

STORMWATER IMPACT ANALYSIS REPORT

THE PRESERVE AT MOODY FARM ROLESVILLE, NC

Prepared By:

American Engineering

4020 Westchase Boulevard, Suite 450 Raleigh, NC 27607 NCBELS #: C-3881

DATE: February 3rd, 2025

Prepared For:

Caruso Homes

110 Horizon Drive, Suite 320 Raleigh, NC 27615

TABLE OF CONTENTS

REPORT

- I. SITE HISTORY
- II. PROJECT DESCRIPTION
- **III. STORMWATER CONVEYANCE**
- IV. STORMWATER CONTROL MEASURE
- V. METHODOLOGY
- VI. CONCLUSION

APPENDICES

A. PROJECT MAPS AND DATA

- 1. VICINITY MAP
- 2. NRCS SOILS MAP
- 3. USGS MAP
- 4. FEMA FIRMETTE
- 5. PRECIPITATION DATA

B. DRAINAGE AREA MAPS

- 1. PRE-DEVELOPMENT POINT OF DISCHARGE MAP
- 2. POST-DEVELOPMENT POINT OF DISCHARGE MAP
- 3. POST-DEVELOPMENT INLET AREAS
- 4. POST-DEVELOPMENT DITCH AREAS
- 5. POST-DEVELOPMENT CULVERT DRAINAGE AREA

C. STORMWATER CONVEYANCE CALCULATIONS

- 1. INLET AREA C-VALUE CALCULATIONS
- 2. RIPRAP DISSIPATOR PAD CALCULATIONS
- 3. HYDRAFLOW HYDROGRAPH CULVERT REPORT
- 4. HYDRAFLOW EXPRESS CULVERT REPORT 10-YEAR
- 5. HYDRAFLOW EXPRESS CULVERT REPORT 25-YEAR REPORT
- 6. HYDRAFLOW EXPRESS CULVERT REPORT 100-YEAR REPORT
- 7. CULVERT SIZING WORKSHEET
- 8. CULVERT TIME OF CONCENTRATION CALCULATIONS
- 9. HYDRAFLOW EXPRESS DITCH REPORT 10 -YEAR
- 10. SPREAD CALCULATIONS BY LIMITED AREA (4 in/hr)
- 11. HYDRAFLOW STORM SEWERS IDF CURVES
- 12. HYDRAFLOW STORM SEWERS OUTFALL #1 #5 10-YEAR REPORT
- 13. HYDRAFLOW STORM SEWERS OUTFALL #1 #5 25-YEAR REPORT

D. STORMWATER CONTROL MEASURE CALCULATIONS

- 1. NCDEQ SNAP TOOL CALCULATIONS
- 2. WAKE COUNTY STORM DESIGN TOOL ROLESVILLE
- 3. SCM SIZING & CALCULATIONS
- 4. HYDRAFLOW HYDROGRAPH POND REPORTS
- 5. HYDRAFLOW HYDROGRAPH 1-YEAR REPORT (ATTENUATION)
- 6. HYDRAFLOW HYDROGRAPH 10-YEAR REPORT (ATTENUATION & VELOCITY)
- 7. HYDRAFLOW HYDROGRAPH 100-YEAR REPORT (FREEBOARD)

REPORT

I. SITE HISTORY

The existing parcel use is agricultural. It is located at the intersection of Rolesville Road and Amazon Trail. The property is divided into two (2) tax parcels, totaling 51.78 acres, consisting of PIN: 1767-28-4304 and 1767-28-4925. The parcel is bordered by agricultural fields to the north, south, and west, with a new subdivision being built directly across the property to the east. An existing stream with surrounding wetlands spans the length of the property from east to west, with a portion of the wetlands also on the southern half of the property. All existing ponds but the one in the far northwest part of the project are to be breached in a separate operation. There is no FEMA flood plain on this site.

The soil on site predominately consists of Rawlings-Rion (RgB), Wedowee-Saw (Wfb), Chewacla and Wehadkee soils (ChA), and Altavista fine sandy loam (AaA) according to the US Department of Agriculture (USDA) NRCS soil report. More detailed soil information can be found in the project Geotechnical Report (see separate document uploaded with project submission).

The existing site is relatively hilly, with high points on the southern border and southeast portion of the site, directing the site drainage towards the wetlands in the middle of the site and discharging to the west. The contours on the site range from 335' to 385' above mean sea level.

II. PROJECT DESCRIPTION

The Preserve at Moody Farm project is predominately surrounded on the north, west and south side by another development in progress known as Kalas Falls. A few small tracts at the northeast side of this project are not part of this project. There is a parcel in the middle of the project which will be referred to as the Moody Homestead. The Moody Homestead is not part of this project, however, the parcel drains onto the Moody Farm project and will be considered in the drainage calculations. The eastern boundary of this project is Rolesville Road which is currently undergoing road improvements to accommodate development in the area.

The project drains to Harris Creek which is part of the Neuse River basin. It is approximately one mile northwest of the intersection of Mitchell Mill Road and Rolesville Road in Wake County, North Carolina. The area of the project is 48.28 acres which does not include the Moody Homestead but does include the existing cemetery between lot #3 and #4. The project at final build out will include 82 single-family homes.

III. STORMWATER CONVEYANCE

Pipe Network

The stormwater conveyance on site is split into seven (7) networks, five (5) of which are designated respective wet ponds, one (1) for bypasses, and one (1) for culvert crossings. Stormwater pipe material is proposed to be reinforced concrete pipe (RCP) within the rights-of-way. RCP pipes on site range from 15" to 54" in diameter. Proposed public easements to allow for future access and maintenance of each SCM and infrastructure can be seen in the

Construction Drawings (CD) Plan set.

Modeling was performed in *Autodesk Hydrograph Storm Sewers* for the 10 and 25-year storm events, see Appendix C. The 10-year modeling ensured hydraulic grade lines (HGL) were maintained within the pipe networks, see Appendix C: Attachment 12. The 25-year modeling ensured HGL's were maintained within the structures, see Appendix C: Attachment 13. To accomplish modeling, inlet areas were delineated for each structure that is to accept overland flow, see Appendix B: Attachment 3. A uniform rational C-value of 0.57 was determined by implementing the post-development impervious area being conveyed to SCM's and the post-development total area being conveyed to SCM's, see Appendix C: Attachment 1. A uniform time of concentration of 10 minutes was used during modeling.

Energy Dissipation

Riprap dissipater pads have been sized for pipe outlets following NCDOT charts and methodology to reduce sediment erosion in areas where water is discharging to the surface, see Appendix C: Attachment 2. Flared-end sections or headwalls are proposed at the outlets of each system entering/exiting SCM's or proposed ditches. Either class "B" or class "1" riprap is proposed at each of these outlets, determined by pipe size and exit velocity.

Inlet Spreads

Spreads were determined on site using a storm intensity of 4 in/hr, see Appendix C: Attachment 10. The method by Limited Area was used to calculate spread sizes and determine the max drainage area per structure based off several variables including road width, longitudinal slope, cross slope, and curb and gutter profile by implementing Manning's Equation. If the max drainage area exceeded the actual drainage area, then a double inlet was implemented in design. Max spreads for this project could not exceed 7.5-feet (5.5-foot half lane + 2-foot gutter).

Permanent Ditches

Permanent diversion ditches are implemented on site to channelize flow to SCM's and divert stormwater around SCM's in specific areas (bypass). Modeling was performed in the *Hydraflow Express Extension* of Autodesk to ensure velocities of less than 10 fps were achieved, see table below. Modeling also ensured that the ditches were adequately sized so that storm water would not over top the ditch during the 10-year storm event, see Appendix B: Attachment 4 and Appendix C: Attachment 9. The contractor should ensure these ditches are stabilized immediately following grading operations to minimize sediment loss on site. See permanent ditch schedule in the CD Plan set.

Ditch Label	V ₁₀ (fps)
Ditch #1	5.32
Ditch #2	5.55
Ditch #3	4.76
Ditch #4	1.16
Ditch #5	4.07
Ditch #6	4.42
Ditch #7	4.34
Ditch #8	4.63
Ditch #9	7.07

Table 1: Calculated Velocities for Ditches

Culvert Crossings

There are two (2) culvert crossings within the Moody project, see Appendix B: Attachment 5. One culvert is to be a 36" RCP pipe that will convey stormwater runoff underneath Mulberry Tree Drive. This 36" culvert conveys stormwater received from the northeast existing pond on site and the drainage area upstream. The second culvert crossing will consist of two (2) 54" RCP pipes that will convey water underneath Tansley Crest Loop. These 54" culverts convey stormwater received from Moody SCM's #1, #2, #3, onsite bypass, Kalas Falls Phase 2 (POI #7), and the Mulberry culvert upstream. All culverts pipes are to be buried to a depth of 20% of the pipe diameter to meet environmental engineering requirements.

Autodesk Hydraflow Hydrograph Extension was used to determine the peaks flows for the 10-year, 25-year, and 100-year storm events for each culvert, see Table 2: Culvert Peak Flows. This modeling can be seen in Appendix C. Autodesk Hydraflow Express Extension was used to model each culvert, by implementing peaks flows obtained from Hydrographs, ensuring that the 10-year hydraulic grade line remained in the pipe and the 100-year storm event does not over top the roadway, see Appendix C: Attachments 4-6. Due to the Hydraflow Express Extension not being capable of factoring in the loss of hydraulic capacity with a portion of the culvert pipe being buried, additional hydraulic calculations were performed to ensure culverts are sized adequately, see Appendix C: Attachment 7.

Culvert Label	Q ₁₀ (cfs)	Q ₂₅ (cfs)	Q ₁₀₀ (cfs)
Mulberry Culvert: 36"	24.42	33.20	47.93
Tansley Culvert: Dbl 54"	135.24	194.15	312.87

Table 2: Culvert Peak Flows

IV. STORMWATER CONTROL MEASURE

Quantity Control

The primary SCM's proposed on site to detain, treat, and attenuate storm-events are wet ponds. The wet ponds have been designed following the *North Carolina Department of Environmental Quality (NCDEQ) Stormwater Manual* (C-3), see Appendix D: Attachment 3. Each pond is to first be used as a sediment basin, later to be converted to a fully functioning wet pond (per design and sequencing) following installation of stormwater infrastructure and site stabilization.

Each wet pond was designed with a partially submerged vegetative shelf and their specific design elevations, control structures, and geometry can be seen in the Construction Drawing Plan Set, sheets C8.0 through C8.4. Each pond has a control structure that is designed to attenuate the 1-year 24-hour storm event less than or equal to the pre-development peak flow, see Appendix D: Attachment 5. Each emergency spillway has been designed to an elevation that will not be utilized (overtopped) during a 10-year storm event. Each wet pond is designed so that one- foot of freeboard is available during the 100-year storm event.

The SCS Method was implemented to determine curve numbers (CN) per point of discharge (POD). To do so, hydrologic soil group (HSG) data was uploaded from the USDA for determining CN calculations in each POD exhibit, see Appendix B: Attachment 1 & 2 and Appendix D: Attachment 3. During calculations, if a HSG had two values (E.g. A/D), the more conservative CN value was selected for that area (E.g. D group). Calculations were performed following the

AMERICAN Engineering

The Preserve at Moody Farm

NCDEQ design manual (Section B). In doing so, a composite CN value was determined for each POD area. These POD areas and composite CN values were entered into the *Autodesk Hydraflow Hydrograph Extension* to allow for each wet pond to be modeled for desired storm events, see Appendix D: Attachment 4-7.

For modeling purposes, the site had two notable points of discharges. In the post-development scenario, POD #2 was split into five (5) smaller points of discharge areas and the cumulative flow is represented in Table 4: *Post-Development Peak Flow* (see below).

The pre-development calculated peak flow from each POD area combined for a respective storm event can be seen below in Table 3: *Pre-Development Peak Flow*.

Q ₁ (cfs)	Q ₁₀ (cfs)	Q ₁₀₀ (cfs)
56.68	163.83	310.97

Table 3: Pre-Development POD flows

The post-development calculated peak flow from each POD area combined for a respective storm event can be seen below in Table 4: *Post-Development Peak Flow.*

Q ₁ (cfs)	Q ₁₀ (cfs)	Q ₁₀₀ (cfs)
38.14	163.19	367.29

Table 4: Post-Development Peak Flow

As seen in the tables above, the 1-year and 10-year storm event peak flows are lower in the post-development. Due to the 100-year storm hydraulic grade lines being within SCM emergency spillways, post-development peak flows surpass pre-development peak flows during the 100-year storm event.

Quality Control

Nutrient reduction was quantified on site by implementing the *North Carolina Department of Environmental Quality SNAP Tool*, see Appendix D: Attachment 1. Due to the site being within the Neuse River Basin, maintaining a total nitrogen (TN) load rate equal to or lower than 3.60 lb/ac/yr is required. If the TN load rate for the project is between 3.60 lb/ac/yr 6.00 lb/ac/yr buydown is required and an acceptable alternative to providing additional SCM treatment. The *SNAP Tool* calculated the project has a nitrogen export rate of 2.87 lb/ac/yr and no offset payment is required to a private nutrient bank.

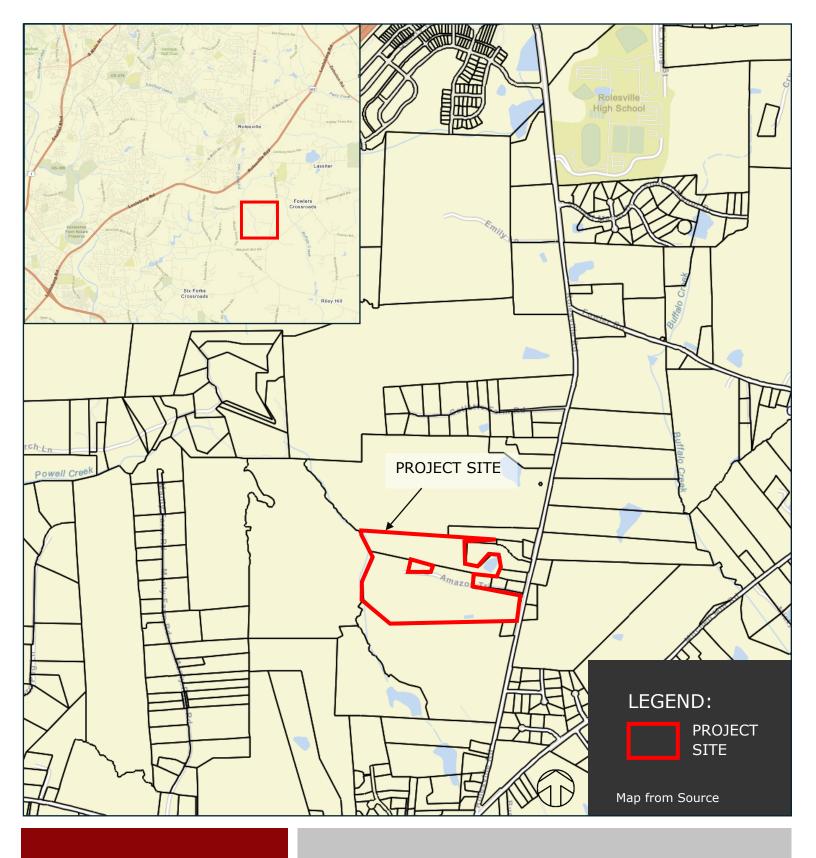
V. METHODOLOGY

The stormwater design calculations are conducted using the following methods:

- Precipitation intensity and depths for the site were obtained from https://hdsc.nws.noaa.gov/pfds/pfds_map_cont.html?bkmrk=nc.
- Rational method was used to determined Q-values for inlet areas.
- The composite runoff coefficients (C-Value) were computed using the C-values from NCDEQ Stormwater Design Manual and are included in Appendix C: Attachments 1.
- SCS method was used to determine Q-values for drainage areas (POD's)
- The curve numbers (CN) were computed using the CN -values from NCDEQ Stormwater

The Preserve at Moody Farm

Design Manual and are included in Appendix D: Attachment 3.


- Time of concentration (Tc) was calculated using the Kirpich method where applicable. A minimum Tc of 10-minutes was used for stormwater conveyance calculations.
- For culvert modeling, TR-55 method was used to determine time of concentraions (Tc).
- Autodesk Hydraflow Hydrograph Extension program was used to model wet ponds and determine peak flows at culverts.
- Autodesk Hydrograph Storm Sewers Extension program was used to model storm pipes.
- Autodesk Hydraflow Express Extension program was used to model ditches and culverts.
- Riprap sizing for erosion and sediment control was determined using NCDOT standard detail #876.02 "Guide for Rip Rap at Pipe Outlets".
- Nutrient reduction was quantified by implementing the NCDEQ SNAP Tool.

VI. CONCLUSION

It is our professional opinion that the proposed stormwater design on site meets the requirements of the *NCDEQ Stormwater Manual* and the Wake County Stormwater Rules and Regulations.

APPENDIX A PROJECT MAPS & DATA

VICINITY MAP

THE PRESERVE AT MOODY FARM

WAKE COUNTY

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Wake County, North Carolina

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	
Map Unit Legend	11
Map Unit Descriptions	11
Wake County, North Carolina	13
AaA—Altavista fine sandy loam, 0 to 4 percent slopes, rarely flooded	13
ChA—Chewacla and Wehadkee soils, 0 to 2 percent slopes,	
frequently flooded	14
HeB—Helena sandy loam, 2 to 6 percent slopes	15
RgB—Rawlings-Rion complex, 2 to 6 percent slopes	16
RgC—Rawlings-Rion complex, 6 to 10 percent slopes	18
RgD—Rawlings-Rion complex, 10 to 15 percent slopes	20
W—Water	21
WfB—Wedowee-Saw complex, 2 to 6 percent slopes	22
References	24

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

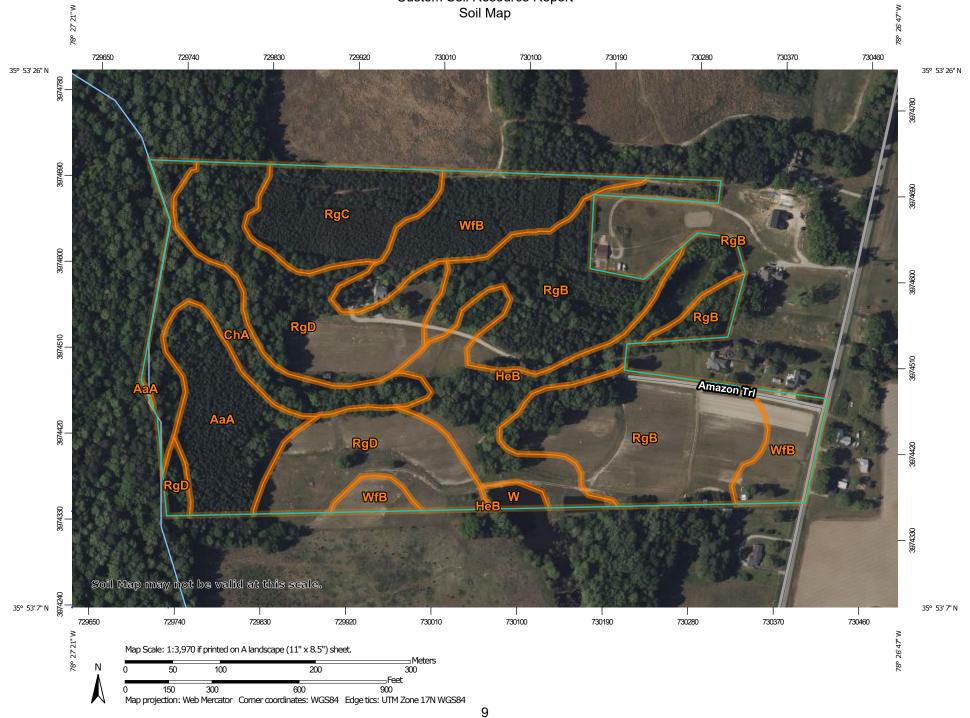
The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.


After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

-

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

ဖ

Blowout

 \boxtimes

Borrow Pit

Ж

Clay Spot

 \wedge

Closed Depression

~

.....

۰

Gravelly Spot

0

Landfill Lava Flow

Gravel Pit

٨

Marsh or swamp

2

Mine or Quarry

0

Miscellaneous Water
Perennial Water

0

Rock Outcrop

+

Saline Spot

. .

Sandy Spot

_

Severely Eroded Spot

Λ

Sinkhole

~

Slide or Slip

B

Sodic Spot

__.._

8

Spoil Area Stony Spot

Very Stony Spot

Wet Spot Other

Special Line Features

Water Features

_

Streams and Canals

Transportation

ransp

Rails

~

Interstate Highways

US Routes

 \sim

Major Roads

~

Local Roads

Background

1

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Wake County, North Carolina Survey Area Data: Version 26, Sep 9, 2024

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Apr 24, 2022—May 9, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
AaA	Altavista fine sandy loam, 0 to 4 percent slopes, rarely flooded	4.5	8.5%
ChA	Chewacla and Wehadkee soils, 0 to 2 percent slopes, frequently flooded	4.5	8.6%
HeB	Helena sandy loam, 2 to 6 percent slopes	6.3	12.0%
RgB	Rawlings-Rion complex, 2 to 6 percent slopes	14.3	27.2%
RgC	Rawlings-Rion complex, 6 to 10 percent slopes	4.2	7.9%
RgD	Rawlings-Rion complex, 10 to 15 percent slopes	11.8	22.4%
W	Water	0.4	0.7%
WfB	Wedowee-Saw complex, 2 to 6 percent slopes	6.7	12.8%
Totals for Area of Interest		52.7	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas

are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Wake County, North Carolina

AaA—Altavista fine sandy loam, 0 to 4 percent slopes, rarely flooded

Map Unit Setting

National map unit symbol: 2xh95

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Altavista, rarely flooded, and similar soils: 95 percent

Minor components: 2 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Altavista, Rarely Flooded

Setting

Landform: Stream terraces

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Old loamy alluvium derived from igneous and metamorphic rock

Typical profile

Ap - 0 to 8 inches: fine sandy loam
E - 8 to 12 inches: fine sandy loam
BE - 12 to 15 inches: sandy clay loam
Bt - 15 to 35 inches: clay loam
BC - 35 to 42 inches: sandy loam
C - 42 to 80 inches: coarse sandy loam

Properties and qualities

Slope: 0 to 4 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: About 18 to 30 inches

Frequency of flooding: Rare Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 8.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Ecological site: F136XY660NC - High terraces, very rare inundation

Hydric soil rating: No

Minor Components

Roanoke, occasionally flooded, undrained

Percent of map unit: 2 percent Landform: Stream terraces

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: Yes

ChA—Chewacla and Wehadkee soils, 0 to 2 percent slopes, frequently flooded

Map Unit Setting

National map unit symbol: 2qwpj

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches

Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Prime farmland if drained and either protected from flooding

or not frequently flooded during the growing season

Map Unit Composition

Chewacla, frequently flooded, and similar soils: 50 percent Wehadkee, frequently flooded, and similar soils: 45 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Chewacla, Frequently Flooded

Settina

Landform: Flood plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Loamy alluvium derived from igneous and metamorphic rock

Typical profile

A - 0 to 4 inches: loam

Bw1 - 4 to 26 inches: silty clay loam

Bw2 - 26 to 38 inches: loam Bw3 - 38 to 60 inches: clay loam C - 60 to 80 inches: loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: About 6 to 24 inches

Frequency of flooding: Frequent Frequency of ponding: None

Available water supply, 0 to 60 inches: High (about 10.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: B/D

Ecological site: F136XY610GA - Flood plain forest, wet

Hydric soil rating: No

Description of Wehadkee, Frequently Flooded

Setting

Landform: Flood plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Loamy alluvium derived from igneous and metamorphic rock

Typical profile

A - 0 to 7 inches: silt loam

Bg - 7 to 49 inches: clay loam

Cg - 49 to 80 inches: clay loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.20 to 1.98 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: Frequent Frequency of ponding: None

Available water supply, 0 to 60 inches: High (about 11.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6w

Hydrologic Soil Group: B/D

Ecological site: F136XY600NC - Flood plain forest, very wet

Hydric soil rating: Yes

HeB—Helena sandy loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2qqgq

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Helena and similar soils: 92 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Helena

Setting

Landform: Interfluves

Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from granite and gneiss

Typical profile

Ap - 0 to 12 inches: sandy loam BE - 12 to 19 inches: sandy clay loam

Bt1 - 19 to 39 inches: clay Bt2 - 39 to 43 inches: clay loam BCg - 43 to 46 inches: clay loam C - 46 to 80 inches: sandy loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: About 18 to 30 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 8.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: D

Ecological site: F136XY810SC - Acidic upland forest, seasonally wet

Hydric soil rating: No

RgB—Rawlings-Rion complex, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2xhb9

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches

Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Rawlings and similar soils: 55 percent Rion and similar soils: 35 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Rawlings

Setting

Landform: Interfluves

Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from granite

Typical profile

Ap - 0 to 8 inches: sandy loam

Bt - 8 to 20 inches: sandy clay loam

C - 20 to 40 inches: gravelly sandy loam

R - 40 to 80 inches: bedrock

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Ecological site: F136XY830NC - Acidic upland forest, depth restriction, dry-moist

Hydric soil rating: No

Description of Rion

Setting

Landform: Interfluves

Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Saprolite derived from granite and gneiss

