade	402.00	412.00	0.0100	0.0200	0.0160	3.48	3.48	2.34	1.14	67.30	10.92	412.30	0.30

Pipe Report - 10 Yr. Storm Event

Element	From (Inlet)	To (Outlet)	Length	Inlet	Outlet	Total	Average	Pipe	Pipe	Pipe	Manning's	Peak	Max	Travel	Design	Max Flow /	Max	Max
ID	Node	Node		Invert	Invert	Drop	Slope	Shape	Diameter	Width	Roughness	Flow	Flow	Time	Flow	Design Flow	Flow Depth /	Flow
				Elevation	Elevation				or Height				Velocity		Capacity	Ratio	Total Depth	Depth
																	Ratio	
			(ft)	(ft)	(ft)	(ft)	(%)		(inches)	(inches)		(cfs)	(ft/sec)	(min)	(cfs)			(ft)
Ex.24in	Ex.JB-1	Ex.JB-2	92.52	401.40	400.60	0.80	0.8600	CIRCULAR	24.000	24.00	0.0150	6.05	5.22	0.30	18.23	0.33	0.40	0.79
Ex.25in-2	Ex.JB-2	ExF.E.S24in	18.78	400.60	400.46	0.14	0.7500	CIRCULAR	24.000	24.00	0.0150	8.32	5.36	0.06	16.93	0.49	0.50	0.99
P-1	CB-01	CB-02	70.00	411.00	410.30	0.70	1.0000	CIRCULAR	15.000	15.00	0.0150	1.21	3.66	0.32	5.60	0.22	0.32	0.39
P-2	CB-02	CB-03	205.00	410.30	404.50	5.80	2.8300	CIRCULAR	15.000	15.00	0.0150	1.92	6.06	0.56	9.42	0.20	0.31	0.38
P-3	CB-03	CB-04	55.00	404.50	402.50	2.00	3.6400	CIRCULAR	18.000	18.00	0.0150	4.28	8.13	0.11	17.36	0.25	0.34	0.50
P-4	CB-04	Ex.JB-1	11.00	402.50	401.40	1.10	10.0000	CIRCULAR	18.000	18.00	0.0150	6.05	12.89	0.01	28.79	0.21	0.31	0.47
P-5	CB-05	Ex.JB-2	11.00	402.00	400.60	1.40	12.7300	CIRCULAR	15.000	15.00	0.0150	2.34	10.88	0.02	19.97	0.12	0.23	0.29

Appendix F:

Wet Pond Maintenance Agreement

STORMWATER CONTOL STRUCTURE WET DETENTION MAINTENANCE AGREEMENT

I. a b c. d e	. Rer Che Quart Insp fund Cle obs Che nec Rep	nly or after every runoff producing nove debris from trash rack. eck and clear orifice of any obstructors pond side slopes; remove tras	ctions. h, repair eroded area tch basin, piping, gra grates, and basin bot pes for undercutting	comes first: as before next rainfall. assed swales) for proper astoms, and check piping for
I. a b c d e	Mont Rer Che Che Unspress Inspress Che nec Rep Rep	nove debris from trash rack. eck and clear orifice of any obstructed pond side slopes; remove trase erly ect the collection system (i.e., catetioning. ear accumulated trash from basin geructions. eck impoundment dam and inlet piessary. eair any broken pipes.	ctions. h, repair eroded area tch basin, piping, gra grates, and basin bot pes for undercutting	as before next rainfall. assed swales) for proper
b.c.de	. Rer Che Quart Insp fund Cle obs Che nec Rep	nove debris from trash rack. eck and clear orifice of any obstructed pond side slopes; remove trase erly ect the collection system (i.e., catetioning. ear accumulated trash from basin geructions. eck impoundment dam and inlet piessary. eair any broken pipes.	ctions. h, repair eroded area tch basin, piping, gra grates, and basin bot pes for undercutting	as before next rainfall. assed swales) for proper
b.c.de	Quart Linsp fund Cle obs Che ned Rep Rep	eck and clear orifice of any obstructed point side slopes; remove trassets. Early Dect the collection system (i.e., catelioning. Dear accumulated trash from basin gotructions. Deck impoundment dam and inlet piessary. Dear any broken pipes.	h, repair eroded areatch basin, piping, gragrates, and basin botapes for undercutting	assed swales) for proper toms, and check piping for
c. a b c. de	Quart Insp fund Cle obs Che nec Rep Rep	eck pond side slopes; remove tras erly pect the collection system (i.e., cat ctioning. ar accumulated trash from basin g tructions. eck impoundment dam and inlet pi essary. pair any broken pipes.	h, repair eroded areatch basin, piping, gragrates, and basin botapes for undercutting	assed swales) for proper toms, and check piping for
a b c d e	Quart Insp fund Cle obs Che nec Rep Rep	eerly beet the collection system (i.e., catetioning. ar accumulated trash from basin getructions. ack impoundment dam and inlet piessary. air any broken pipes.	tch basin, piping, gra grates, and basin bot ipes for undercutting	assed swales) for proper toms, and check piping for
a b c d e	Insp fund Cleanobs Cheaned Rep Rep	pect the collection system (i.e., cate etioning. ar accumulated trash from basin g tructions. eck impoundment dam and inlet pi essary. pair any broken pipes.	grates, and basin bot	toms, and check piping for
b c. d e	fund Clea obs Che nec Rep Rep	ctioning. Far accumulated trash from basin gotructions. Fack impoundment dam and inlet picessary. Faciar any broken pipes.	grates, and basin bot	toms, and check piping for
c. d e III. a b	. Cle obs . Che nec . Rep . Rep	ar accumulated trash from basin g tructions. cck impoundment dam and inlet pi essary. pair any broken pipes.	pes for undercutting	, , -
d e III. a b	. Che nec . Rep . Rep . Semi	ck impoundment dam and inlet pi essary. air any broken pipes.		/ critter holes. Repair if
d e III. a b	nec . Rep . Rep Semi	essary. oair any broken pipes.		/ critter noies. Repair if
e III. a b	. Rep . Rep Semi	air any broken pipes.	diment	
III. a b	. Rep		diment	
a b			Junitetti.	
a b		-Annually		
		nove accumulated sediment from	bottom of outlet stru-	cture.
C.		ck pond depth at various location		d to 75% of original design
C.		th, remove sediment to original de		
	. Res	eed grassed swales twice yearly.	Repair eroded areas	s immediately.
IV.	Gene			
а		v side slopes according to the sea		
b		ody vegetation. Avoid "lawn" type r cland plants are encouraged along		
D		ll be removed.	, pona pomineter. inv	asive species such as callains
C.		components of impoundment syste		
d		ase the ownership of the Impound		
		y (30) days of transfer of ownersh vices, Flood and Stormwater Sect		
e.		s property and impoundment is als		•
•		nual filed with the register of deeds		nation and maintenance
		harahy ad	knowledge that Lam	the financially recognishe
, partv	for main	, hereby ack tenance of this stormwater device	. I will perform the m	naintenance as outlined
above	e, as par	of the Certificate of Compliance	with Stormwater Reg	gulations received for this
projed	ct.			
Signa	iture:		Date:	
Ī		a Notary Public	for the State of	County of
·,		, a Notary Public , do hereby certify that s day of_ rument. Witness my hand and office		, geanly of
before	e me this	day of	, 2009 and acknow	vledge due execution of the
forego	oing inst	ument. Witness my hand and office	cial seal,	

My commission expires:

Seal _____