Typical profile

Ap - 0 to 8 inches: sandy loam

Bt1 - 8 to 17 inches: sandy clay loam

Bt2 - 17 to 38 inches: sandy loam

C - 38 to 80 inches: sandy loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 7.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: B

Ecological site: F136XY820GA - Acidic upland forest, moist

Hydric soil rating: No

RgC—Rawlings-Rion complex, 6 to 10 percent slopes

Map Unit Setting

National map unit symbol: 2xhbb

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Rawlings and similar soils: 55 percent Rion and similar soils: 35 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Rawlings

Setting

Landform: Interfluves

Landform position (two-dimensional): Shoulder, backslope

Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from granite

Typical profile

Ap - 0 to 8 inches: sandy loam

Bt - 8 to 20 inches: sandy clay loam

C - 20 to 40 inches: gravelly sandy loam

R - 40 to 80 inches: bedrock

Properties and qualities

Slope: 6 to 10 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: C

Ecological site: F136XY830NC - Acidic upland forest, depth restriction, dry-moist

Hydric soil rating: No

Description of Rion

Setting

Landform: Interfluves

Landform position (two-dimensional): Shoulder, backslope

Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Saprolite derived from granite and gneiss

Typical profile

Ap - 0 to 8 inches: sandy loam
Bt1 - 8 to 17 inches: sandy clay loam
Bt2 - 17 to 38 inches: sandy loam
C - 38 to 80 inches: sandy loam

Properties and qualities

Slope: 6 to 10 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 7.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: B

Ecological site: F136XY820GA - Acidic upland forest, moist

Hydric soil rating: No

RgD—Rawlings-Rion complex, 10 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2xhb8

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Rawlings and similar soils: 55 percent Rion and similar soils: 35 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Rawlings

Setting

Landform: Interfluves

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from granite

Typical profile

Ap - 0 to 8 inches: sandy loam

Bt - 8 to 20 inches: sandy clay loam

C - 20 to 40 inches: gravelly sandy loam

R - 40 to 80 inches: bedrock

Properties and qualities

Slope: 10 to 15 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C

Ecological site: F136XY830NC - Acidic upland forest, depth restriction, dry-moist

Hydric soil rating: No

Description of Rion

Setting

Landform: Interfluves

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Saprolite derived from granite and gneiss

Typical profile

Ap - 0 to 8 inches: sandy loam
Bt1 - 8 to 17 inches: sandy clay loam
Bt2 - 17 to 38 inches: sandy loam
C - 38 to 80 inches: sandy loam

Properties and qualities

Slope: 10 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 7.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: F136XY820GA - Acidic upland forest, moist

Hydric soil rating: No

W-Water

Map Unit Setting

National map unit symbol: 2qqjv

Elevation: 70 to 450 feet

Mean annual precipitation: 39 to 51 inches
Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Not prime farmland

Map Unit Composition

Water: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Water

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8

Hydric soil rating: No

WfB-Wedowee-Saw complex, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2xn42

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Wedowee and similar soils: 60 percent Saw and similar soils: 35 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wedowee

Setting

Landform: Interfluves

Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Saprolite residuum weathered from granite and gneiss and/or

saprolite residuum weathered from schist

Typical profile

Ap - 0 to 4 inches: sandy loam
E - 4 to 7 inches: sandy loam
BC - 23 to 35 inches: clay loam
C - 35 to 80 inches: sandy clay loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 6.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hvdrologic Soil Group: B

Ecological site: F136XY820GA - Acidic upland forest, moist

Hydric soil rating: No

Description of Saw

Setting

Landform: Interfluves

Landform position (two-dimensional): Summit, shoulder

Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from granite and gneiss

Typical profile

Ap - 0 to 8 inches: sandy loam

Bt - 8 to 20 inches: clay

BC - 20 to 26 inches: sandy clay loam

C - 26 to 29 inches: sandy loam R - 29 to 80 inches: bedrock

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to

0.01 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Ecological site: F136XY830NC - Acidic upland forest, depth restriction, dry-moist

Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

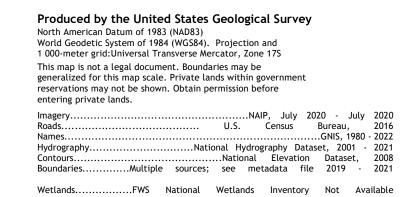
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

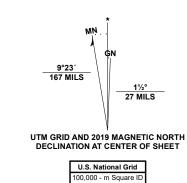
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

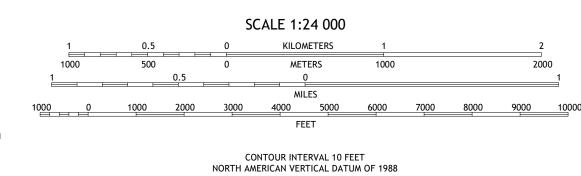
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

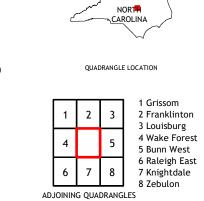
United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084


United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242


United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf





QV

Grid Zone Designation 17S

This map was produced to conform with the National Geospatial Program US Topo Product Standard.

FLOOD HAZARD INFORMATION

SEE FIS REPORT FOR ZONE DESCRIPTIONS AND INDEX MAP FOR FIRM PANEL LAYOUT

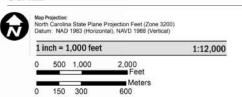
THE INFORMATION DEPICTED ON THIS MAP AND SUPPORTING DOCUMENTATION ARE ALSO AVAILABLE IN DIGITAL FORMAT AT HTTPS://FRIS.NC.GOV/FRIS HTTPS://MSC.FEMA.GOV

NOTES TO USERS

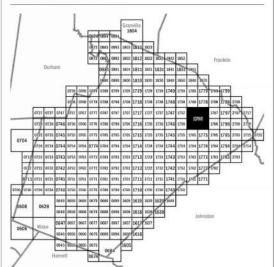
Communities annexing land on adjacent FIRM panels must obtain a current copy of the adjacent panel as well as the current FIRM Index. These may be ordered directly from the Map Service Center at the number listed above.

nmunity and countywide map dates refer to the Flood Insurance Study report for this jurisdiction

To determine if flood insurance is available in the community, contact your insurance agent or call the National Flood Insurance Program at 1-800-638-6620.


ACCREDITED LEVEE NOTES TO USERS: If an accredited levee note appears on this panel check with community to obtain more information, such as the estimated level of protection provided (which may ex-perience). In proceedings of the process of the

interested parties should vail the FEMA Website at https://www.fema.gov/national-flood-insurance-program PROVISIONALLY ACCREDITED IN PLETE NEEDS TO USERS if It provisionally Accreted Levere (PA.) rote appeals no this panel, check with your local community to obtain more information, such as the estimated level of protection provided (ellich may exceed the 1-ferreind a-manusi-chance level) and Emeragency Action Plan, not level or protection provided (ellich may exceed the 1-ferreind a-manusi-chance level) and Emeragency Action Plan, not level expected to submit the data and documentation necessary to comply with Section 63:10 of the NFIP regulations. If the community or owner does not provide the encessary data and documentation or if the data and documentation necessary data and documentation or if the data and course on the provided indicate the level expert of the section of the order of the section of the flore or in the section of the section of the section of the flore or in the section of the section of the section of the section of the flore or in the section of the section of


LIMIT OF MODERATE WAVE ACTION NOTES TO USERS: For some coastal flooding zones the AE Zone category has been divided by a Limit of Moderate Wave Action (LMWA). The LiMWA represents the approximate landward mire of the 1.5-foot breaking wave. The effects of wave hazards between the VE Zone and the LiMWA (or between the shoreline and the LiMWA for areas where VE Zones are not identified) will be similar to, but less severe than those in the VE Zone.

Limit of Moderate Wave Action (LiMWA)

SCALE

PANEL LOCATOR

NORTH CAROLINA FLOODPLAIN MAPPING PROGRAM NATIONAL FLOOD INSURANCE PROGRAM FLOOD INSURANCE RATE MAP National Flood Insurance Program

NORTH CAROLINA

PANEL 1766

COMMUNITY

ROLESVILLE, TOWN OF WAKE COUNTY

CID PANEL SUFFIX 370468 1766 K 370368 1766 K

NOAA Atlas 14, Volume 2, Version 3 Location name: Wake Forest, North Carolina, USA* Latitude: 35.8876°, Longitude: -78.4479° Elevation: 396 ft**

* source: ESRI Maps ** source: USGS

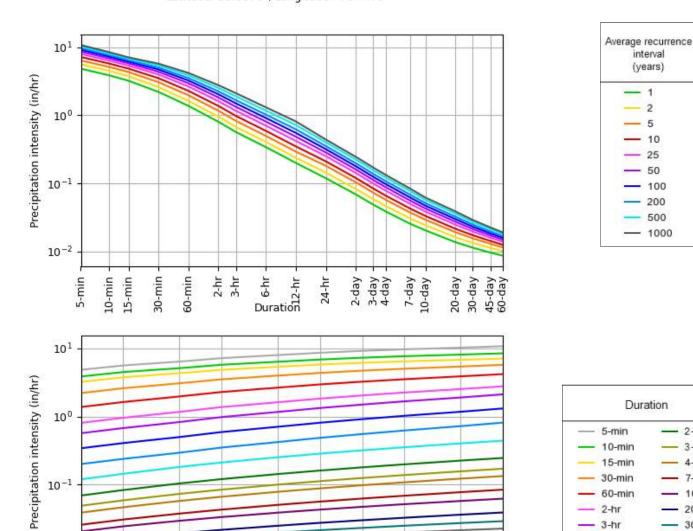
POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS-b	ased poir	nt precipit	ation freq					intervals	(in inches	s/hour) ¹
Duration						ce interval (,			
	1	2	5	10	25	50	100	200	500	1000
5-min	4.85 5.63 (4.44-5.30) (5.16-6.14)		6.41 (5.87-7.00)	7.20 (6.59-7.86)	7.99 (7.28-8.72)	8.64 (7.82-9.41)	9.20 (8.29-10.0)	9.71 (8.70-10.6)	10.3 (9.12-11.2)	10.8 (9.49-11.8)
10-min	3.87 (3.55-4.24)	4.50 (4.12-4.91)	5.13 (4.70-5.60)	5.76 (5.27-6.28)	6.37 (5.80-6.95)	6.88 (6.23-7.49)	7.31 (6.59-7.97)	7.69 (6.89-8.39)	8.12 (7.22-8.87)	8.48 (7.48-9.29)
15-min	3.22 (2.95-3.53)	3.77 (3.46-4.12)	4.33 (3.96-4.72)	4.86 (4.44-5.30)	5.38 (4.90-5.87)	5.80 (5.26-6.33)	6.16 (5.55-6.71)	6.47 (5.80-7.06)	6.81 (6.06-7.44)	7.10 (6.26-7.77)
30-min	2.21 (2.02-2.42)	2.60 (2.39-2.85)	3.07 (2.82-3.35)	3.52 (3.22-3.84)	3.99 (3.63-4.35)	4.37 (3.96-4.76)	4.72 (4.25-5.14)	5.04 (4.51-5.50)	5.42 (4.82-5.92)	5.75 (5.07-6.29)
60-min	1.38 (1.26-1.51)	1.63 (1.50-1.78)	1.97 (1.80-2.15)	2.29 (2.10-2.50)	2.66 (2.42-2.90)	2.96 (2.68-3.23)	3.25 (2.93-3.54)	3.53 (3.16-3.86)	3.89 (3.46-4.25)	4.20 (3.70-4.59)
2-hr	0.805 (0.732-0.889)	0.958 (0.874-1.05)	1.17 (1.06-1.28)	1.38 (1.25-1.51)	1.62 (1.46-1.77)	1.83 (1.65-2.00)	2.04 (1.82-2.23)	2.25 (2.00-2.46)	2.53 (2.22-2.77)	2.78 (2.41-3.04)
3-hr	0.568 (0.516-0.630)	0.676 (0.617-0.746)	0.828 (0.753-0.913)	0.981 (0.890-1.08)	1.17 (1.05-1.28)	1.33 (1.19-1.46)	1.50 (1.33-1.64)	1.67 (1.47-1.83)	1.90 (1.66-2.09)	2.12 (1.82-2.32)
6-hr	0.341 (0.311-0.377)	0.407 (0.372-0.448)	0.498 (0.454-0.548)	0.591 (0.538-0.649)	0.706 (0.638-0.773)	0.810 (0.727-0.885)	0.914 (0.814-0.998)	1.02 (0.903-1.12)	1.17 (1.02-1.28)	1.31 (1.13-1.43)
12-hr	0.200 (0.183-0.220)	0.238 (0.219-0.261)	0.293 (0.268-0.322)	0.350 (0.319-0.383)	0.420 (0.381-0.459)	0.486 (0.436-0.529)	0.552 (0.491-0.600)	0.623 (0.548-0.677)	0.721 (0.624-0.784)	0.813 (0.693-0.884)
24-hr	0.119 (0.110-0.128)	0.144 (0.134-0.155)	0.181 (0.168-0.195)	0.211 (0.195-0.227)	0.251 (0.232-0.271)	0.284 (0.262-0.306)	0.318 (0.292-0.343)	0.353 (0.323-0.381)	0.402 (0.365-0.434)	0.441 (0.399-0.478)
2-day	0.069 (0.064-0.074)	0.083 (0.077-0.089)	0.103 (0.096-0.111)	0.120 (0.111-0.129)	0.142 (0.132-0.153)	0.160 (0.148-0.173)	0.179 (0.164-0.193)	0.198 (0.181-0.214)	0.225 (0.204-0.243)	0.246 (0.222-0.266)
3-day	0.048 (0.045-0.052)	0.058 (0.054-0.063)	0.073 (0.068-0.078)	0.084 (0.078-0.090)	0.099 (0.092-0.107)	0.112 (0.103-0.120)	0.125 (0.115-0.134)	0.138 (0.126-0.148)	0.156 (0.142-0.168)	0.171 (0.154-0.184)
4-day	0.038 (0.036-0.041)	0.046 (0.043-0.049)	0.057 (0.053-0.061)	0.066 (0.061-0.070)	0.078 (0.072-0.083)	0.087 (0.081-0.094)	0.097 (0.090-0.104)	0.108 (0.099-0.115)	0.122 (0.111-0.131)	0.133 (0.121-0.143)
7-day	0.025 (0.024-0.027)	0.030 (0.028-0.032)	0.037 (0.035-0.040)	0.042 (0.040-0.045)	0.050 (0.046-0.053)	0.056 (0.052-0.060)	0.062 (0.057-0.066)	0.068 (0.063-0.073)	0.077 (0.070-0.083)	0.084 (0.076-0.090)
10-day	0.020 (0.019-0.021)	0.024 (0.022-0.025)	0.029 (0.027-0.031)	0.033 (0.031-0.035)	0.038 (0.036-0.041)	0.042 (0.039-0.045)	0.047 (0.043-0.050)	0.051 (0.047-0.055)	0.057 (0.052-0.061)	0.062 (0.056-0.066)
20-day	0.013 (0.012-0.014)	0.016 (0.015-0.017)	0.019 (0.018-0.020)	0.021 (0.020-0.023)	0.024 (0.023-0.026)	0.027 (0.025-0.029)	0.029 (0.027-0.031)	0.032 (0.030-0.034)	0.036 (0.033-0.038)	0.038 (0.035-0.041)
30-day	0.011 (0.010-0.012)	0.013 (0.012-0.014)	0.015 (0.014-0.016)	0.017 (0.016-0.018)	0.019 (0.018-0.020)	0.021 (0.020-0.022)	0.023 (0.021-0.024)	0.024 (0.023-0.026)	0.027 (0.025-0.029)	0.029 (0.026-0.031)
45-day	0.009 (0.009-0.010)	0.011 (0.010-0.011)	0.012 (0.012-0.013)	0.014 (0.013-0.015)	0.015 (0.015-0.016)	0.017 (0.016-0.018)	0.018 (0.017-0.019)	0.019 (0.018-0.020)	0.021 (0.019-0.022)	0.022 (0.021-0.023)
60-day	0.008 (0.008-0.009)	0.010 (0.009-0.010)	0.011 (0.010-0.012)	0.012 (0.011-0.013)	0.013 (0.013-0.014)	0.014 (0.014-0.015)	0.015 (0.015-0.016)	0.016 (0.015-0.017)	0.018 (0.017-0.019)	0.019 (0.017-0.020)


Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PDS-based intensity-duration-frequency (IDF) curves Latitude: 35.8876°, Longitude: -78.4479°

NOAA Atlas 14, Volume 2, Version 3

2

5

10

25

Average recurrence interval (years)

50

10-2

Created (GMT): Tue Nov 12 22:22:08 2024

500

1000

2-day

3-day 4-day

7-day

10-day 20-day

30-day

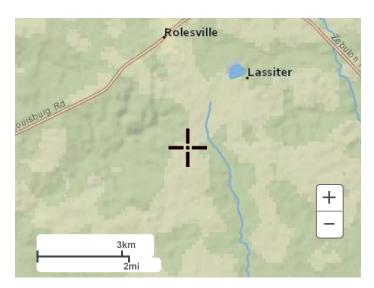
45-day

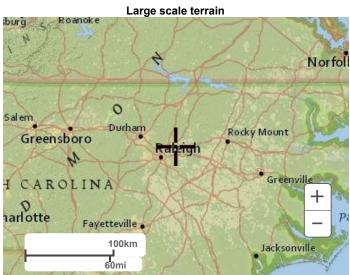
- 60-day

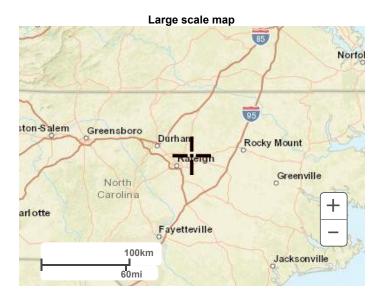
6-hr

12-hr

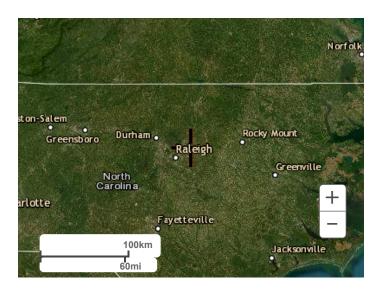
24-hr


Back to Top


100


200

Maps & aerials


Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce

National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

<u>Disclaimer</u>

NOAA Atlas 14, Volume 2, Version 3 Location name: Wake Forest, North Carolina, USA* Latitude: 35.8876°, Longitude: -78.449° Elevation: 385 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

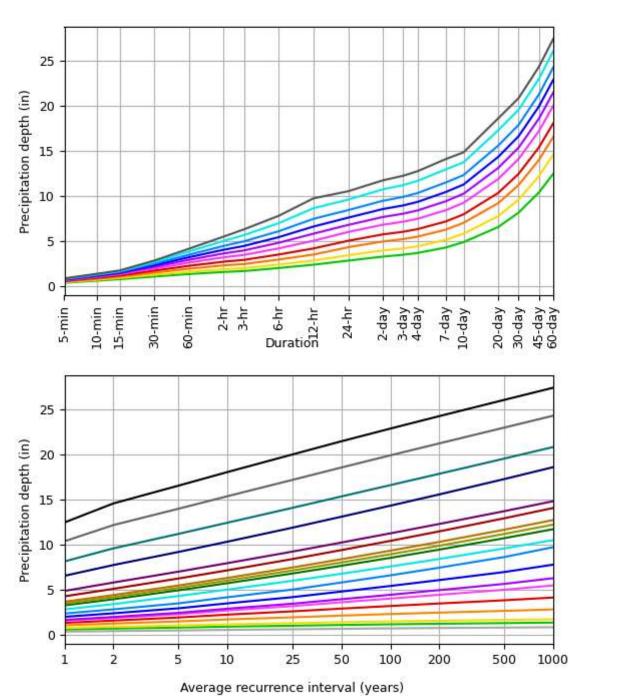
G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland

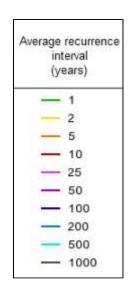
PF tabular | PF graphical | Maps & aerials

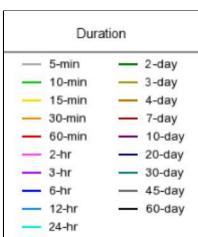
PF tabular

PDS	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹												
		<u> </u>				ce interval (,			
Duration	1	2	5	10	25	50	100	200	500	1000			
5-min	0.404 (0.370-0.442)	0.469 (0.430-0.512)	0.534 (0.489-0.583)	0.600 (0.549-0.655)	0.666 (0.607-0.726)	0.719 (0.652-0.784)	0.766 (0.691-0.835)	0.808 (0.724-0.882)	0.854 (0.759-0.933)	0.896 (0.790-0.981)			
10-min	0.645 (0.591-0.706)	0.750 (0.688-0.819)	0.855 (0.784-0.934)	0.960 (0.878-1.05)	1.06 (0.967-1.16)	1.14 (1.04-1.25)	1.22 (1.10-1.33)	1.28 (1.15-1.40)	1.35 (1.20-1.48)	1.41 (1.24-1.54)			
15-min	0.806 (0.738-0.882)	0.942 (0.864-1.03)	1.08 (0.991-1.18)	1.21 (1.11-1.32)	1.35 (1.22-1.47)	1.45 (1.32-1.58)	1.54 (1.39-1.68)	1.62 (1.45-1.76)	1.70 (1.51-1.86)	1.77 (1.56-1.94)			
30-min	1.10 (1.01-1.21)	1.30 (1.19-1.42)	1.54 (1.41-1.68)	1.76 (1.61-1.92)	1.99 (1.82-2.17)	2.18 (1.98-2.38)	2.36 (2.12-2.57)	2.52 (2.25-2.74)	2.71 (2.40-2.96)	2.87 (2.53-3.14)			
60-min	1.38 (1.26-1.51)	1.63 (1.50-1.78)	1.97 (1.81-2.15)	2.29 (2.10-2.50)	2.65 (2.42-2.89)	2.96 (2.68-3.23)	3.25 (2.93-3.54)	3.53 (3.16-3.85)	3.88 (3.45-4.24)	4.19 (3.69-4.58)			
2-hr	1.61 (1.46-1.78)	1.92 (1.75-2.10)	2.34 (2.13-2.57)	2.75 (2.49-3.02)	3.24 (2.92-3.54)	3.66 (3.29-4.01)	4.07 (3.63-4.46)	4.50 (3.98-4.92)	5.05 (4.43-5.52)	5.53 (4.81-6.07)			
3-hr	1.71 (1.55-1.89)	2.03 (1.86-2.24)	2.49 (2.26-2.74)	2.95 (2.67-3.24)	3.50 (3.16-3.84)	4.00 (3.58-4.39)	4.49 (3.99-4.93)	5.01 (4.42-5.49)	5.70 (4.97-6.25)	6.33 (5.46-6.96)			
6-hr	2.05 (1.87-2.26)	2.44 (2.23-2.68)	2.99 (2.72-3.28)	3.54 (3.22-3.89)	4.23 (3.82-4.63)	4.85 (4.35-5.30)	5.47 (4.87-5.97)	6.12 (5.40-6.68)	7.02 (6.10-7.65)	7.84 (6.73-8.56)			
12-hr	2.41 (2.21-2.66)	2.88 (2.64-3.15)	3.54 (3.24-3.88)	4.22 (3.84-4.62)	5.07 (4.59-5.54)	5.85 (5.26-6.37)	6.64 (5.91-7.22)	7.50 (6.60-8.14)	8.68 (7.51-9.42)	9.77 (8.33-10.6)			
24-hr	2.86 (2.66-3.09)	3.46 (3.22-3.73)	4.36 (4.05-4.70)	5.07 (4.70-5.46)	6.04 (5.58-6.51)	6.82 (6.28-7.35)	7.63 (7.00-8.22)	8.47 (7.74-9.13)	9.63 (8.75-10.4)	10.6 (9.55-11.4)			
2-day	3.32 (3.08-3.57)	3.99 (3.72-4.30)	4.99 (4.64-5.38)	5.78 (5.36-6.22)	6.85 (6.33-7.38)	7.71 (7.10-8.30)	8.59 (7.89-9.26)	9.50 (8.70-10.3)	10.8 (9.79-11.6)	11.8 (10.6-12.8)			
3-day	3.52 (3.28-3.77)	4.23 (3.94-4.54)	5.26 (4.90-5.64)	6.07 (5.64-6.51)	7.18 (6.65-7.70)	8.07 (7.46-8.66)	8.98 (8.27-9.65)	9.93 (9.10-10.7)	11.2 (10.2-12.1)	12.3 (11.1-13.3)			
4-day	3.72 (3.48-3.98)	4.46 (4.17-4.77)	5.52 (5.15-5.90)	6.36 (5.92-6.80)	7.51 (6.97-8.03)	8.44 (7.81-9.02)	9.38 (8.65-10.0)	10.4 (9.51-11.1)	11.7 (10.7-12.6)	12.8 (11.6-13.8)			
7-day	4.32 (4.04-4.61)	5.15 (4.82-5.50)	6.30 (5.89-6.72)	7.20 (6.73-7.69)	8.45 (7.87-9.02)	9.44 (8.77-10.1)	10.5 (9.68-11.2)	11.5 (10.6-12.3)	13.0 (11.9-13.9)	14.1 (12.9-15.2)			
10-day	4.92 (4.61-5.24)	5.85 (5.49-6.24)	7.05 (6.61-7.51)	8.00 (7.48-8.52)	9.28 (8.65-9.88)	10.3 (9.57-11.0)	11.3 (10.5-12.1)	12.3 (11.4-13.2)	13.8 (12.7-14.7)	14.9 (13.7-16.0)			
20-day	6.59 (6.20-7.02)	7.79 (7.33-8.30)	9.24 (8.68-9.83)	10.4 (9.74-11.0)	11.9 (11.2-12.7)	13.1 (12.3-14.0)	14.4 (13.4-15.3)	15.6 (14.5-16.7)	17.3 (16.0-18.5)	18.6 (17.1-20.0)			
30-day	8.19 (7.72-8.70)	9.64 (9.09-10.2)	11.2 (10.6-11.9)	12.5 (11.7-13.3)	14.1 (13.2-15.0)	15.4 (14.4-16.4)	16.6 (15.5-17.7)	17.9 (16.7-19.1)	19.6 (18.2-20.9)	20.9 (19.3-22.3)			
45-day	10.4 (9.89-11.0)	12.2 (11.6-12.9)	14.0 (13.3-14.8)	15.4 (14.6-16.3)	17.2 (16.3-18.2)	18.6 (17.6-19.6)	20.0 (18.8-21.1)	21.3 (20.0-22.5)	23.0 (21.6-24.4)	24.4 (22.7-25.9)			
60-day	12.5 (11.9-13.2)	14.6 (13.9-15.4)	16.6 (15.7-17.4)	18.1 (17.2-19.0)	20.0 (19.0-21.1)	21.5 (20.3-22.7)	22.9 (21.6-24.2)	24.3 (22.9-25.7)	26.1 (24.5-27.6)	27.5 (25.7-29.1)			

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

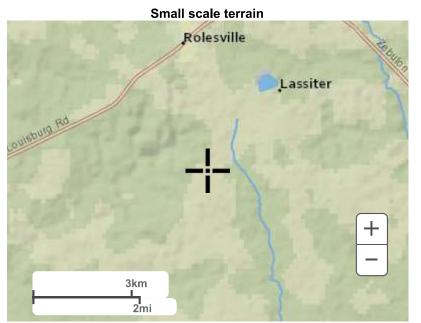

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

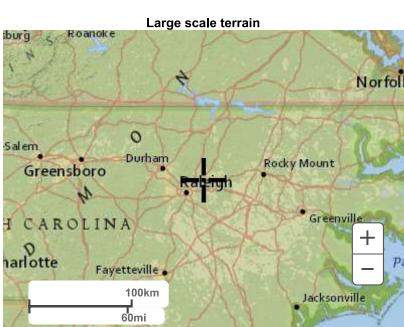

Please refer to NOAA Atlas 14 document for more information.

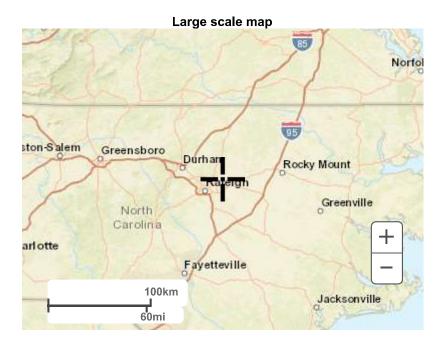

Back to Top

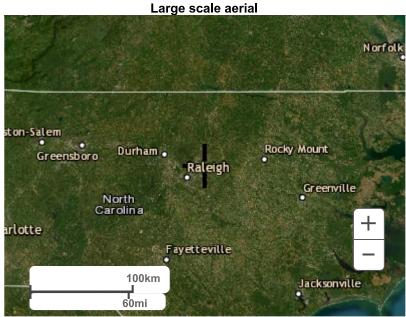
PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 35.8876°, Longitude: -78.4490°

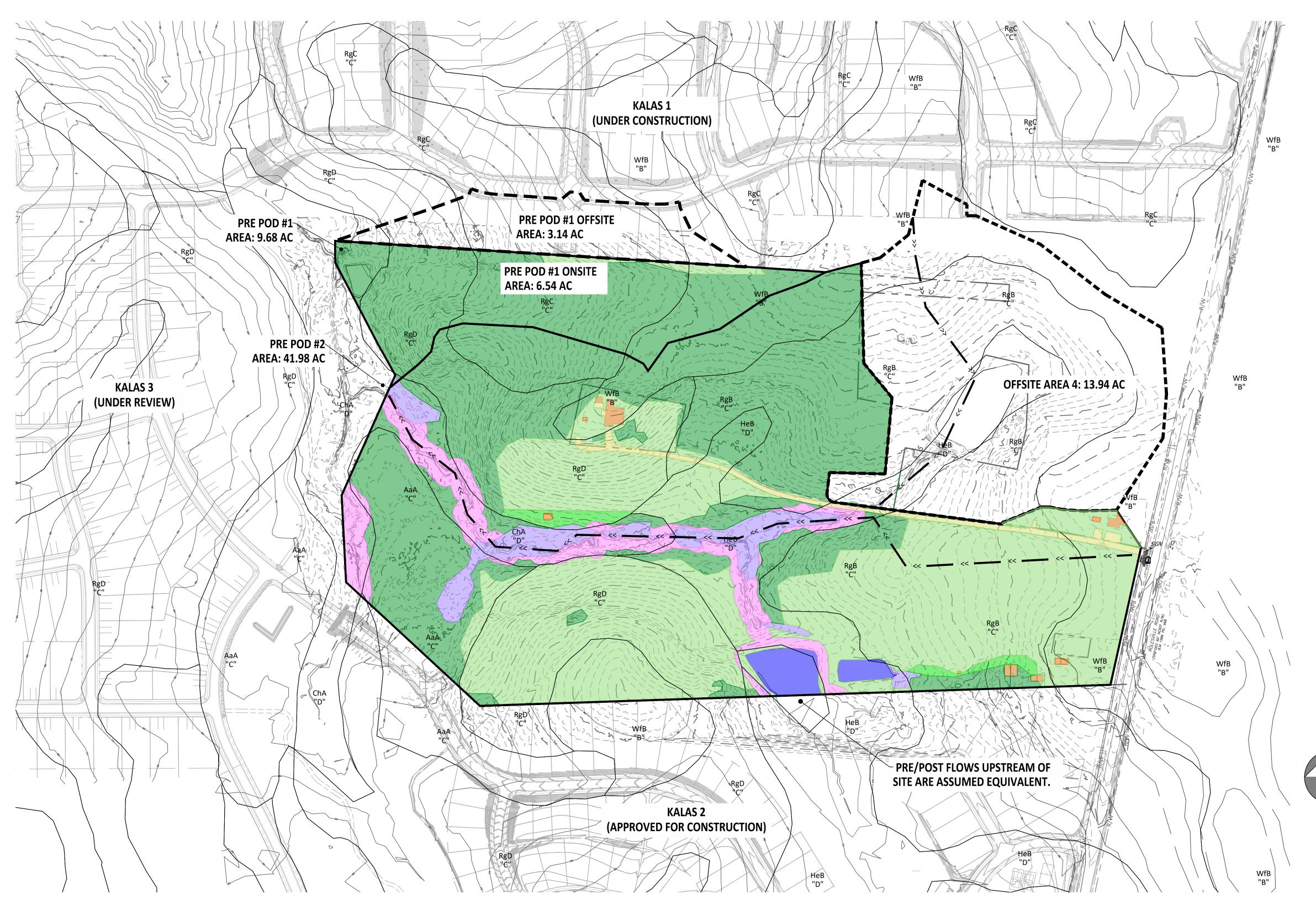


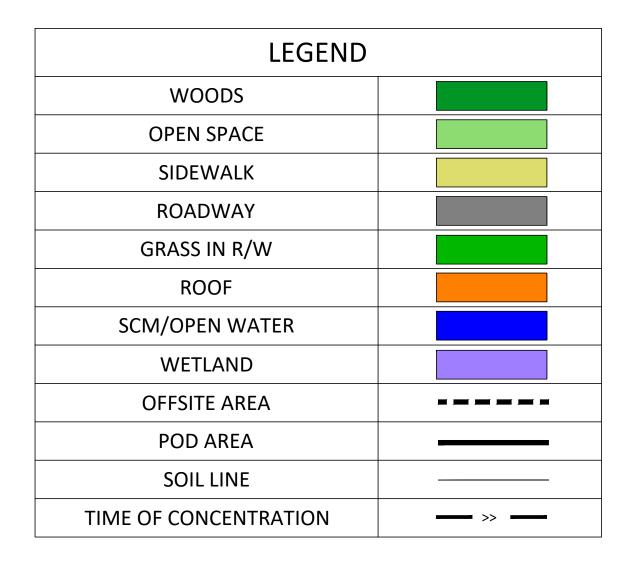

NOAA Atlas 14, Volume 2, Version 3


Created (GMT): Wed Jan 15 19:30:08 2025


Back to Top

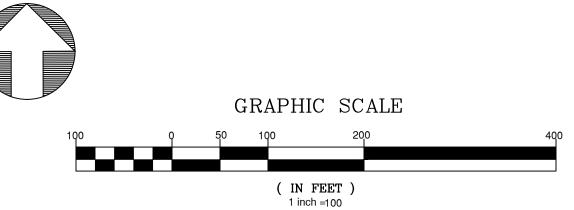
Maps & aerials

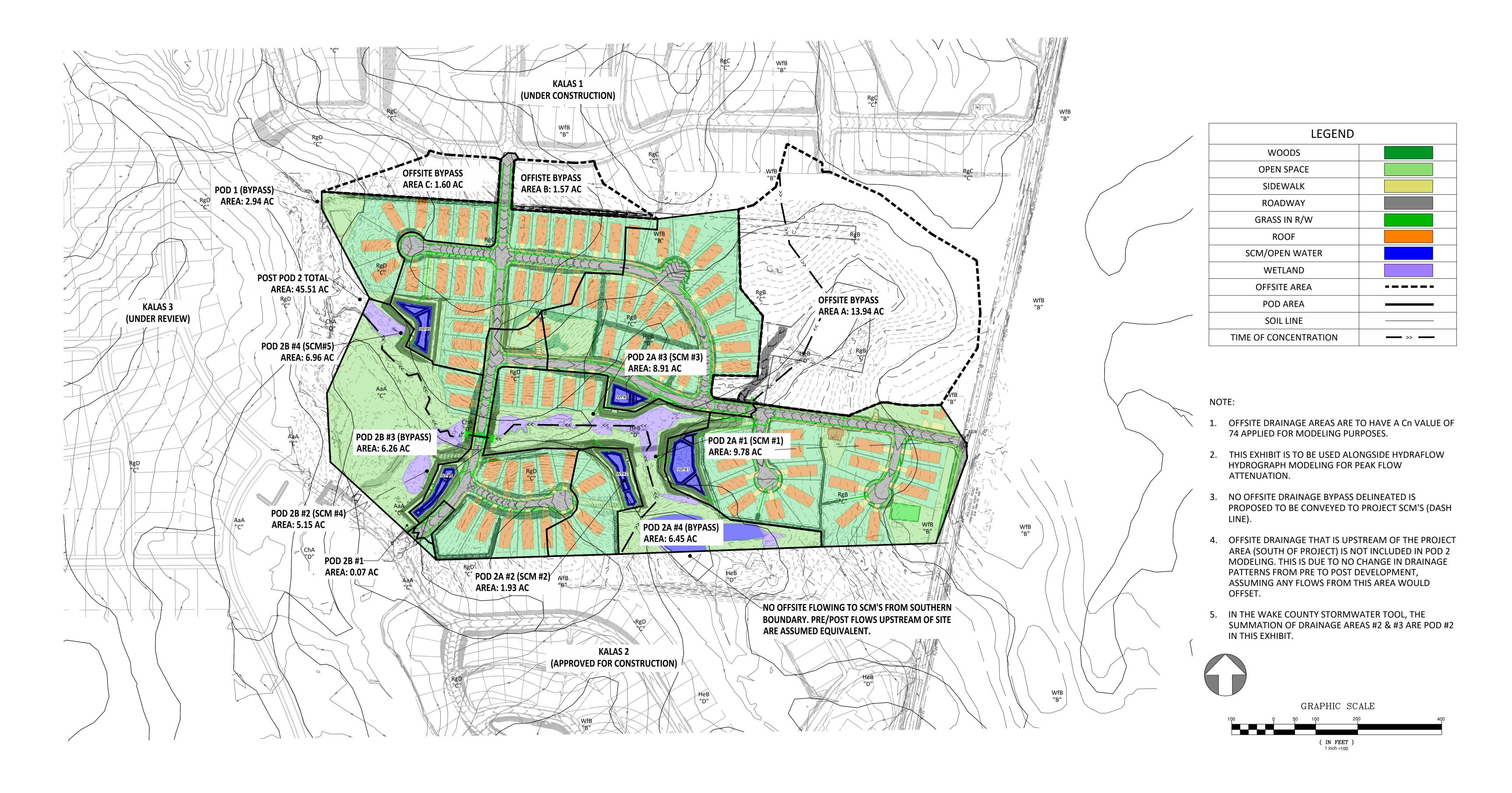

Back to Top


US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Cervier

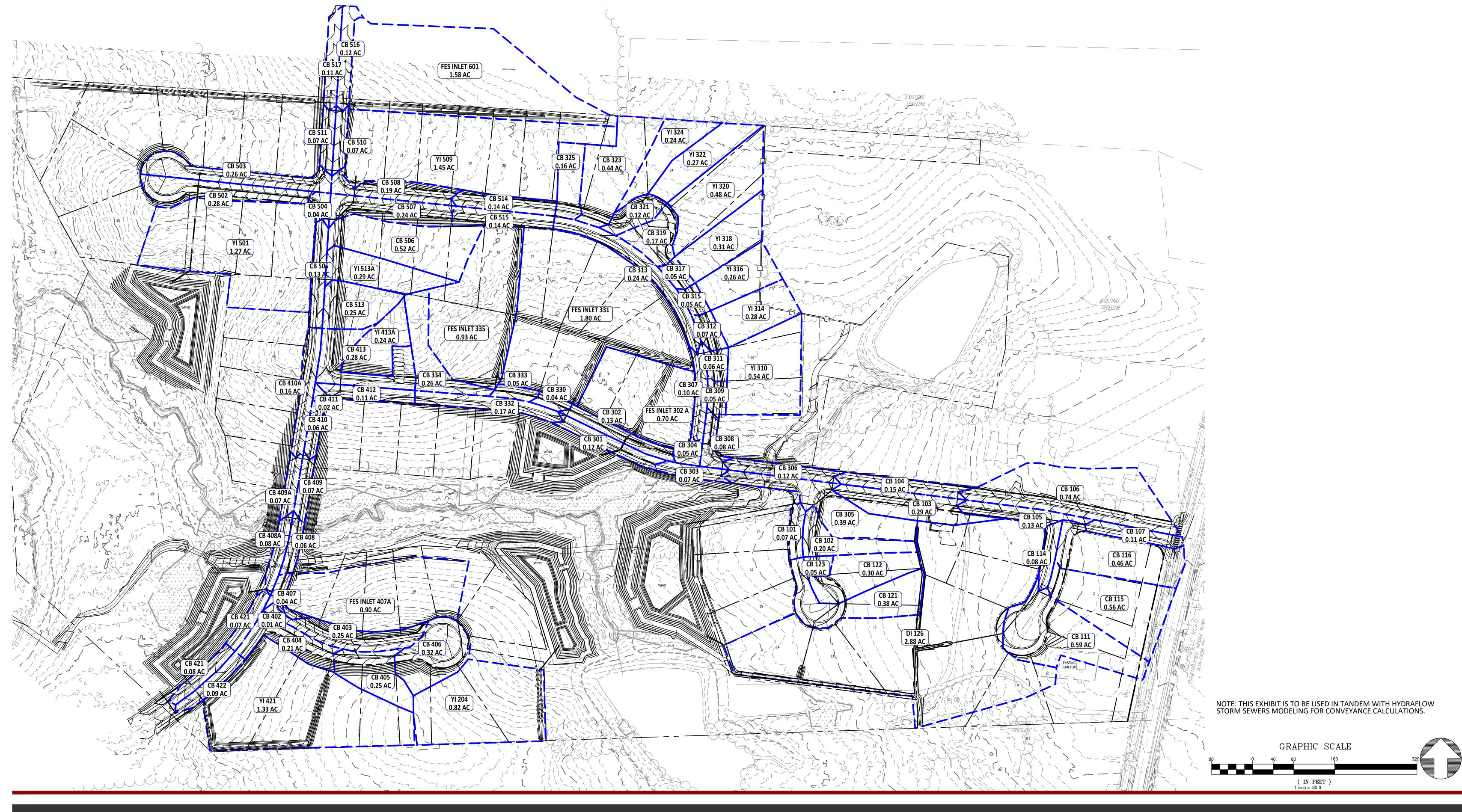
1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

<u>Disclaimer</u>

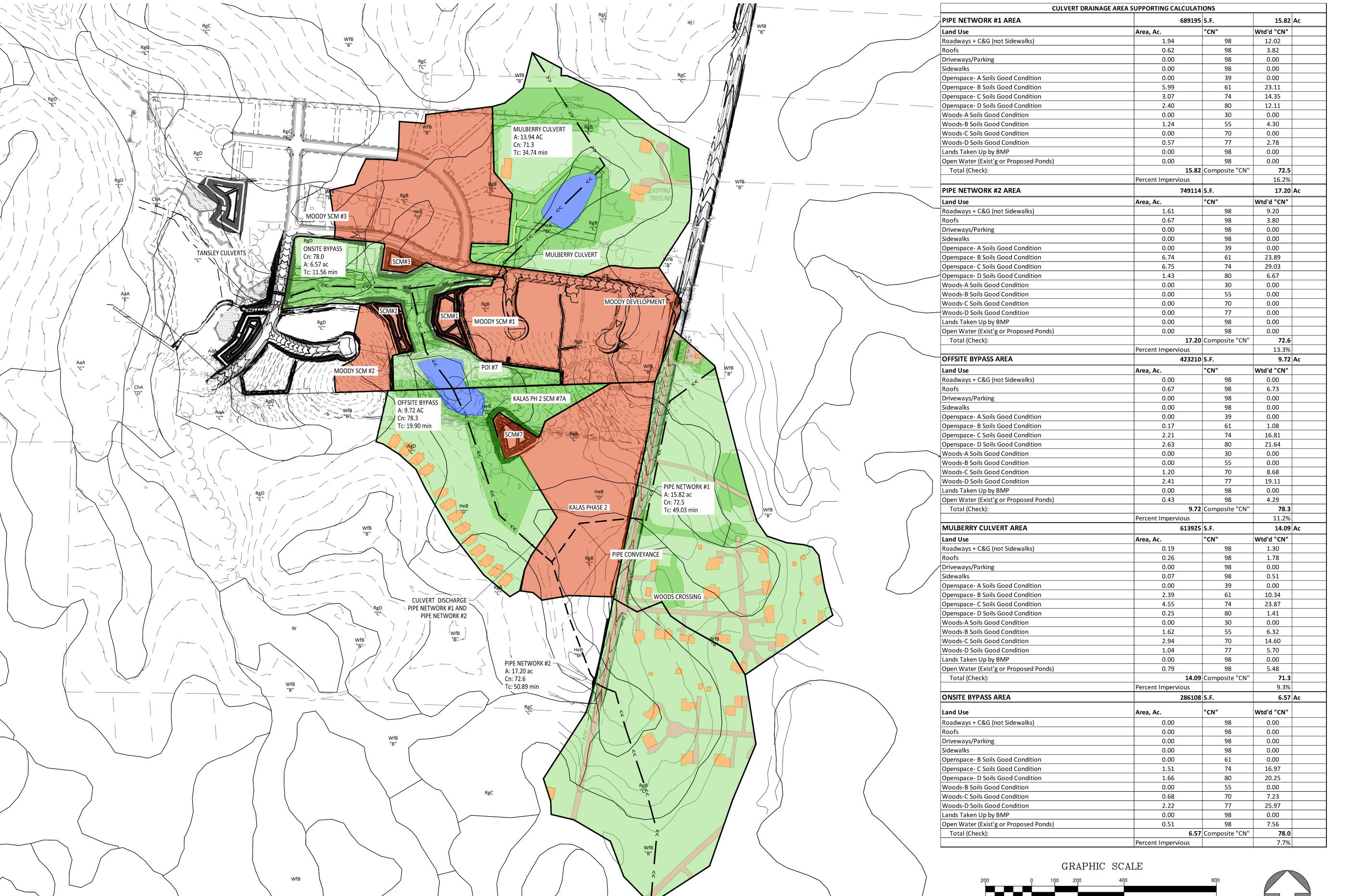

APPENDIX B DRAINAGE AREA MAPS

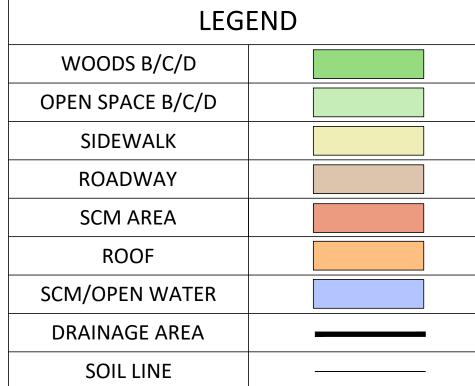

NOTE:

- 1. OFFSITE DRAINAGE AREAS ARE TO HAVE A Cn VALUE OF 74 APPLIED FOR MODELING PURPOSES.
- 2. THIS EXHIBIT IS TO BE USED ALONGSIDE HYDRAFLOW HYDROGRAPH MODELING FOR PEAK FLOW ATTENUATION.
- 4. OFFSITE DRAINAGE THAT IS UPSTREAM OF THE PROJECT AREA (SOUTH OF PROJECT) IS NOT INCLUDED IN POD 2 MODELING. THIS IS DUE TO NO CHANGE IN DRAINAGE PATTERNS FROM PRE TO POST DEVELOPMENT, ASSUMING ANY FLOWS FROM THIS AREA WOULD OFFSET.
- 5. IN WAKE COUNTY STORMWATER TOOL, THE SUMMATION OF DRAINAGE AREAS #2 & #3 ARE POD #2 IN THIS EXHIBIT.


PRE-DEVELOPMENT POINT OF DISCHARGE AREAS

POST-DEVELOPMENT POINT OF DISCHARGE AREAS


POST-DEVELOPMENT INLET AREAS



PERMANENT DIVERSION DITCH DRAINAGE AREAS

NOTE:

- 1. EACH RESPECTIVE SCM FLOW (Q) HAS BEEN DETERMINED BY UTILIZING AUTODESK HYDROGRAPH SOFTWARE AND WILL BE ADDED TO THE TOTAL FLOW FOR ANALYZING THE CULVERT OF INTEREST.
- 2. FOR RECORD KEEPING PURPOSES, THE CALCULATED DRAINAGE AREA TO RESPECTIVE SCM IS HATCHED IN RED (AREA USED IN HYDROGRAPH TO DETERMINE Q).
- 3. PLEASE REFER TO PROJECT STORMWATER IMPACT ANALYSIS REPORT FOR COMPLETE CALCULATIONS.

CULVERT DRAINAGE AREA EXHIBIT (SUPPORTS HYDROGRAPH MODELING & ALLOWS FOR CULVERT SIZING)

APPENDIX C STORMWATER CONVEYANCE CALCULATIONS

Project Name: Moody
Project Number: R210002

Date: 12/5/2024

Calculated By: RC

Checked By: JK

Input data in blue boxes

	Rational C-Value Calculations for Inlet Areas												
Area ID	Drainage Area (ac)	SCM (ac)	Roof (ac)	Roadway (ac)	Driveway (ac)	Sidewalk (ac)	Open Space (ac)	Impervious C	Open Space C	Composite C Value			
Catchments	32.29	1.86	7.45	3.90	1.89	0.88	16.31	0.95	0.2	0.57			

Project Name: Moody

Project Number: R210002

Date: 1/27/2025

Calculated By: RC

Checked By: JK

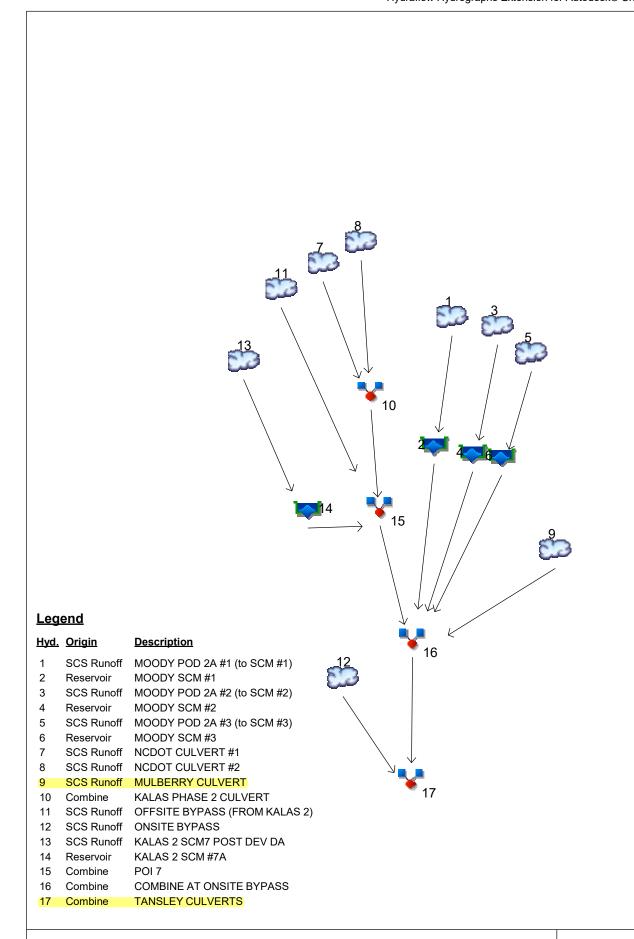
	Rip Rap Dissipater Calculations 10-Year Storm												
Outlet ID	Pipe Diameter (in)	Pipe Velocity (fps)	Stone Class	Stone Depth (in)	Stone Material (tons)	Geo- Textile (SY)	Start Width (ft)	End Width (ft)	Length (ft)				
FES 100	18	6.40	В	12	2	7	3	9	6				
FES 125	24	3.36	В	12	3	11	4	12	8				
FES OS 100	24	2.99	В	12	3	11	4	12	8				
FES 110	15	3.65	В	12	2	7	WOD	WOD	5				
FES 120	15	2.45	В	12	2	7	WOD	WOD	5				
EW 101	36	4.69	I	18	13	30	6	18	12				
FES OS 200	18	1.12	В	12	2	7	3	9	6				
FES 203	18	2.53	В	12	2	7	3	9	6				
FES 300	36	3.54	I	18	10	23	6	18	12				
FES OS 300	24	8.21	I	18	4	12	4	12	8				
FES 400	24	3.26	В	12	3	11	4	12	8				
FES OS 400	24	6.40	В	12	3	11	4	12	8				
FES 410	18	3.71	В	12	2	7	3	9	6				
FES 420	15	0.49	В	12	2	7	WOD	WOD	5				
FES 500	30	5.26	В	12	5	16	5	15	10				
FES OS 500	24	3.88	В	12	3	11	4	12	8				
FES 602	18	4.12	В	12	3	10	WOD	WOD	6				
EW 610	54 (DBL)	7.33	1	18	40	75	16	16	40				

Calculations were determined from NCDOT Detail 876.02 Guide for Rip Rap at Pipe Outlets

Values shown in table above are minimum quantities and dimensions

WOD is abbreviation for width of ditch

DBL is double barell pipe


Hydraflow Table of Contents

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Watershed Model Schematic	. 1
Hydrograph Return Period Recap	2
10 - Year	
Summary Report	
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, MOODY POD 2A #1 (to SCM #1)	
Hydrograph No. 2, Reservoir, MOODY SCM #1	5
Hydrograph No. 3, SCS Runoff, MOODY POD 2A #2 (to SCM #2)	
Hydrograph No. 4, Reservoir, MOODY SCM #2	7
Hydrograph No. 5, SCS Runoff, MOODY POD 2A #3 (to SCM #3)	. 8
Hydrograph No. 6, Reservoir, MOODY SCM #3	
Hydrograph No. 7, SCS Runoff, NCDOT CULVERT #1	
Hydrograph No. 8, SCS Runoff, NCDOT CULVERT #2	
Hydrograph No. 9, SCS Runoff, MULBERRY CULVERT	
Hydrograph No. 10, Combine, KALAS PHASE 2 CULVERT	
Hydrograph No. 11, SCS Runoff, OFFSITE BYPASS (FROM KALAS 2)	
Hydrograph No. 12, SCS Runoff, ONSITE BYPASS	
Hydrograph No. 13, SCS Runoff, KALAS 2 SCM7 POST DEV DA	
Hydrograph No. 14, Reservoir, KALAS 2 SCM #7A	
Hydrograph No. 15, Combine, POI 7	
Hydrograph No. 16, Combine, COMBINE AT ONSITE BYPASSHydrograph No. 17, Combine, TANSLEY CULVERTS	
25 - Year Summary ReportHydrograph Reports	
Hydrograph No. 1, SCS Runoff, MOODY POD 2A #1 (to SCM #1)	22
Hydrograph No. 2, Reservoir, MOODY SCM #1	
Hydrograph No. 3, SCS Runoff, MOODY POD 2A #2 (to SCM #2)	
Hydrograph No. 4, Reservoir, MOODY SCM #2	
Hydrograph No. 5, SCS Runoff, MOODY POD 2A #3 (to SCM #3)	
Hydrograph No. 6, Reservoir, MOODY SCM #3	
Hydrograph No. 7, SCS Runoff, NCDOT CULVERT #1	28
Hydrograph No. 8, SCS Runoff, NCDOT CULVERT #2	
Hydrograph No. 9, SCS Runoff, MULBERRY CULVERT	30
Hydrograph No. 10, Combine, KALAS PHASE 2 CULVERT	31
Hydrograph No. 11, SCS Runoff, OFFSITE BYPASS (FROM KALAS 2)	
Hydrograph No. 12, SCS Runoff, ONSITE BYPASS	33
Hydrograph No. 13, SCS Runoff, KALAS 2 SCM7 POST DEV DA	34
Hydrograph No. 14, Reservoir, KALAS 2 SCM #7A	35
Hydrograph No. 15, Combine, POI 7	36
Hydrograph No. 16, Combine, COMBINE AT ONSITE BYPASS	
Hydrograph No. 17, Combine, TANSLEY CULVERTS	38
100 - Year Summary Report	39

Hy	/drograph Reports	40
_	Hydrograph No. 1, SCS Runoff, MOODY POD 2A #1 (to SCM #1)	40
	Hydrograph No. 2, Reservoir, MOODY SCM #1	41
	Hydrograph No. 3, SCS Runoff, MOODY POD 2A #2 (to SCM #2)	
	Hydrograph No. 4, Reservoir, MOODY SCM #2	
	Hydrograph No. 5, SCS Runoff, MOODY POD 2A #3 (to SCM #3)	
	Hydrograph No. 6, Reservoir, MOODY SCM #3	
	Hydrograph No. 7, SCS Runoff, NCDOT CULVERT #1	
	Hydrograph No. 8, SCS Runoff, NCDOT CULVERT #2	
	Hydrograph No. 9, SCS Runoff, MULBERRY CULVERT	48
	Hydrograph No. 10, Combine, KALAS PHASE 2 CULVERT	49
	Hydrograph No. 11, SCS Runoff, OFFSITE BYPASS (FROM KALAS 2)	50
	Hydrograph No. 12, SCS Runoff, ONSITE BYPASS	
	Hydrograph No. 13, SCS Runoff, KALAS 2 SCM7 POST DEV DA	
	Hydrograph No. 14, Reservoir, KALAS 2 SCM #7A	
	Hydrograph No. 15, Combine, POI 7	
	Hydrograph No. 16, Combine, COMBINE AT ONSITE BYPASS	
	Hydrograph No. 17, Combine, TANSLEY CULVERTS	

Watershed Model Schematic

Project: 20241205 Tansley Culvert Modeling Revised.gpw

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

-	lydrograph	Inflow	Peak Outflow (cfs)								Hydrograph	
0.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description	
1 S	SCS Runoff		21.66	27.42		39.22	48.70	61.75		82.71	MOODY POD 2A #1 (to SCM #1)	
2 R	Reservoir	1	0.151	0.562		2.821	7.835	25.24		62.93	MOODY SCM #1	
3 s	SCS Runoff		4.498	5.733		8.245	10.26	13.07		17.61	MOODY POD 2A #2 (to SCM #2)	
4 R	Reservoir	3	0.025	0.028		0.168	0.391	0.927		5.790	MOODY SCM #2	
5 S	SCS Runoff		19.16	24.35		35.03	43.63	55.50		74.57	MOODY POD 2A #3 (to SCM #3)	
6 R	Reservoir	5	8.141	16.45		30.37	32.96	46.77		68.86	MOODY SCM #3	
7 s	SCS Runoff		7.611	10.70		17.34	22.96	31.01		44.43	NCDOT CULVERT #1	
8 S	SCS Runoff		7.949	11.16		18.08	23.94	32.32		46.30	NCDOT CULVERT #2	
9 s	SCS Runoff		7.791	11.10		18.31	24.42	33.20		47.93	MULBERRY CULVERT	
10 C	Combine	7, 8,	15.53	21.81		35.33	46.78	63.17		90.50	KALAS PHASE 2 CULVERT	
11 S	SCS Runoff		12.63	16.51		24.56	31.14	40.31		55.22	OFFSITE BYPASS (FROM KALAS 2	
12 S	SCS Runoff		11.22	14.59		21.62	27.36	35.35		48.32	ONSITE BYPASS	
13 S	SCS Runoff		16.09	20.70		30.13	37.75	48.32		65.36	KALAS 2 SCM7 POST DEV DA	
14 R	Reservoir	13	0.248	0.319		0.647	1.793	5.755		24.08	KALAS 2 SCM #7A	
15 C	Combine	10, 11, 14	21.01	29.09		46.26	60.60	84.27		138.29	POI 7	
16 C	Combine	2, 4, 6,	34.34	49.94		82.09	116.84	166.08		269.73	COMBINE AT ONSITE BYPASS	
17 C	Combine	9, 15 12, 16	42.01	62.16		101.28	135.24	194.15		312.87	TANSLEY CULVERTS	

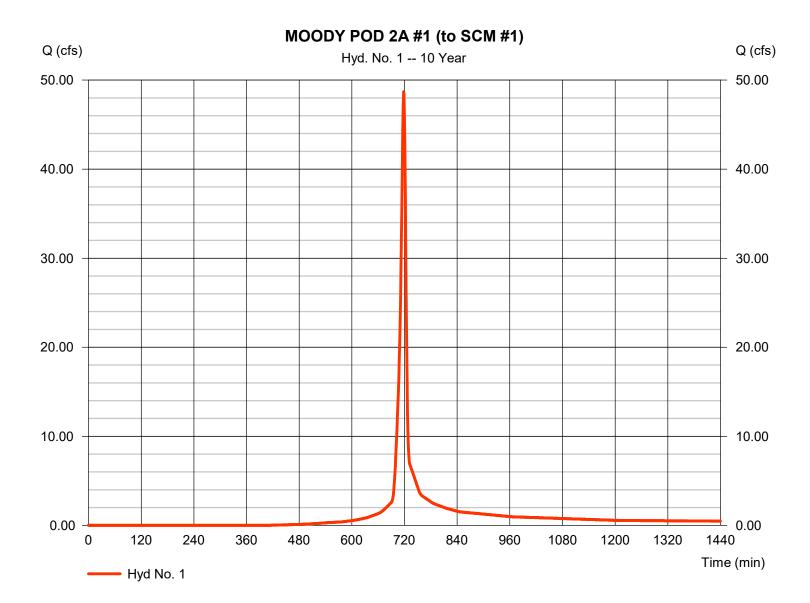
Proj. file: 20241205 Tansley Culvert Modeling Revised.gpw

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	48.70	1	718	104,269				MOODY POD 2A #1 (to SCM #1)
2	Reservoir	7.835	1	730	74,620	1	366.27	96,189	MOODY SCM #1
3	SCS Runoff	10.26	1	718	21,027				MOODY POD 2A #2 (to SCM #2)
4	Reservoir	0.391	1	815	12,037	3	362.97	29,182	MOODY SCM #2
5	SCS Runoff	43.63	1	718	93,232				MOODY POD 2A #3 (to SCM #3)
6	Reservoir	32.96	1	722	85,555	5	363.89	39,351	MOODY SCM #3
7	SCS Runoff	22.96	1	743	128,914				NCDOT CULVERT #1
8	SCS Runoff	23.94	1	745	141,854				NCDOT CULVERT #2
9	SCS Runoff	24.42	1	735	110,272				MULBERRY CULVERT
10	Combine	46.78	1	744	270,767	7, 8,			KALAS PHASE 2 CULVERT
11	SCS Runoff	31.14	1	725	97,228				OFFSITE BYPASS (FROM KALAS 2
12	SCS Runoff	27.36	1	720	66,239				ONSITE BYPASS
13	SCS Runoff	37.75	1	721	95,690				KALAS 2 SCM7 POST DEV DA
14	Reservoir	1.793	1	819	68,016	13	374.10	60,603	KALAS 2 SCM #7A
15	Combine	60.60	1	730	436,011	10, 11, 14			POI 7
16	Combine	116.84	1	726	718,494	2, 4, 6,			COMBINE AT ONSITE BYPASS
17	Combine	135.24	1	725	784,733	9, 15 12, 16			TANSLEY CULVERTS

20241205 Tansley Culvert Modeling Revised.gasturn Period: 10 Year

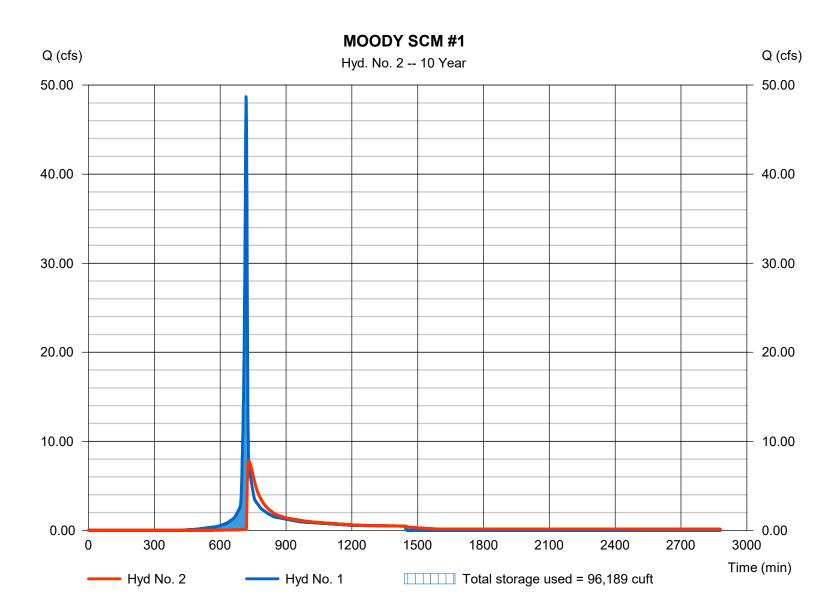

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 02 / 3 / 2025

Hyd. No. 1

MOODY POD 2A #1 (to SCM #1)

Hydrograph type = SCS Runoff Peak discharge = 48.70 cfsStorm frequency = 10 yrsTime to peak = 718 min Time interval = 1 min Hyd. volume = 104.269 cuft Drainage area = 9.780 acCurve number = 81.1 Basin Slope = 2.4 % Hydraulic length = 1000 ftTc method = KIRPICH Time of conc. (Tc) $= 6.69 \, \text{min}$ Total precip. Distribution = Type II = 5.02 inStorm duration = 24 hrs Shape factor = 484

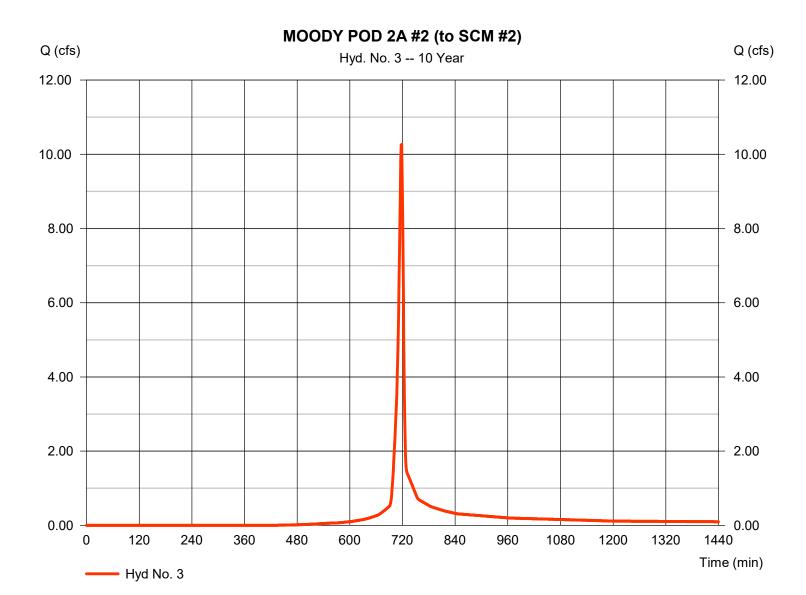

Monday, 02 / 3 / 2025

Hyd. No. 2

MOODY SCM #1

Hydrograph type Peak discharge = 7.835 cfs= Reservoir Storm frequency = 10 yrsTime to peak = 730 min Time interval = 1 min Hyd. volume = 74,620 cuftInflow hyd. No. = 1 - MOODY POD 2A #1 (to SOMa#1) Elevation = 366.27 ftMax. Storage Reservoir name = SCM #1 = 96,189 cuft

Storage Indication method used. Wet pond routing start elevation = 363.50 ft.

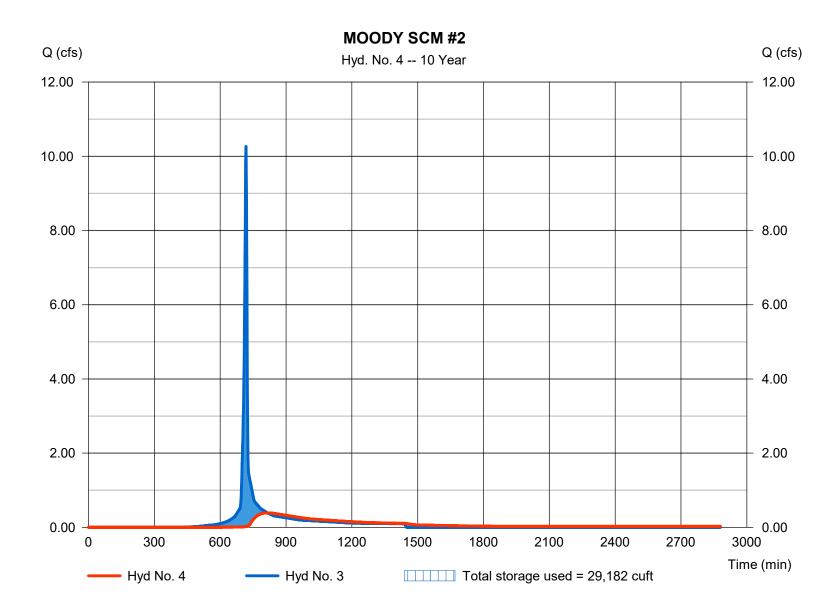


Monday, 02 / 3 / 2025

Hyd. No. 3

MOODY POD 2A #2 (to SCM #2)

Hydrograph type = SCS Runoff Peak discharge = 10.26 cfsStorm frequency = 10 yrsTime to peak = 718 min Time interval = 1 min Hyd. volume = 21.027 cuft Drainage area Curve number = 1.930 ac= 80 Hydraulic length Basin Slope = 0.5 %= 450 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.02 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

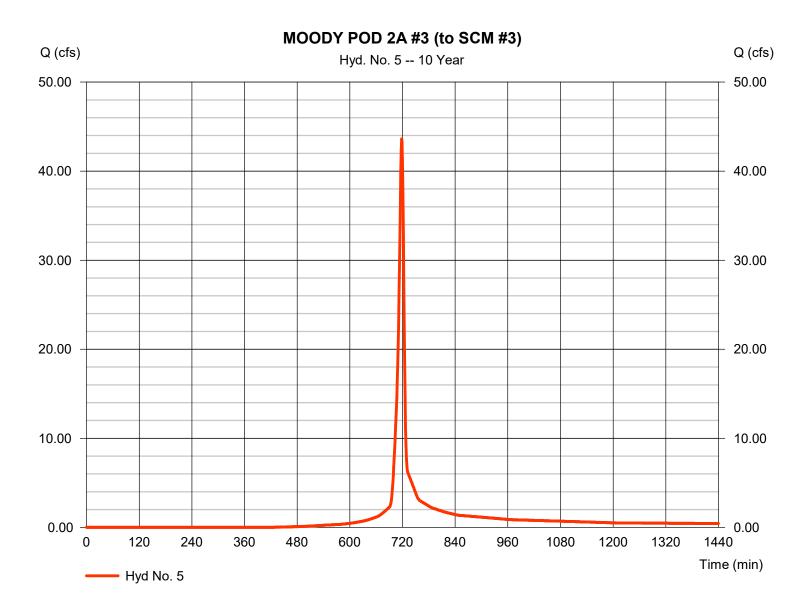

Monday, 02 / 3 / 2025

Hyd. No. 4

MOODY SCM #2

Hydrograph type Peak discharge = 0.391 cfs= Reservoir Storm frequency = 10 yrsTime to peak = 815 min Time interval = 1 min Hyd. volume = 12,037 cuftInflow hyd. No. = 3 - MOODY POD 2A #2 (to SCIMIa#2)Elevation = 362.97 ftMax. Storage Reservoir name = SCM #2 = 29,182 cuft

Storage Indication method used. Wet pond routing start elevation = 361.50 ft.

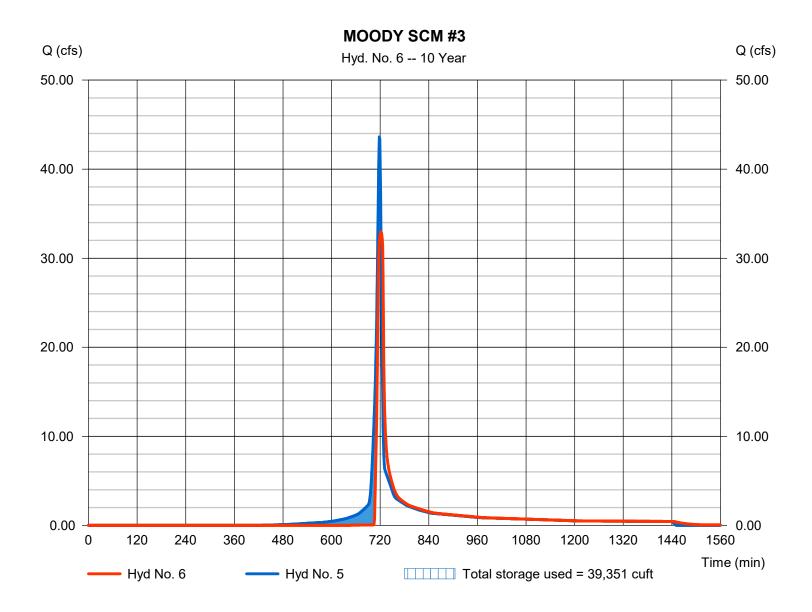


Monday, 02 / 3 / 2025

Hyd. No. 5

MOODY POD 2A #3 (to SCM #3)

Hydrograph type = SCS Runoff Peak discharge = 43.63 cfsStorm frequency = 10 yrsTime to peak = 718 min Time interval = 1 min Hyd. volume = 93.232 cuft Drainage area Curve number = 8.910 ac= 80.5Basin Slope = 2.6 % Hydraulic length = 1120 ftTc method = KIRPICH Time of conc. (Tc) $= 7.08 \, \text{min}$ Total precip. Distribution = Type II = 5.02 inStorm duration = 24 hrs Shape factor = 484

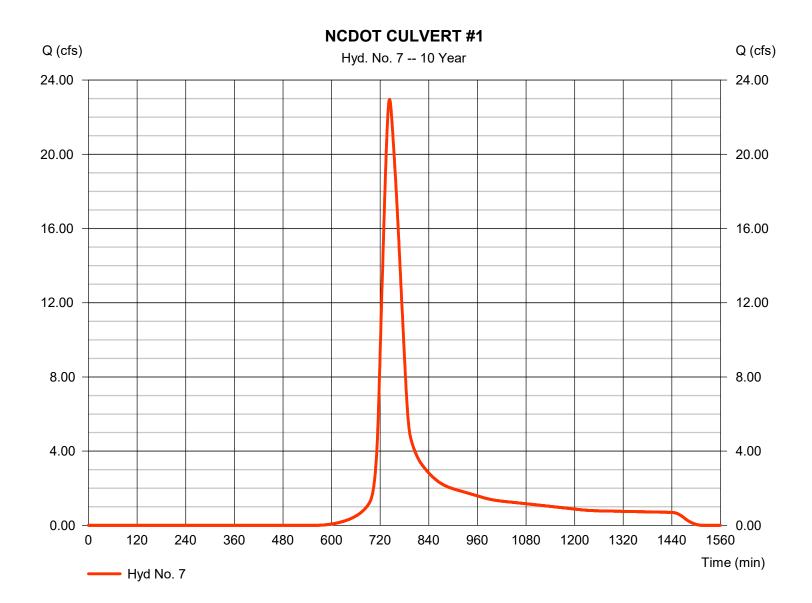

Monday, 02 / 3 / 2025

Hyd. No. 6

MOODY SCM #3

Hydrograph type Peak discharge = 32.96 cfs= Reservoir Storm frequency = 10 yrsTime to peak = 722 min Time interval = 1 min Hyd. volume = 85,555 cuft Inflow hyd. No. = 5 - MOODY POD 2A #3 (to SOMMaxX3) Elevation = 363.89 ftMax. Storage Reservoir name = SCM #3 = 39,351 cuft

Storage Indication method used. Wet pond routing start elevation = 361.00 ft.

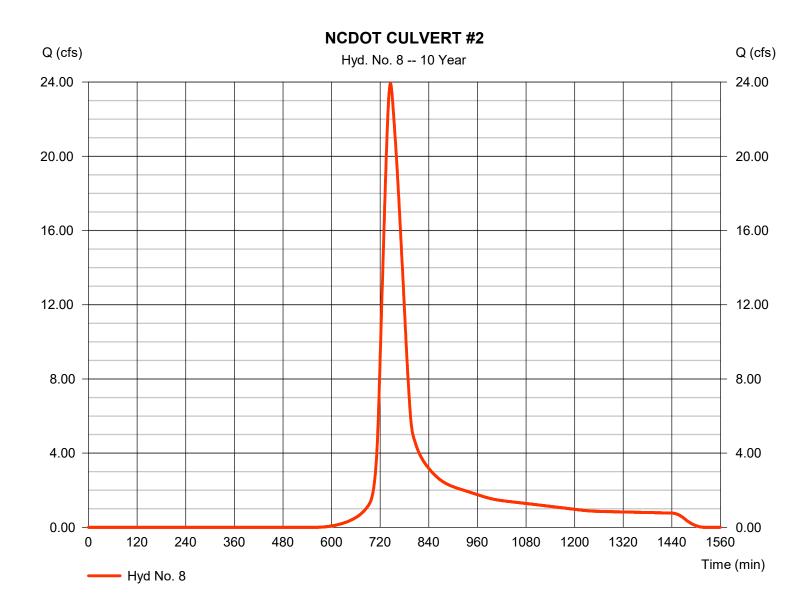


Monday, 02 / 3 / 2025

Hyd. No. 7

NCDOT CULVERT #1

= 22.96 cfsHydrograph type = SCS Runoff Peak discharge Storm frequency Time to peak = 10 yrs= 743 min Time interval = 1 min Hyd. volume = 128.914 cuft Drainage area Curve number = 72.5= 15.820 ac Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) = 49.03 min = User Total precip. = 5.02 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

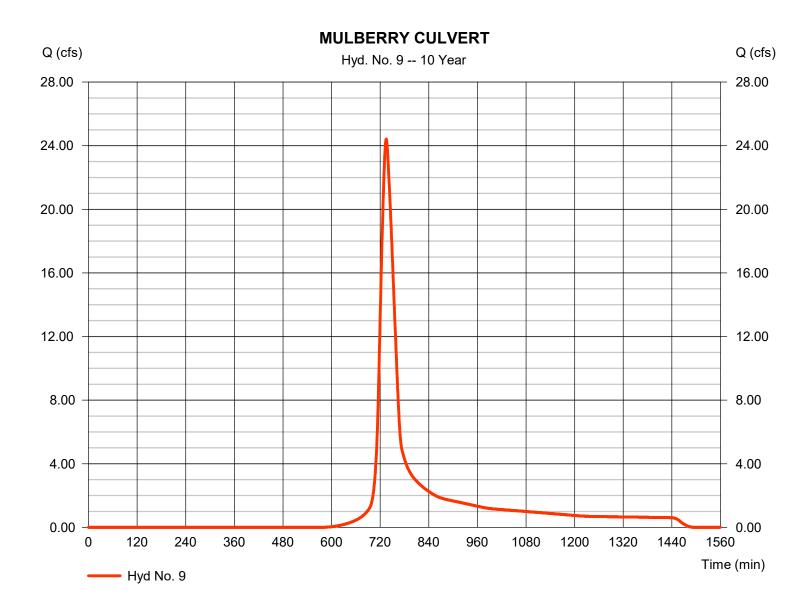

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 02 / 3 / 2025

Hyd. No. 8

NCDOT CULVERT #2

Hydrograph type = SCS Runoff Peak discharge = 23.94 cfsStorm frequency Time to peak = 10 yrs= 745 min Time interval = 1 min Hyd. volume = 141,854 cuft Drainage area = 17.200 ac Curve number = 72.6Hydraulic length = 0 ftBasin Slope = 0.0 %Tc method Time of conc. (Tc) $= 50.89 \, \text{min}$ = User Total precip. = 5.02 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

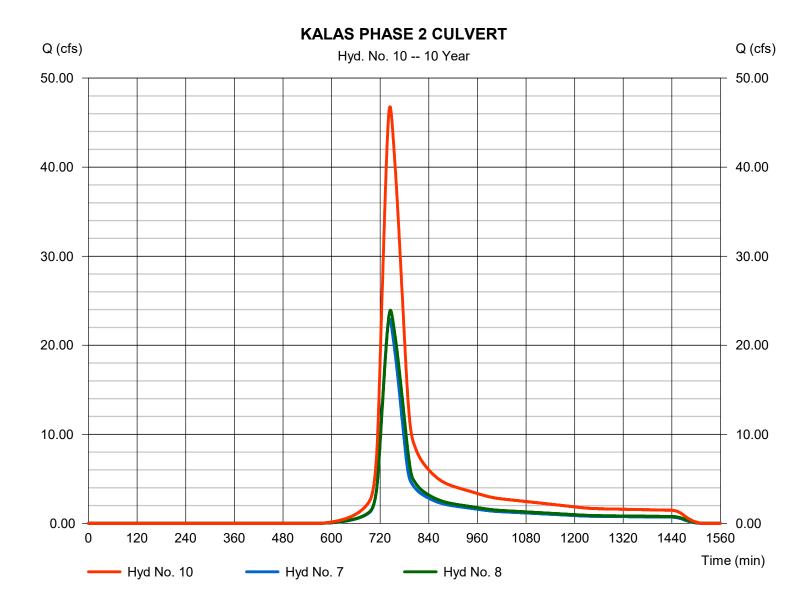

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 02 / 3 / 2025

Hyd. No. 9

MULBERRY CULVERT

Hydrograph type = SCS Runoff Peak discharge = 24.42 cfsStorm frequency Time to peak = 10 yrs= 735 min Time interval = 1 min Hyd. volume = 110.272 cuft Drainage area Curve number = 71.3 = 14.090 acBasin Slope Hydraulic length = 0.0 %= 0 ftTc method Time of conc. (Tc) = 34.74 min = User Total precip. = 5.02 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

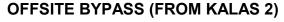

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

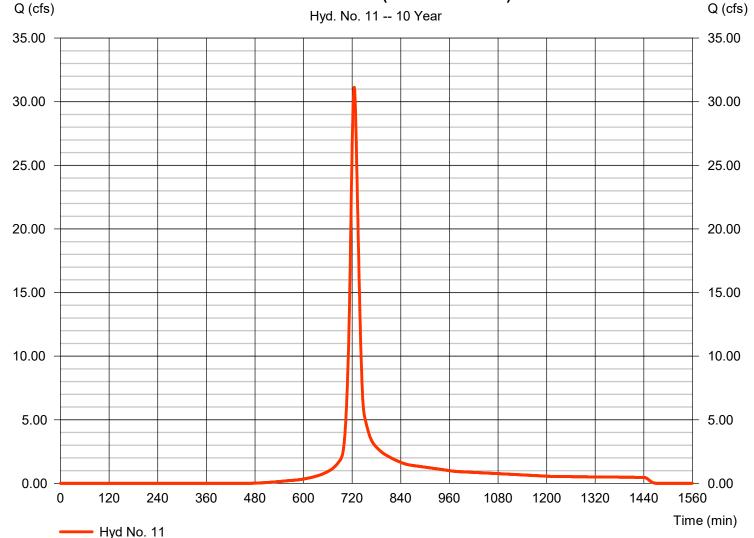
Monday, 02 / 3 / 2025

Hyd. No. 10

KALAS PHASE 2 CULVERT

Hydrograph type = Combine Peak discharge = 46.78 cfsStorm frequency Time to peak = 10 yrs= 744 min Time interval = 1 min Hyd. volume = 270,767 cuft Inflow hyds. = 7,8 Contrib. drain. area = 33.020 ac

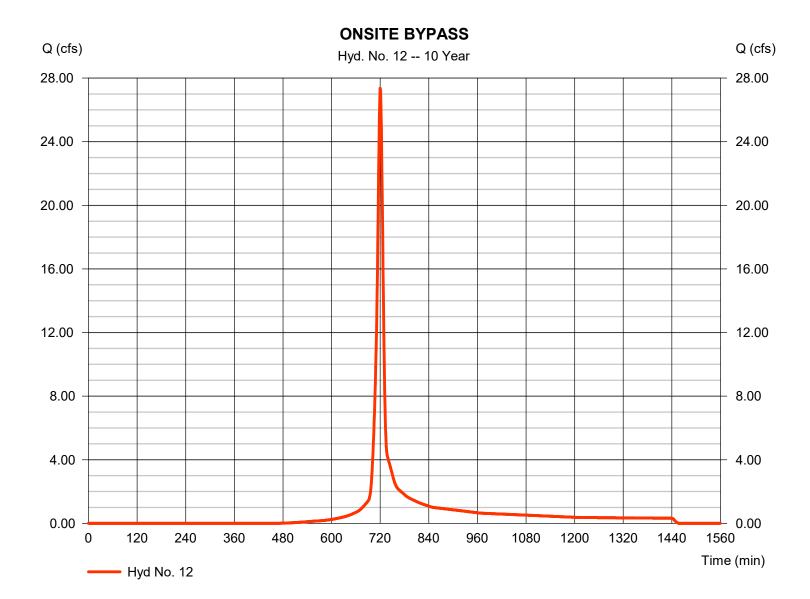



Monday, 02 / 3 / 2025

Hyd. No. 11

OFFSITE BYPASS (FROM KALAS 2)

Hydrograph type = SCS Runoff Peak discharge = 31.14 cfsStorm frequency Time to peak = 10 yrs= 725 min Time interval = 1 min Hyd. volume = 97,228 cuft Drainage area = 9.720 acCurve number = 78.3Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) = 19.90 min = User Total precip. = 5.02 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

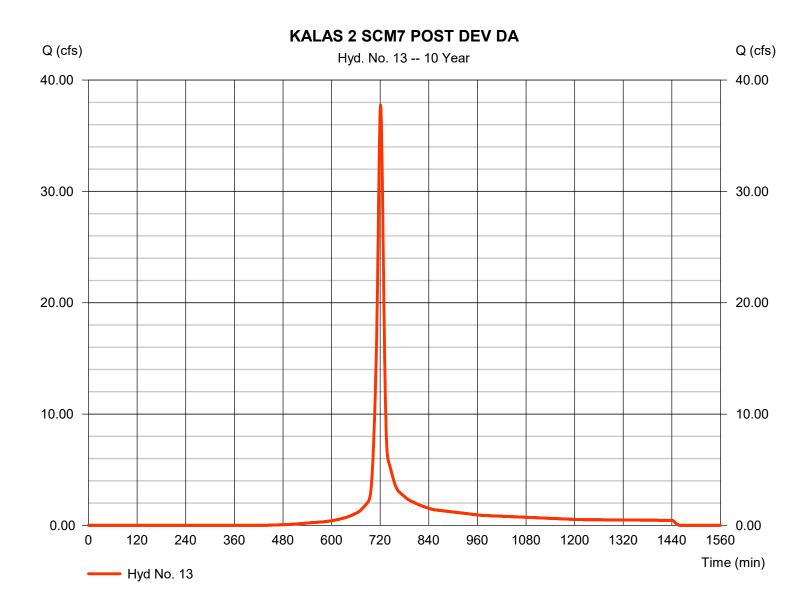


Monday, 02 / 3 / 2025

Hyd. No. 12

ONSITE BYPASS

Hydrograph type = SCS Runoff Peak discharge = 27.36 cfsStorm frequency Time to peak = 10 yrs= 720 min Time interval = 1 min Hyd. volume = 66.239 cuft Drainage area Curve number = 6.570 ac= 78 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) = 11.56 min = User Total precip. = 5.02 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484



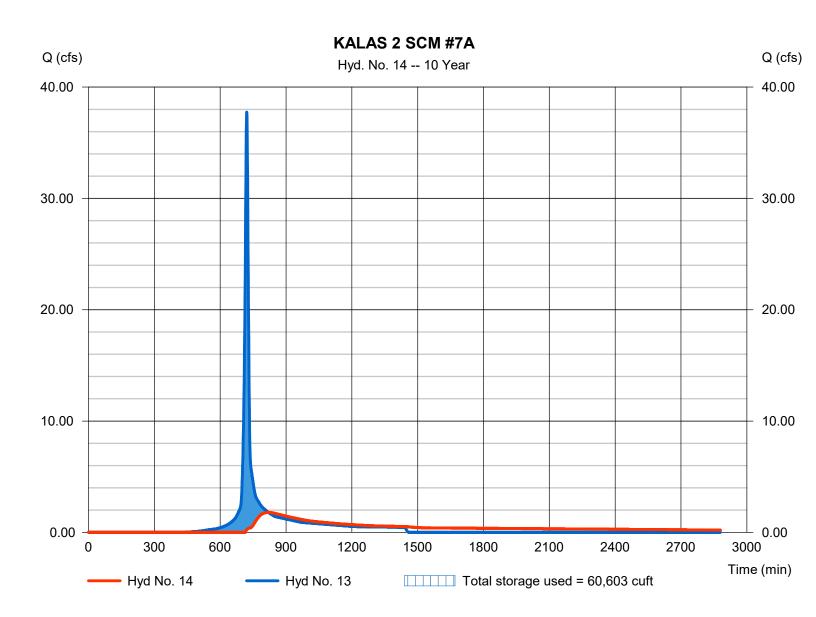
Monday, 02 / 3 / 2025

Hyd. No. 13

KALAS 2 SCM7 POST DEV DA

Hydrograph type = SCS Runoff Peak discharge = 37.75 cfsStorm frequency Time to peak = 10 yrs= 721 min Time interval = 1 min Hyd. volume = 95.690 cuft Drainage area = 9.260 acCurve number = 79.8Basin Slope Hydraulic length = 1.1 % = 1505 ftTc method = KIRPICH Time of conc. (Tc) = 12.38 min Total precip. = 5.02 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 02 / 3 / 2025

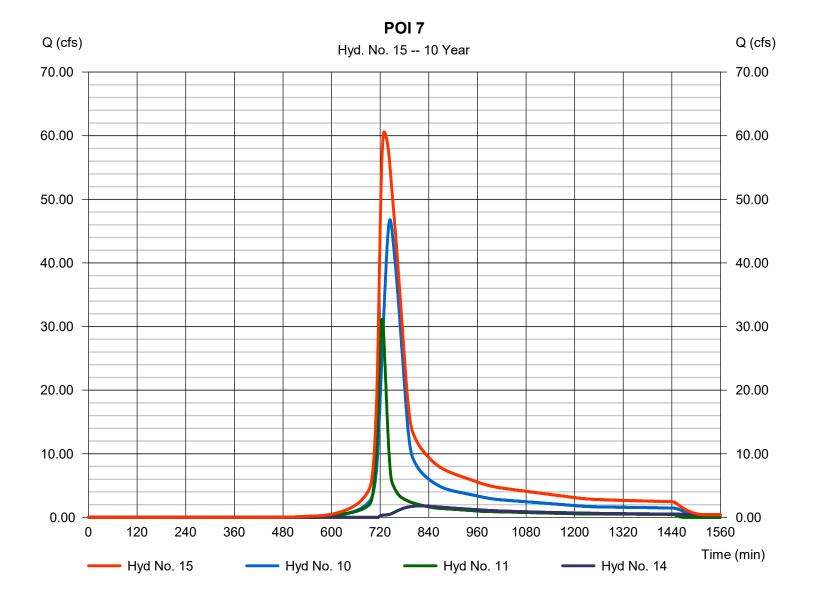
Hyd. No. 14

KALAS 2 SCM #7A

Hydrograph type = Reservoir Peak discharge = 1.793 cfsStorm frequency Time to peak = 10 yrs= 819 min Time interval = 1 min Hyd. volume = 68,016 cuft Inflow hyd. No. = 13 - KALAS 2 SCM7 POST DEWa AElevation = 374.10 ft= SCM #7A Reservoir name Max. Storage = 60,603 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

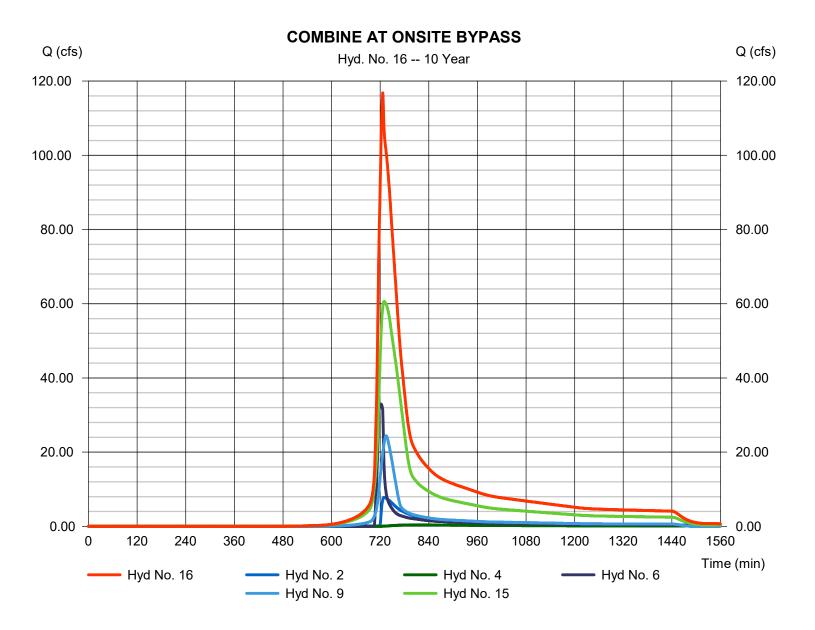

Monday, 02 / 3 / 2025

Hyd. No. 15

POI 7

Hydrograph type= CombinePStorm frequency= 10 yrsTTime interval= 1 minHInflow hyds.= 10, 11, 14C

Peak discharge = 60.60 cfs
Time to peak = 730 min
Hyd. volume = 436,011 cuft
Contrib. drain. area = 9.720 ac

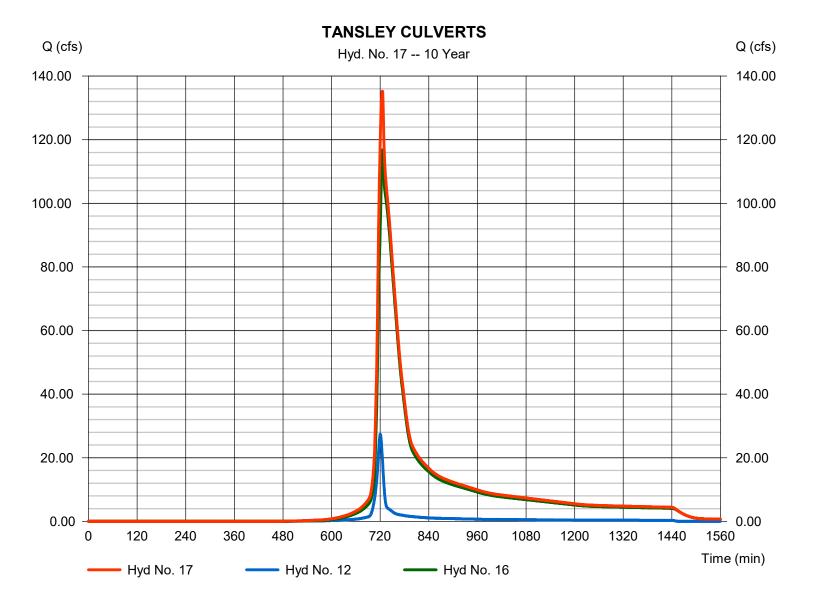

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 02 / 3 / 2025

Hyd. No. 16

COMBINE AT ONSITE BYPASS

Hydrograph type = Combine Peak discharge = 116.84 cfsStorm frequency Time to peak = 10 yrs= 726 min Time interval = 1 min Hyd. volume = 718,494 cuft = 2, 4, 6, 9, 15 Inflow hyds. Contrib. drain. area = 14.090 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 02 / 3 / 2025

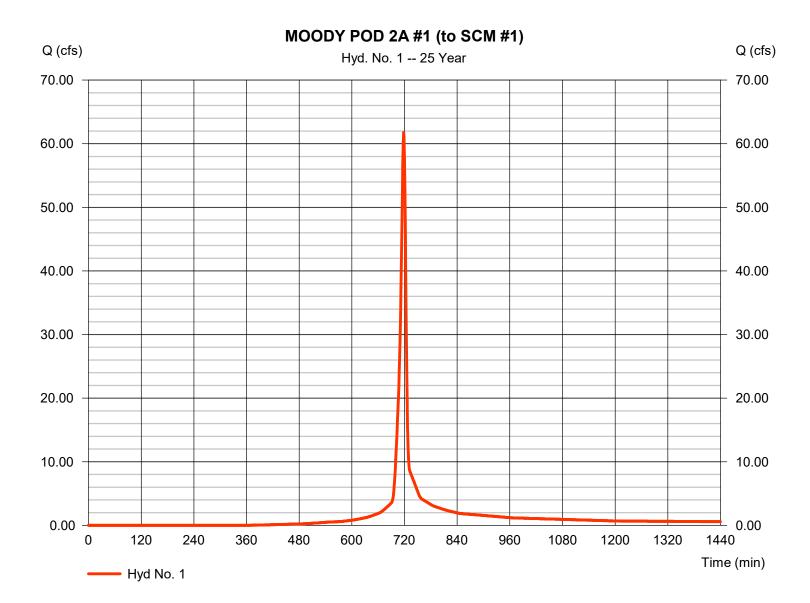
Hyd. No. 17

TANSLEY CULVERTS

Hydrograph type = Combine Peak discharge = 135.24 cfsStorm frequency Time to peak = 10 yrs= 725 min Time interval = 1 min Hyd. volume = 784,733 cuft Inflow hyds. = 12, 16 Contrib. drain. area = 6.570 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	61.75	1	718	133,525				MOODY POD 2A #1 (to SCM #1)
2	Reservoir	25.24	1	725	103,820	1	366.68	105,506	MOODY SCM #1
3	SCS Runoff	13.07	1	717	27,058				MOODY POD 2A #2 (to SCM #2)
4	Reservoir	0.927	1	754	18,037	3	363.16	31,251	MOODY SCM #2
5	SCS Runoff	55.50	1	718	119,710				MOODY POD 2A #3 (to SCM #3)
6	Reservoir	46.77	1	721	112,023	5	364.19	42,427	MOODY SCM #3
7	SCS Runoff	31.01	1	743	171,988				NCDOT CULVERT #1
8	SCS Runoff	32.32	1	745	189,153				NCDOT CULVERT #2
9	SCS Runoff	33.20	1	735	148,052				MULBERRY CULVERT
10	Combine	63.17	1	744	361,141	7, 8,			KALAS PHASE 2 CULVERT
11	SCS Runoff	40.31	1	725	126,090				OFFSITE BYPASS (FROM KALAS 2)
12	SCS Runoff	35.35	1	720	86,021				ONSITE BYPASS
13	SCS Runoff	48.32	1	721	123,250				KALAS 2 SCM7 POST DEV DA
14	Reservoir	5.755	1	749	95,254	13	374.60	68,006	KALAS 2 SCM #7A
15	Combine	84.27	1	734	582,485	10, 11, 14			POI 7
16	Combine	166.08	1	728	964,417	2, 4, 6,			COMBINE AT ONSITE BYPASS
17	Combine	194.15	1	723	1,050,437	9, 15 12, 16			TANSLEY CULVERTS
202	241205 Tansl	lov Culver	t Madalin	Doving)		Mandage	2 / 3 / 2025

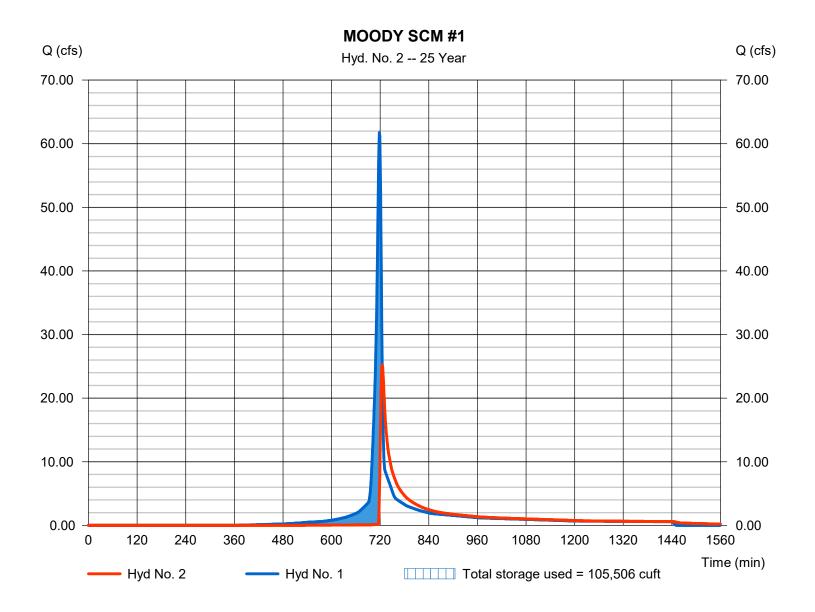
Monday, 02 / 3 / 2025

Hyd. No. 1

MOODY POD 2A #1 (to SCM #1)

Hydrograph type = SCS Runoff Peak discharge = 61.75 cfsStorm frequency Time to peak = 25 yrs = 718 min Time interval = 1 min Hyd. volume = 133.525 cuft Drainage area = 9.780 acCurve number = 81.1 Hydraulic length Basin Slope = 2.4 % = 1000 ftTc method = KIRPICH Time of conc. (Tc) $= 6.69 \, \text{min}$ Total precip. = 5.96 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

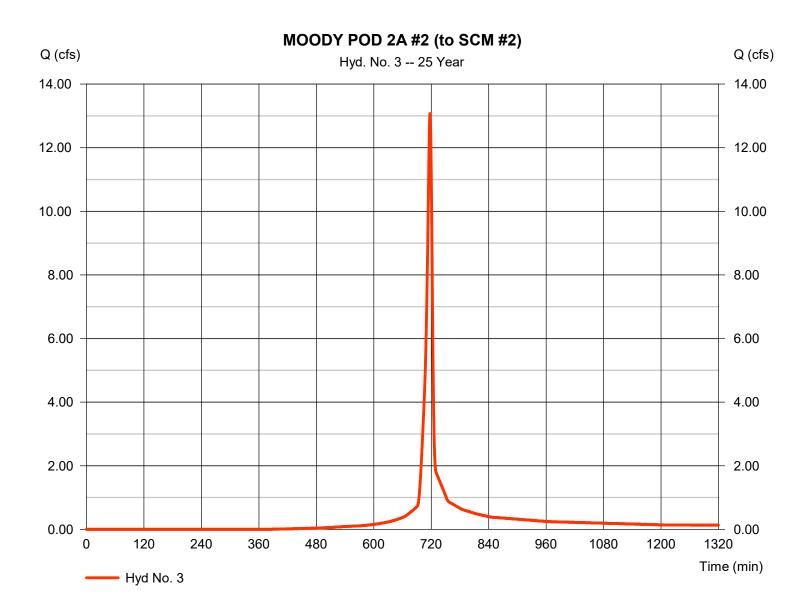

Monday, 02 / 3 / 2025

Hyd. No. 2

MOODY SCM #1

Hydrograph type = Reservoir Peak discharge = 25.24 cfsStorm frequency Time to peak = 25 yrs= 725 min Time interval = 1 min Hyd. volume = 103,820 cuft Inflow hyd. No. = 1 - MOODY POD 2A #1 (to SOMMext1) Elevation = 366.68 ftMax. Storage Reservoir name = SCM #1 = 105,506 cuft

Storage Indication method used. Wet pond routing start elevation = 363.50 ft.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

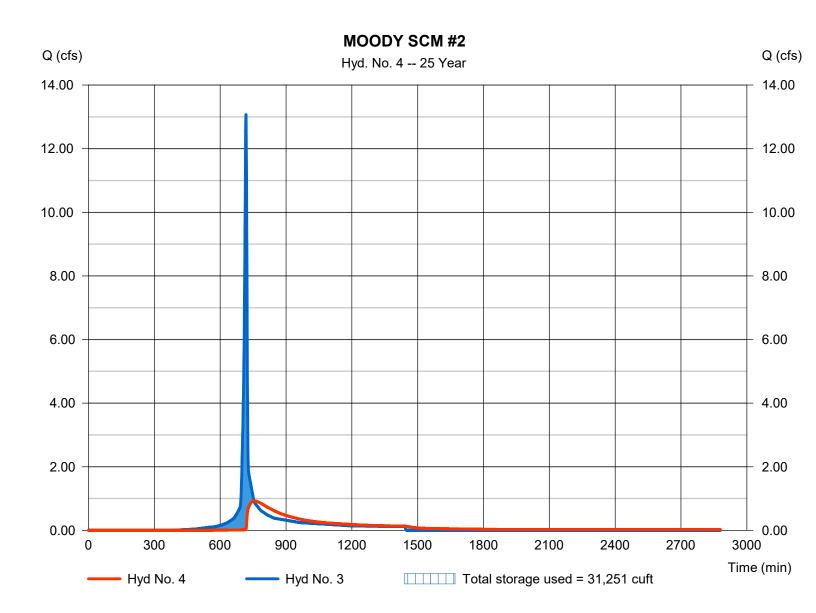
Monday, 02 / 3 / 2025

Hyd. No. 3

MOODY POD 2A #2 (to SCM #2)

Hydrograph type = SCS Runoff Peak discharge = 13.07 cfsStorm frequency = 25 yrs Time to peak = 717 min Time interval = 1 min Hyd. volume = 27.058 cuft Drainage area Curve number = 1.930 ac= 80 Hydraulic length Basin Slope = 0.5 %= 450 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.96 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

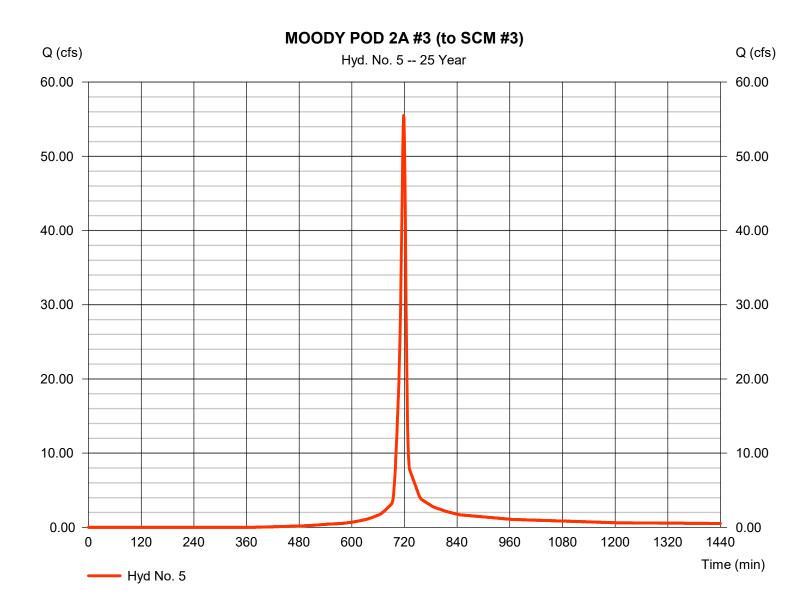

Monday, 02 / 3 / 2025

Hyd. No. 4

MOODY SCM #2

Hydrograph type Peak discharge = 0.927 cfs= Reservoir Storm frequency = 25 yrsTime to peak = 754 min Time interval = 1 min Hyd. volume = 18,037 cuft Inflow hyd. No. = 3 - MOODY POD 2A #2 (to SOMMa#2)Elevation = 363.16 ftMax. Storage = SCM #2 Reservoir name = 31,251 cuft

Storage Indication method used. Wet pond routing start elevation = 361.50 ft.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

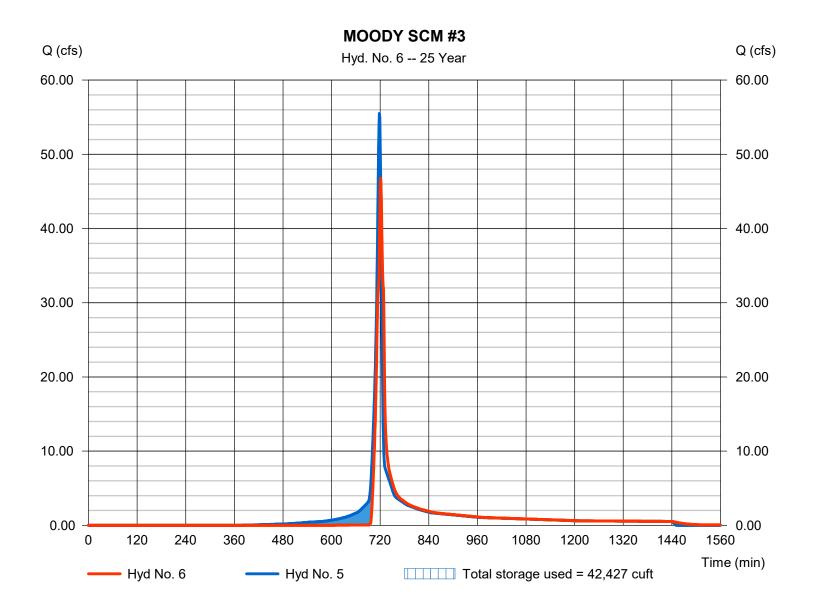
Monday, 02 / 3 / 2025

Hyd. No. 5

MOODY POD 2A #3 (to SCM #3)

Hydrograph type = SCS Runoff Peak discharge = 55.50 cfsStorm frequency Time to peak = 25 yrs= 718 min Time interval = 1 min Hyd. volume = 119,710 cuftDrainage area Curve number = 8.910 ac= 80.5= 1120 ftBasin Slope = 2.6 % Hydraulic length Tc method = KIRPICH Time of conc. (Tc) $= 7.08 \, \text{min}$ Total precip. = 5.96 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

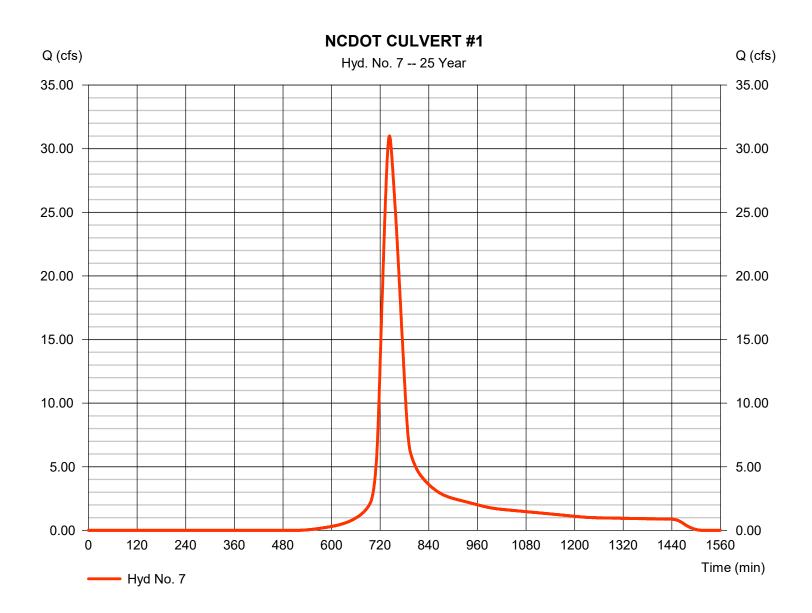

Monday, 02 / 3 / 2025

Hyd. No. 6

MOODY SCM #3

Hydrograph type = Reservoir Peak discharge = 46.77 cfsStorm frequency = 25 yrsTime to peak = 721 min Time interval = 1 min Hyd. volume = 112,023 cuft Inflow hyd. No. = 5 - MOODY POD 2A #3 (to SOMMaxX3) Elevation = 364.19 ftMax. Storage Reservoir name = SCM #3 = 42,427 cuft

Storage Indication method used. Wet pond routing start elevation = 361.00 ft.

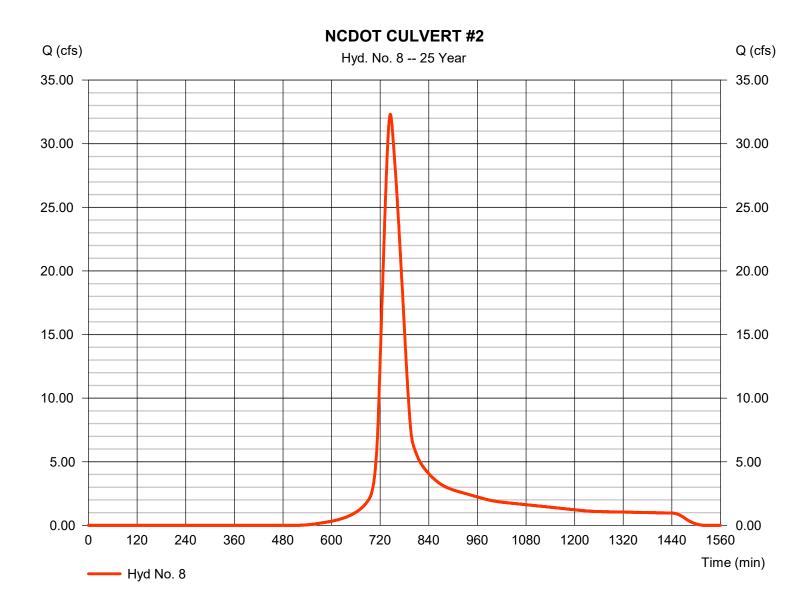

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 02 / 3 / 2025

Hyd. No. 7

NCDOT CULVERT #1

Hydrograph type = SCS Runoff Peak discharge = 31.01 cfsStorm frequency Time to peak = 25 yrs= 743 min Time interval = 1 min Hyd. volume = 171,988 cuft Drainage area Curve number = 72.5= 15.820 ac Basin Slope Hydraulic length = 0 ft= 0.0 %Time of conc. (Tc) Tc method = 49.03 min = User Total precip. = 5.96 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

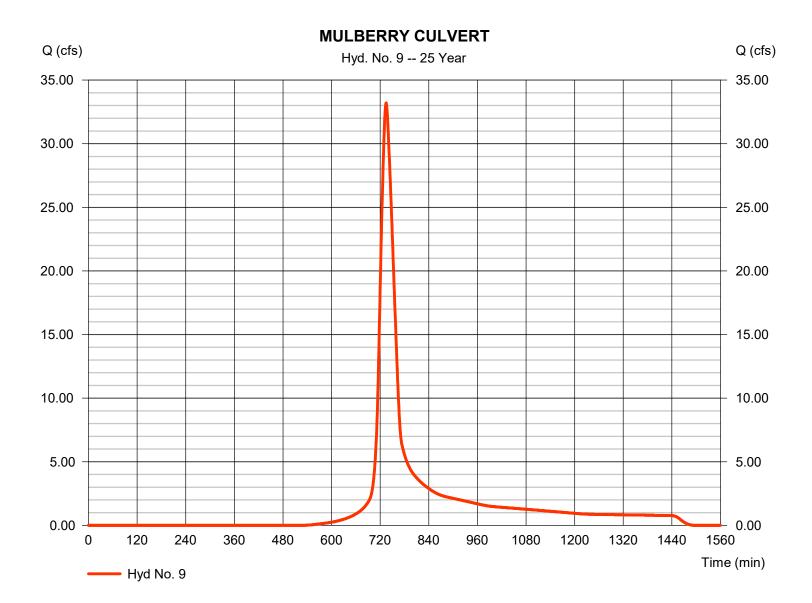


Monday, 02 / 3 / 2025

Hyd. No. 8

NCDOT CULVERT #2

= 32.32 cfsHydrograph type = SCS Runoff Peak discharge Storm frequency Time to peak = 25 yrs= 745 min Time interval = 1 min Hyd. volume = 189.153 cuft Drainage area = 17.200 ac Curve number = 72.6Basin Slope Hydraulic length = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 50.89 \, \text{min}$ = User Total precip. = 5.96 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

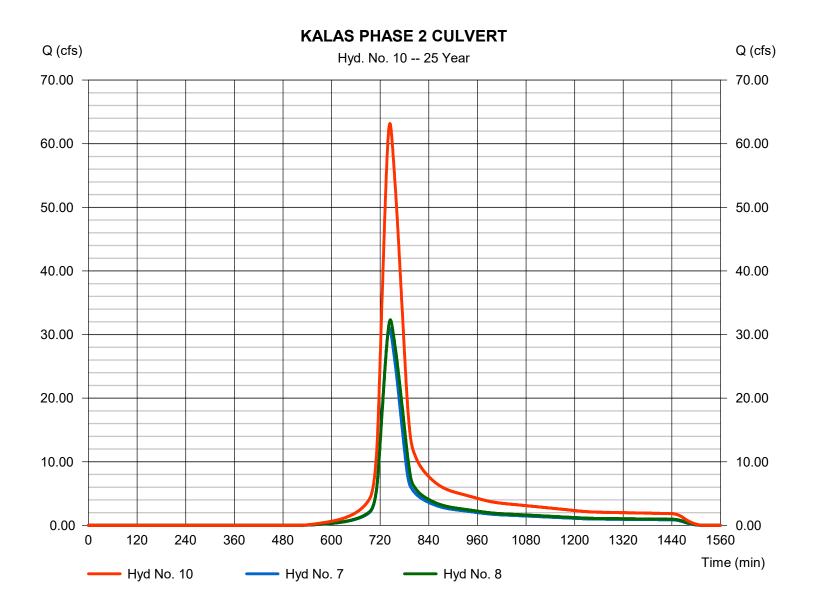

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 02 / 3 / 2025

Hyd. No. 9

MULBERRY CULVERT

Hydrograph type = SCS Runoff Peak discharge = 33.20 cfsStorm frequency Time to peak = 25 yrs= 735 min Time interval = 1 min Hyd. volume = 148.052 cuft Drainage area = 14.090 ac Curve number = 71.3 Basin Slope Hydraulic length = 0.0 %= 0 ftTc method Time of conc. (Tc) = 34.74 min = User Total precip. = 5.96 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

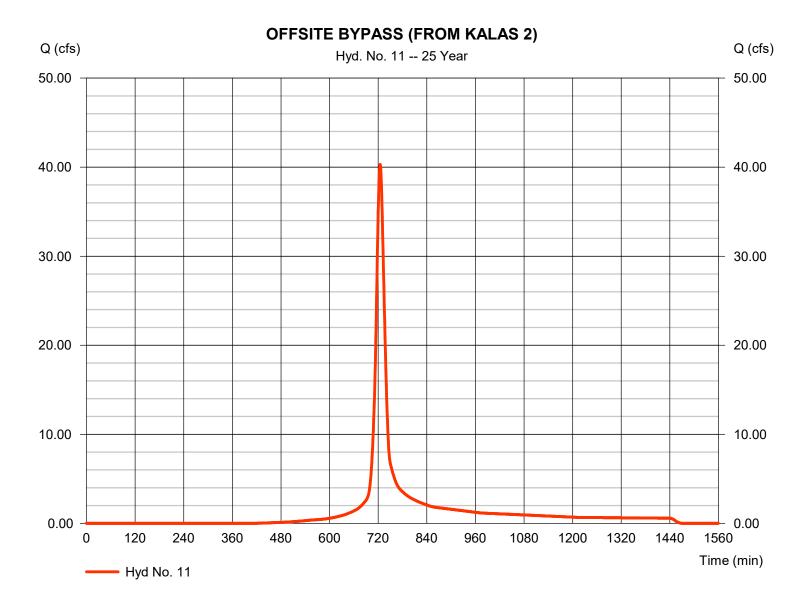

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 02 / 3 / 2025

Hyd. No. 10

KALAS PHASE 2 CULVERT

Hydrograph type = Combine Peak discharge = 63.17 cfsStorm frequency = 25 yrsTime to peak = 744 min Time interval = 1 min Hyd. volume = 361,141 cuft Inflow hyds. = 7,8 Contrib. drain. area = 33.020 ac

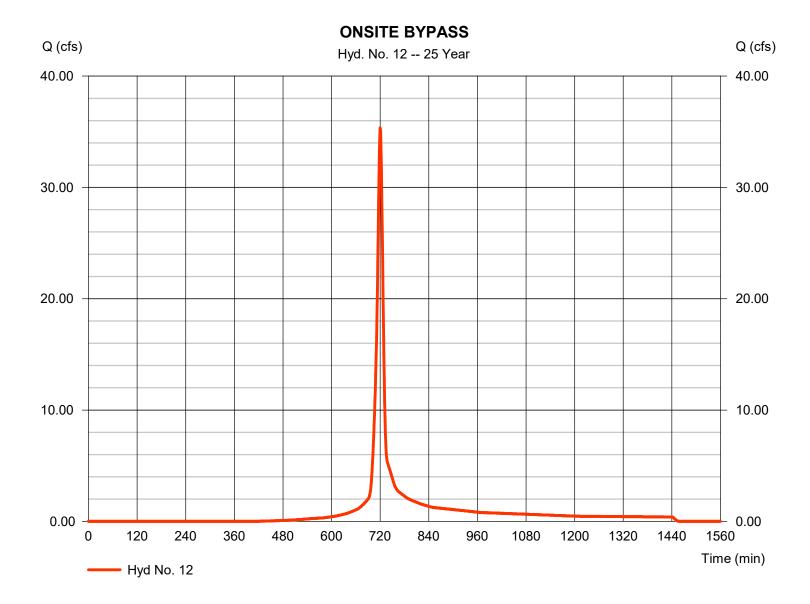

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 02 / 3 / 2025

Hyd. No. 11

OFFSITE BYPASS (FROM KALAS 2)

Hydrograph type = SCS Runoff Peak discharge = 40.31 cfsStorm frequency = 25 yrs Time to peak = 725 min Time interval = 1 min Hyd. volume = 126.090 cuft Drainage area = 9.720 acCurve number = 78.3Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 19.90 min = User Total precip. = 5.96 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

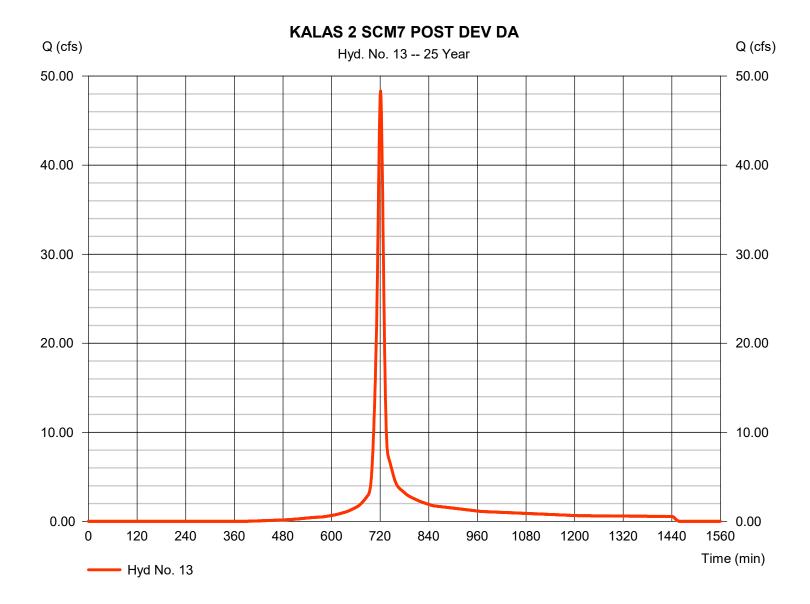

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 02 / 3 / 2025

Hyd. No. 12

ONSITE BYPASS

= SCS Runoff Hydrograph type Peak discharge = 35.35 cfsStorm frequency Time to peak = 25 yrs = 720 min Time interval = 1 min Hyd. volume = 86.021 cuft Drainage area = 6.570 acCurve number = 78 Basin Slope Hydraulic length = 0 ft= 0.0 %Tc method Time of conc. (Tc) = 11.56 min = User Total precip. = 5.96 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484



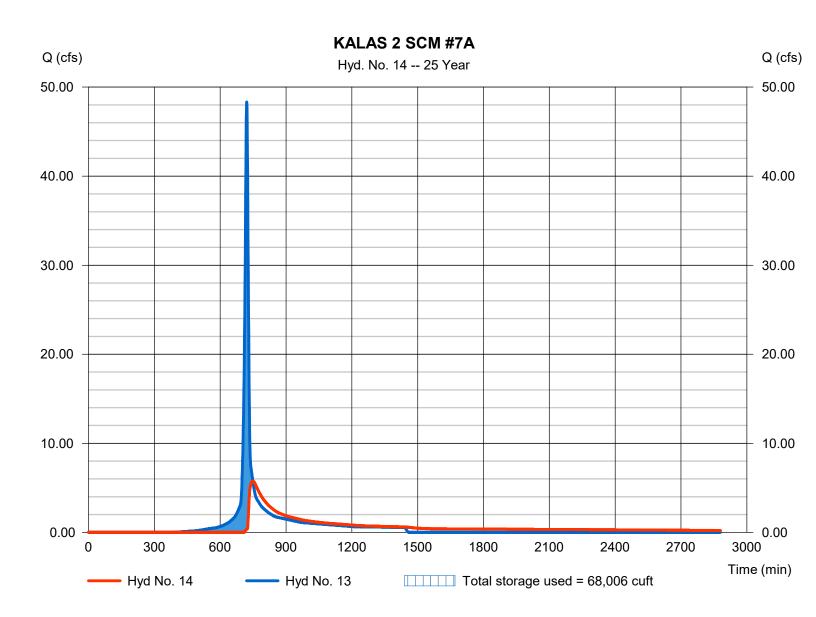
Monday, 02 / 3 / 2025

Hyd. No. 13

KALAS 2 SCM7 POST DEV DA

Hydrograph type = SCS Runoff Peak discharge = 48.32 cfsStorm frequency = 25 yrs Time to peak = 721 min Time interval = 1 min Hyd. volume = 123.250 cuft Drainage area = 9.260 acCurve number = 79.8Basin Slope = 1.1 % Hydraulic length = 1505 ftTc method = KIRPICH Time of conc. (Tc) = 12.38 min Total precip. = 5.96 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 02 / 3 / 2025

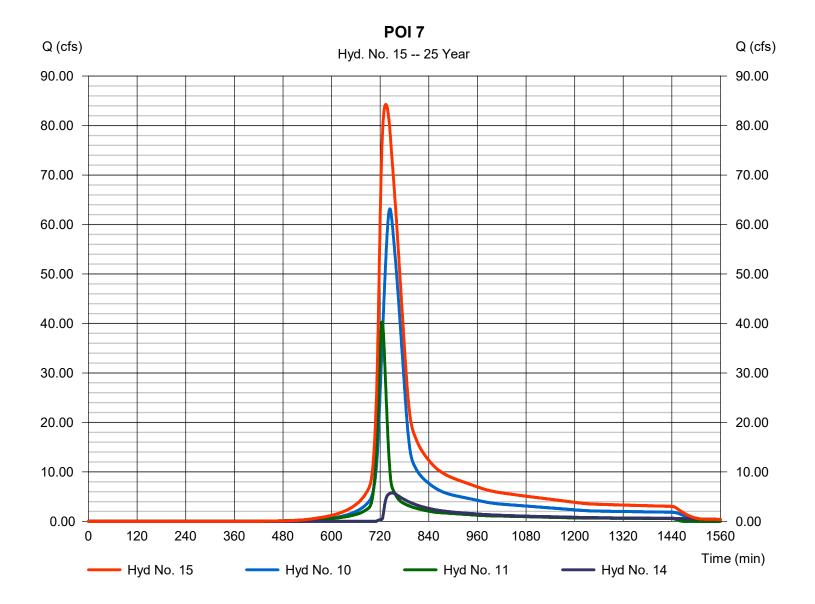
Hyd. No. 14

KALAS 2 SCM #7A

Hydrograph type = Reservoir Peak discharge = 5.755 cfsStorm frequency Time to peak = 25 yrs= 749 min Time interval = 1 min Hyd. volume = 95.254 cuft Inflow hyd. No. = 13 - KALAS 2 SCM7 POST DEWa AElevation = 374.60 ft= SCM #7A Reservoir name Max. Storage = 68,006 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

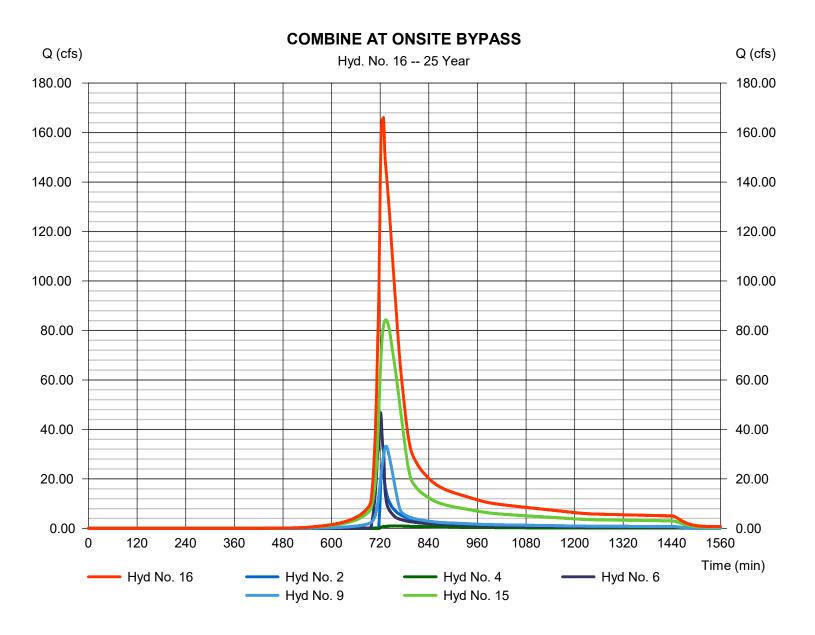

Monday, 02 / 3 / 2025

Hyd. No. 15

POI 7

Hydrograph type = Combine Storm frequency = 25 yrsTime interval = 1 min Inflow hyds. = 10, 11, 14

= 84.27 cfsPeak discharge Time to peak = 734 min Hyd. volume = 582,485 cuft Contrib. drain. area = 9.720 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

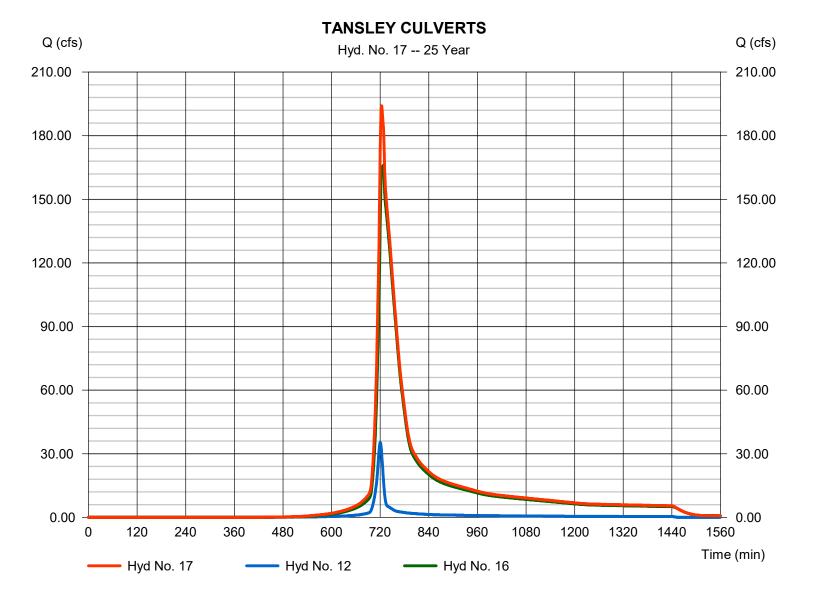
Monday, 02 / 3 / 2025

Hyd. No. 16

COMBINE AT ONSITE BYPASS

Hydrograph type = Combine Peak discharge = 166.08 cfsStorm frequency Time to peak = 25 yrs= 728 min Time interval = 1 min Hyd. volume = 964,417 cuft = 2, 4, 6, 9, 15 Inflow hyds. Contrib. drain. area = 14.090 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 02 / 3 / 2025

Hyd. No. 17

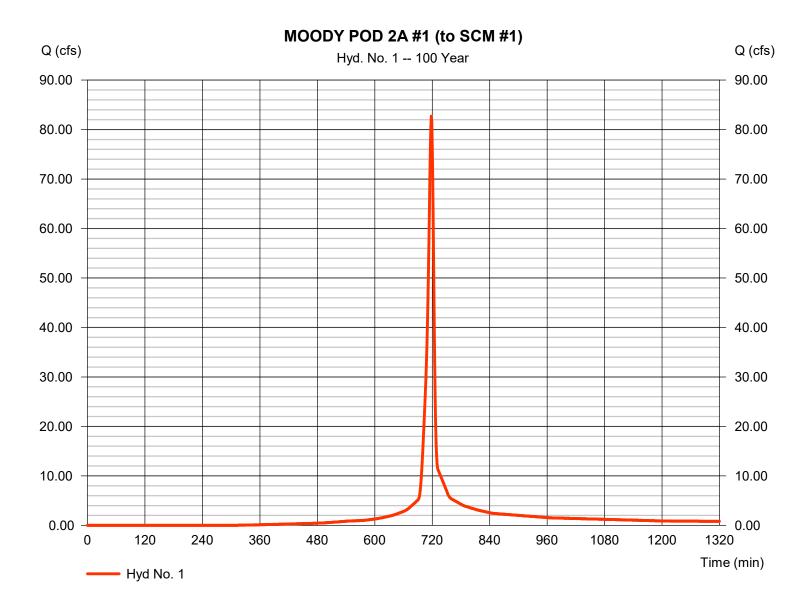
TANSLEY CULVERTS

Hydrograph type = Combine Peak discharge = 194.15 cfsStorm frequency Time to peak = 25 yrs= 723 min Time interval = 1 min Hyd. volume = 1,050,437 cuft

Inflow hyds. = 12, 16 Contrib. drain. area = 6.570 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	82.71	1	718	181,581				MOODY POD 2A #1 (to SCM #1)
2	Reservoir	62.93	1	722	151,806	1	367.06	114,243	MOODY SCM #1
3	SCS Runoff	17.61	1	717	36,996				MOODY POD 2A #2 (to SCM #2)
4	Reservoir	5.790	1	724	27,936	3	363.45	34,500	MOODY SCM #2
5	SCS Runoff	74.57	1	718	163,272				MOODY POD 2A #3 (to SCM #3)
6	Reservoir	68.86	1	720	155,580	5	364.46	45,315	MOODY SCM #3
7	SCS Runoff	44.43	1	743	244,683				NCDOT CULVERT #1
8	SCS Runoff	46.30	1	745	268,950				NCDOT CULVERT #2
9	SCS Runoff	47.93	1	734	212,094				MULBERRY CULVERT
10	Combine	90.50	1	744	513,634	7, 8,			KALAS PHASE 2 CULVERT
11	SCS Runoff	55.22	1	725	173,878				OFFSITE BYPASS (FROM KALAS 2
12	SCS Runoff	48.32	1	720	118,805				ONSITE BYPASS
13	SCS Runoff	65.36	1	721	168,684				KALAS 2 SCM7 POST DEV DA
14	Reservoir	24.08	1	731	140,354	13	375.56	82,868	KALAS 2 SCM #7A
15	Combine	138.29	1	731	827,866	10, 11, 14			POI 7
16	Combine	269.73	1	723	1,375,281	2, 4, 6,			COMBINE AT ONSITE BYPASS
17	Combine	312.87	1	722	1,494,086	9, 15 12, 16			TANSLEY CULVERTS
202	241205 Tansk	ey Culvert	t Modelir	ng Revise	d.gRewturn P	eriod: 100	Year	Monday, 02	2 / 3 / 2025

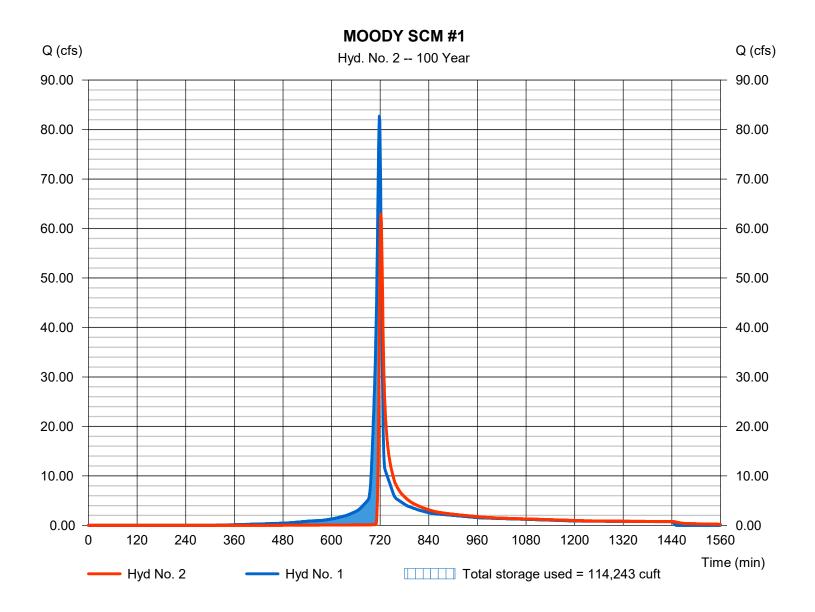
Monday, 02 / 3 / 2025

Hyd. No. 1

MOODY POD 2A #1 (to SCM #1)

Hydrograph type = SCS Runoff Peak discharge = 82.71 cfsStorm frequency Time to peak = 100 yrs= 718 min Time interval = 1 min Hyd. volume = 181.581 cuft Drainage area = 9.780 acCurve number = 81.1 Hydraulic length Basin Slope = 2.4 % = 1000 ftTime of conc. (Tc) Tc method = KIRPICH $= 6.69 \, \text{min}$ Total precip. = 7.46 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

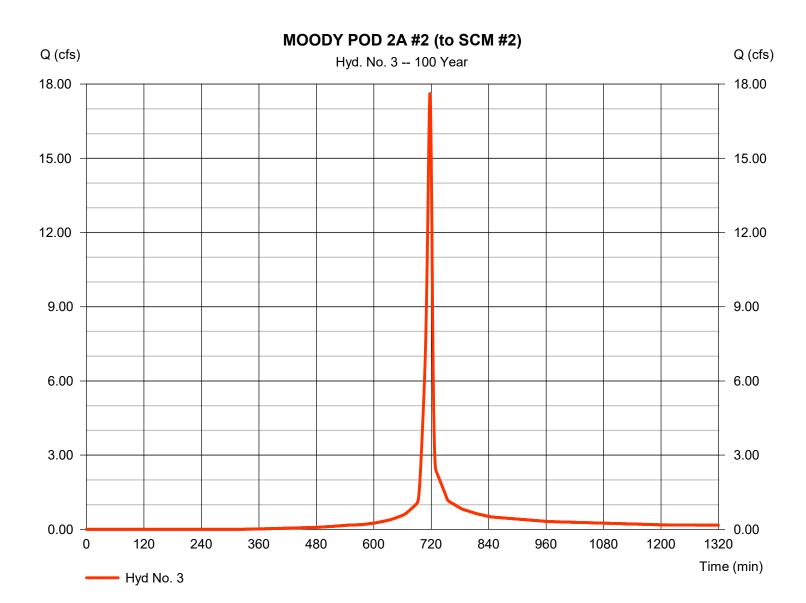

Monday, 02 / 3 / 2025

Hyd. No. 2

MOODY SCM #1

Hydrograph type = Reservoir Peak discharge = 62.93 cfsStorm frequency Time to peak = 100 yrs= 722 min Time interval = 1 min Hyd. volume = 151,806 cuft Inflow hyd. No. = 1 - MOODY POD 2A #1 (to SOMMext1) Elevation = 367.06 ftMax. Storage = 114,243 cuft Reservoir name = SCM #1

Storage Indication method used. Wet pond routing start elevation = 363.50 ft.



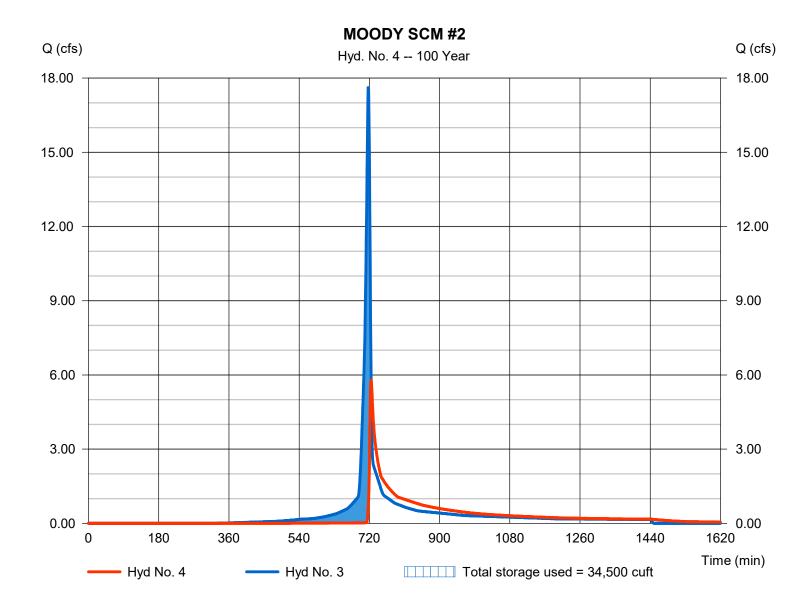
Monday, 02 / 3 / 2025

Hyd. No. 3

MOODY POD 2A #2 (to SCM #2)

Hydrograph type = SCS Runoff Peak discharge = 17.61 cfsStorm frequency = 100 yrsTime to peak = 717 min Time interval = 1 min Hyd. volume = 36.996 cuft Drainage area Curve number = 1.930 ac= 80 Hydraulic length Basin Slope = 0.5 %= 450 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.46 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

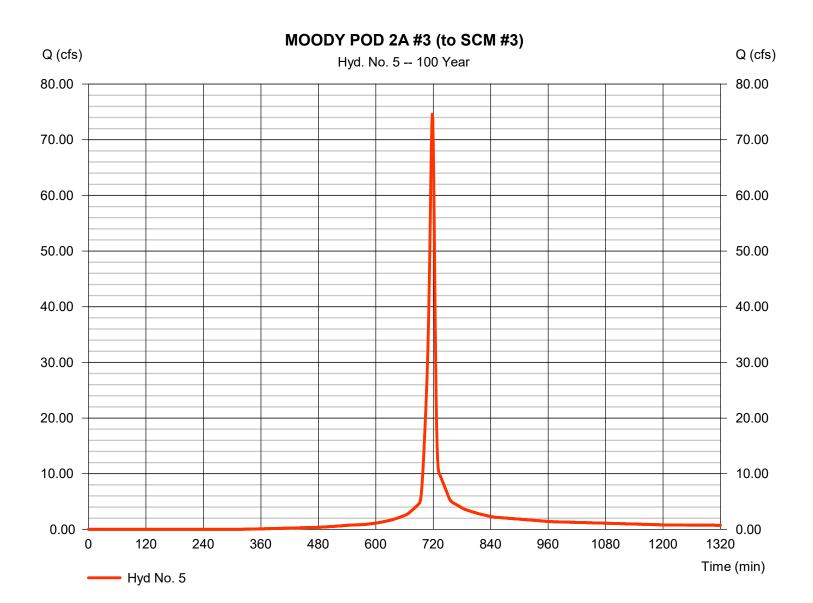

Monday, 02 / 3 / 2025

Hyd. No. 4

MOODY SCM #2

Hydrograph type = Reservoir Peak discharge = 5.790 cfsStorm frequency = 100 yrsTime to peak = 724 min Time interval = 1 min Hyd. volume = 27,936 cuft Inflow hyd. No. = 3 - MOODY POD 2A #2 (to SOMMext2) Elevation $= 363.45 \, \text{ft}$ Max. Storage Reservoir name = SCM #2 = 34,500 cuft

Storage Indication method used. Wet pond routing start elevation = 361.50 ft.

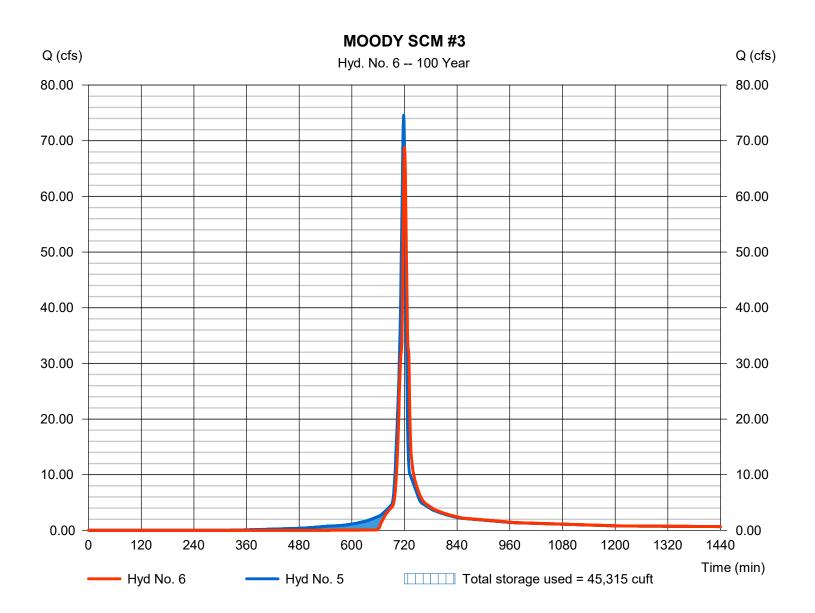


Monday, 02 / 3 / 2025

Hyd. No. 5

MOODY POD 2A #3 (to SCM #3)

Hydrograph type = SCS Runoff Peak discharge = 74.57 cfsStorm frequency Time to peak = 100 yrs= 718 min Time interval = 1 min Hyd. volume = 163.272 cuft Drainage area Curve number = 8.910 ac= 80.5Hydraulic length = 1120 ftBasin Slope = 2.6 % Tc method = KIRPICH Time of conc. (Tc) = 7.08 min Total precip. = 7.46 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

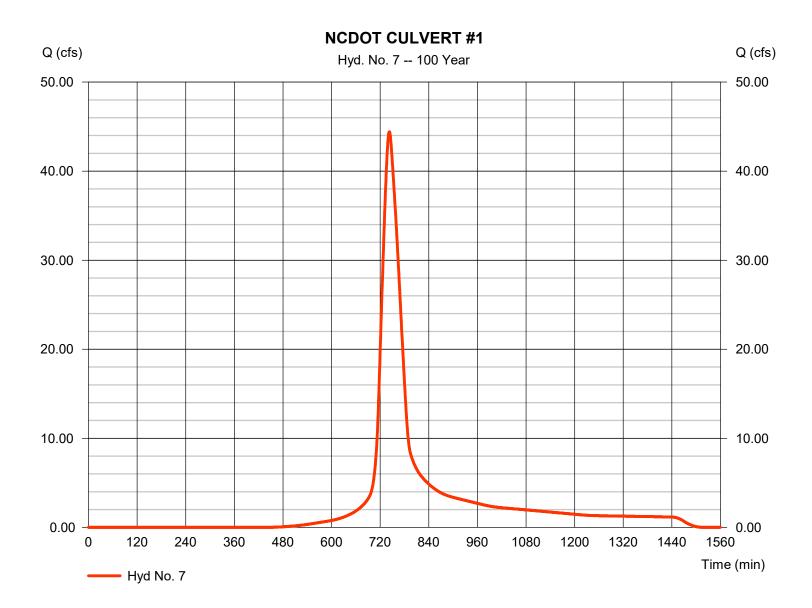

Monday, 02 / 3 / 2025

Hyd. No. 6

MOODY SCM #3

Hydrograph type = Reservoir Peak discharge = 68.86 cfsStorm frequency Time to peak = 100 yrs= 720 min Time interval = 1 min Hyd. volume = 155,580 cuft Inflow hyd. No. = 5 - MOODY POD 2A #3 (to SOMMaxX3) Elevation = 364.46 ftMax. Storage Reservoir name = SCM #3 = 45,315 cuft

Storage Indication method used. Wet pond routing start elevation = 361.00 ft.

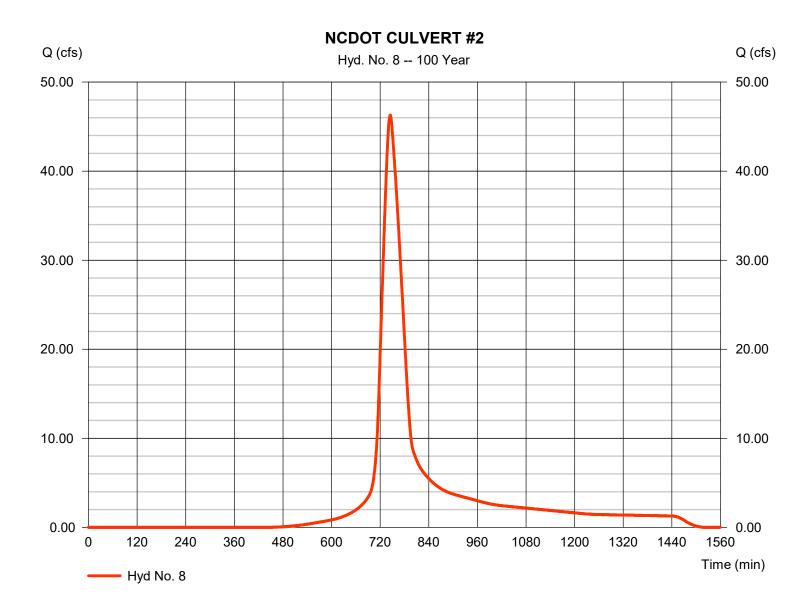


Monday, 02 / 3 / 2025

Hyd. No. 7

NCDOT CULVERT #1

Hydrograph type = SCS Runoff Peak discharge = 44.43 cfsStorm frequency = 100 yrsTime to peak = 743 min Time interval = 1 min Hyd. volume = 244.683 cuft Drainage area Curve number = 72.5= 15.820 ac Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 49.03 min = User Total precip. = 7.46 inDistribution = Type II Storm duration Shape factor = 24 hrs = 484

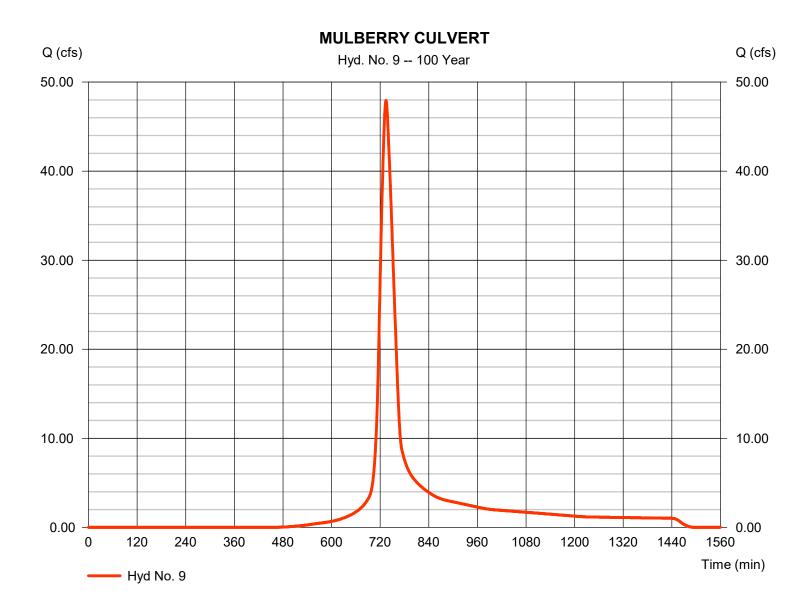


Monday, 02 / 3 / 2025

Hyd. No. 8

NCDOT CULVERT #2

Hydrograph type = SCS Runoff Peak discharge = 46.30 cfsStorm frequency = 100 yrsTime to peak = 745 min Time interval = 1 min Hyd. volume = 268.950 cuft Drainage area = 17.200 ac Curve number = 72.6Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 50.89 \, \text{min}$ = User Total precip. = 7.46 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

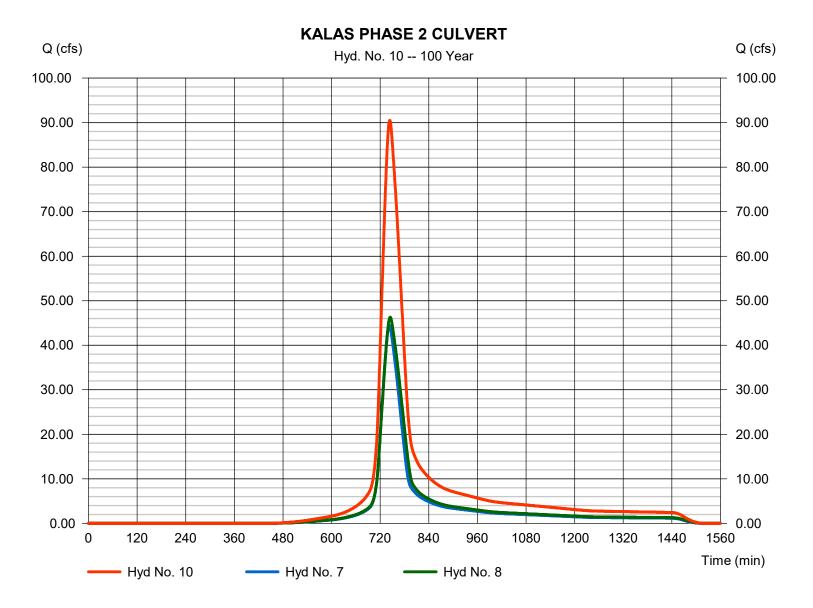


Monday, 02 / 3 / 2025

Hyd. No. 9

MULBERRY CULVERT

Hydrograph type = SCS Runoff Peak discharge = 47.93 cfsStorm frequency = 100 yrsTime to peak = 734 min Time interval = 1 min Hyd. volume = 212.094 cuft Drainage area Curve number = 71.3 = 14.090 acHydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) = 34.74 min = User Total precip. = 7.46 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

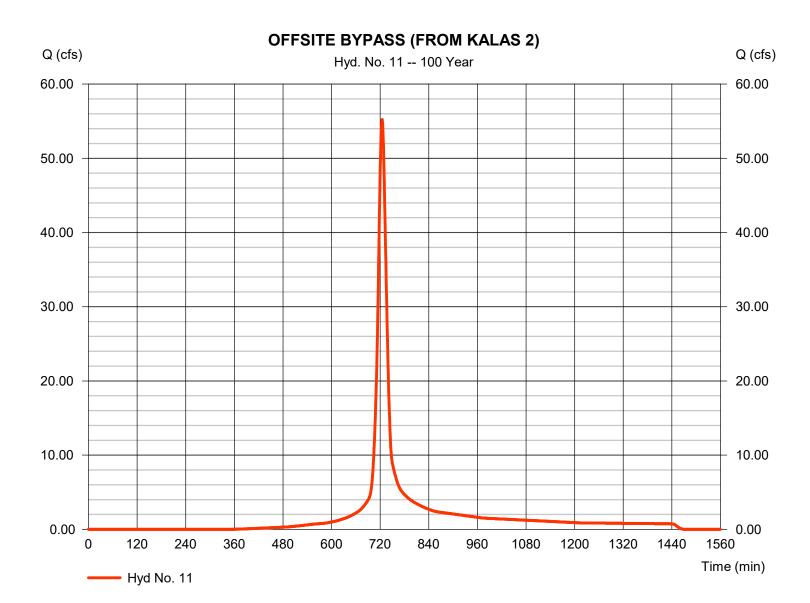


Monday, 02 / 3 / 2025

Hyd. No. 10

KALAS PHASE 2 CULVERT

Hydrograph type = Combine Peak discharge = 90.50 cfsStorm frequency Time to peak = 100 yrs= 744 min Time interval = 1 min Hyd. volume = 513,634 cuft Inflow hyds. = 7,8 Contrib. drain. area = 33.020 ac

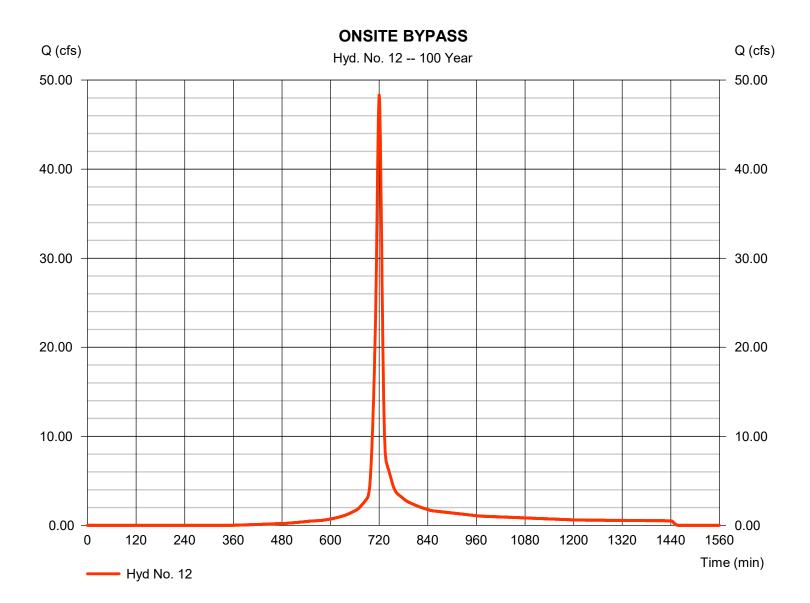


Monday, 02 / 3 / 2025

Hyd. No. 11

OFFSITE BYPASS (FROM KALAS 2)

Hydrograph type = SCS Runoff Peak discharge = 55.22 cfsStorm frequency = 100 yrsTime to peak = 725 min Time interval = 1 min Hyd. volume = 173.878 cuft Drainage area = 9.720 acCurve number = 78.3Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 19.90 min = User Total precip. = 7.46 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

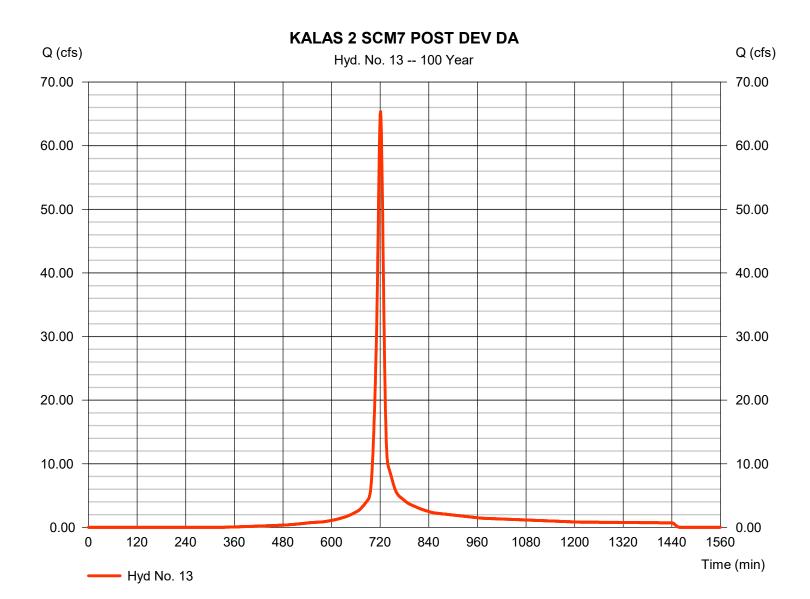

Monday, 02 / 3 / 2025

Hyd. No. 12

ONSITE BYPASS

Hydrograph type = SCS Runoff Peak discharge = 48.32 cfsStorm frequency = 100 yrsTime to peak = 720 min Time interval = 1 min Hyd. volume = 118,805 cuft Drainage area Curve number = 6.570 ac= 78 = 0 ftBasin Slope = 0.0 %Hydraulic length

Tc method = User Time of conc. (Tc) = 11.56 min
Total precip. = 7.46 in Distribution = Type II
Storm duration = 24 hrs Shape factor = 484

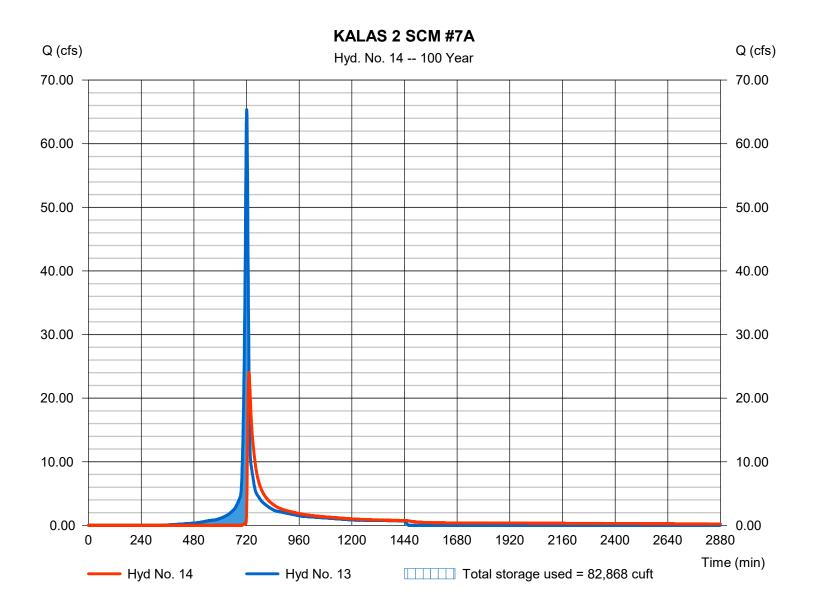


Monday, 02 / 3 / 2025

Hyd. No. 13

KALAS 2 SCM7 POST DEV DA

Hydrograph type = SCS Runoff Peak discharge = 65.36 cfsStorm frequency Time to peak = 100 yrs= 721 min Time interval = 1 min Hyd. volume = 168.684 cuft Drainage area = 9.260 ac Curve number = 79.8Basin Slope Hydraulic length = 1.1 % = 1505 ftTime of conc. (Tc) Tc method = KIRPICH = 12.38 min Total precip. = 7.46 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484


Monday, 02 / 3 / 2025

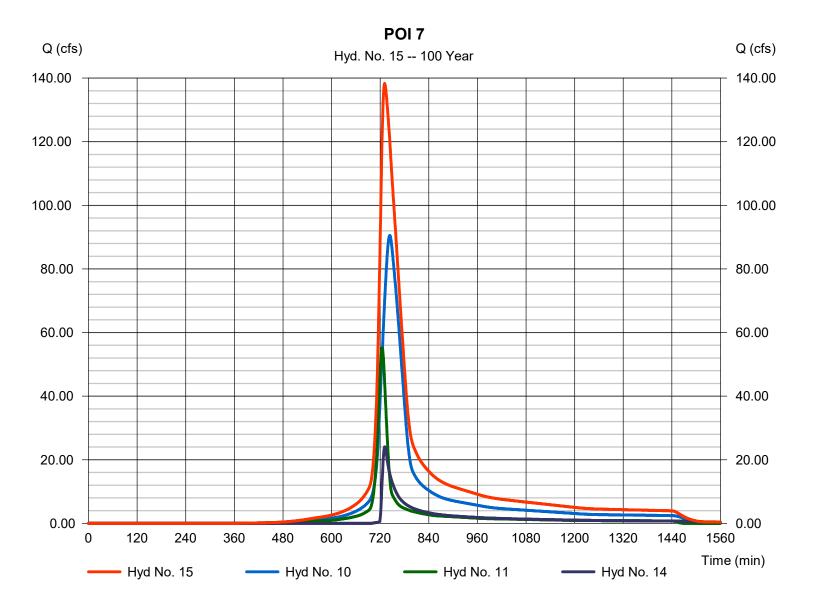
Hyd. No. 14

KALAS 2 SCM #7A

= Reservoir Hydrograph type Peak discharge = 24.08 cfsStorm frequency Time to peak = 100 yrs= 731 min Time interval = 1 min Hyd. volume = 140,354 cuft Inflow hyd. No. = 13 - KALAS 2 SCM7 POST DEWatAElevation = 375.56 ft= SCM #7A Reservoir name Max. Storage = 82,868 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 02 / 3 / 2025

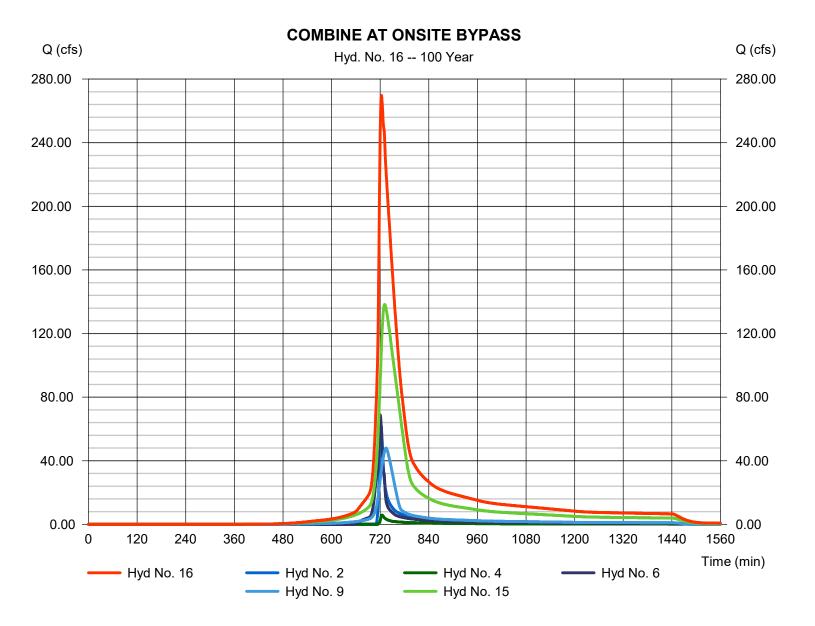
Hyd. No. 15

POI₇

Hydrograph type = Combine
Storm frequency = 100 yrs
Time interval = 1 min
Inflow hyds. = 10, 11, 14

Peak discharge = 138.29 cfs
Time to peak = 731 min
Hyd. volume = 827,866 cuft
Contrib. drain. area = 9.720 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Monday, 02 / 3 / 2025

Hyd. No. 16

COMBINE AT ONSITE BYPASS

Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 1 min Inflow hyds. = 2, 4, 6, 9, 15 Peak discharge = 269.73 cfs Time to peak = 723 min Hyd. volume = 1,375,281 cuft

Contrib. drain. area = 14.090 ac

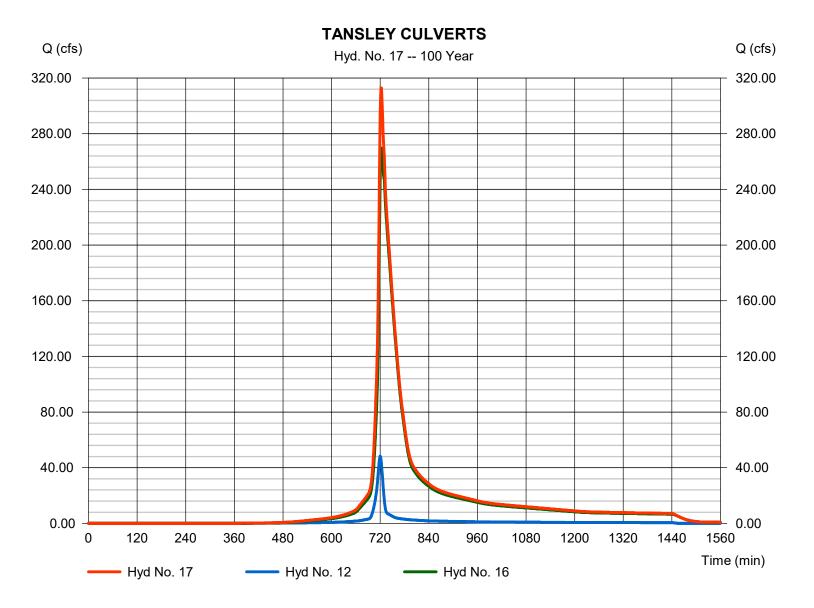
= 312.87 cfs

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Monday, 02 / 3 / 2025

Hyd. No. 17

TANSLEY CULVERTS

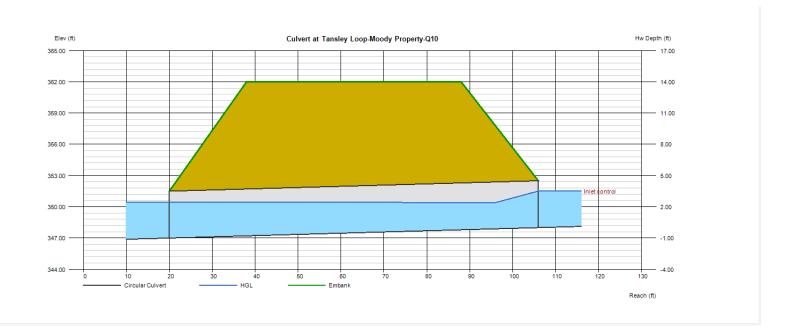

Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 1 min

Inflow hyds. = 12, 16

Time to peak = 722 min Hyd. volume = 1,494,086 cuft

Contrib. drain. area = 6.570 ac

Peak discharge

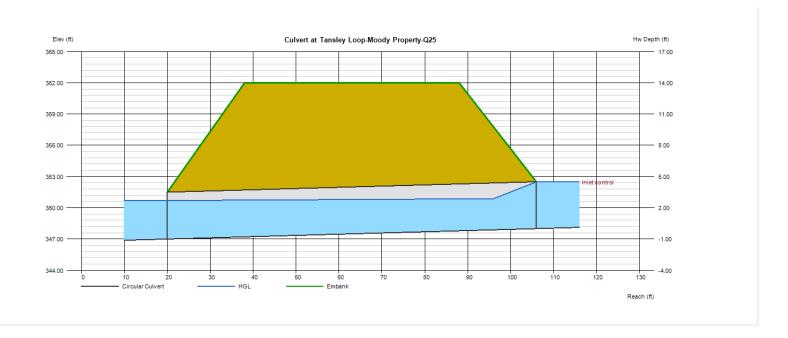


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

Culvert at Tansley Loop-Moody Property-Q10

Invert Elev Dn (ft)	= 347.00	Calculations	
Pipe Length (ft)	= 86.00	Qmin (cfs)	= 135.24
Slope (%)	= 1.16	Qmax (cfs)	= 135.24
Invert Elev Up (ft)	= 348.00	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 54.0		
Shape	= Circular	Highlighted	
Span (in)	= 54.0	Qtotal (cfs)	= 135.24
No. Barrels	= 2	Qpipe (cfs)	= 135.24
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	Circular Concrete	Veloc Dn (ft/s)	= 5.17
Culvert Entrance	Square edge w/headwall (C)	Veloc Up (ft/s)	= 7.86
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 350.45
		HGL Up (ft)	= 350.39
Embankment		Hw Elev (ft)	= 351.51
Top Elevation (ft)	= 362.00	Hw/D (ft)	= 0.78
Top Width (ft)	= 50.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 80.00		


Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

Culvert at Tansley Loop-Moody Property-Q25

Invert Elev Dn (ft)	= 347.00	Calculations	
Pipe Length (ft)	= 86.00	Qmin (cfs)	= 194.15
Slope (%)	= 1.16	Qmax (cfs)	= 194.15
Invert Elev Up (ft)	= 348.00	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 54.0		
Shape	= Circular	Highlighted	
Span (in)	= 54.0	Qtotal (cfs)	= 194.15
No. Barrels	= 2	Qpipe (cfs)	= 194.15
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	Circular Concrete	Veloc Dn (ft/s)	= 6.95
Culvert Entrance	Square edge w/headwall (C)	Veloc Up (ft/s)	= 8.99
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 350.70
		HGL Up (ft)	= 350.89
Embankment		Hw Elev (ft)	= 352.49
Top Elevation (ft)	= 362.00	Hw/D (ft)	= 1.00
Top Width (ft)	= 50.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 80.00		

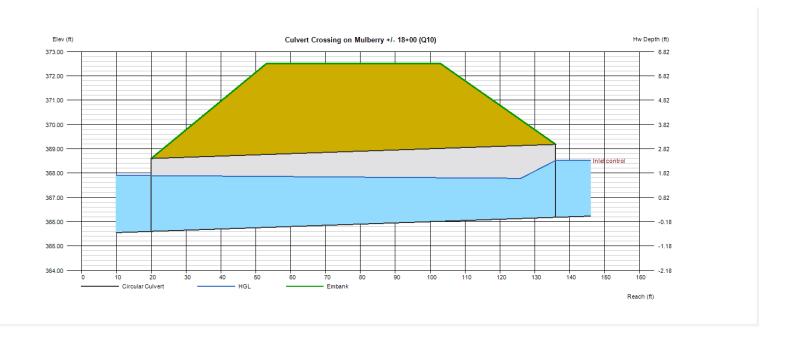

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

Culvert at Tansley Loop-Moody Property-Q100

Invert Elev Dn (ft)	= 347.00	Calculations	
Pipe Length (ft)	= 86.00	Qmin (cfs)	= 312.87
Slope (%)	= 1.16	Qmax (cfs)	= 312.87
Invert Elev Up (ft)	= 348.00	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 54.0		
Shape	= Circular	Highlighted	
Span (in)	= 54.0	Qtotal (cfs)	= 312.87
No. Barrels	= 2	Qpipe (cfs)	= 312.87
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	Circular Concrete	Veloc Dn (ft/s)	= 10.32
Culvert Entrance	Square edge w/headwall (C)	Veloc Up (ft/s)	= 11.29
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 351.08
		HGL Up (ft)	= 351.66
Embankment		Hw Elev (ft)	= 354.84
Top Elevation (ft)	= 362.00	Hw/D (ft)	= 1.52
Top Width (ft)	= 50.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 80.00		

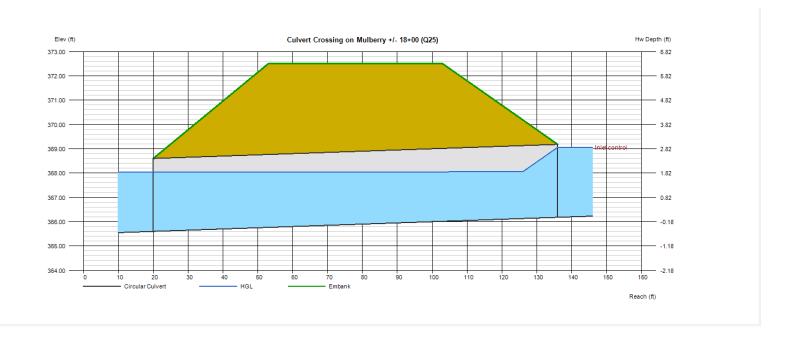


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

Culvert Crossing on Mulberry +/- 18+00 (Q10)

Invert Elev Dn (ft)	= 365.60	Calculations	
Pipe Length (ft)	= 116.00	Qmin (cfs)	= 24.42
Slope (%)	= 0.50	Qmax (cfs)	= 24.42
Invert Elev Up (ft)	= 366.18	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 36.0		•
Shape	= Circular	Highlighted	
Span (in)	= 36.0	Qtotal (cfs)	= 24.42
No. Barrels	= 1	Qpipe (cfs)	= 24.42
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	Circular Concrete	Veloc Dn (ft/s)	= 4.21
Culvert Entrance	Square edge w/headwall (C)	Veloc Up (ft/s)	= 6.41
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 367.90
		HGL Up (ft)	= 367.77
Embankment		Hw Elev (ft)	= 368.52
Top Elevation (ft)	= 372.50	Hw/D (ft)	= 0.78
Top Width (ft)	= 50.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 100.00		

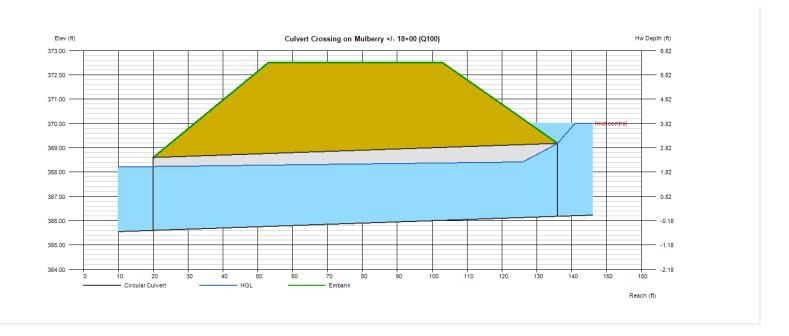

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

Culvert Crossing on Mulberry +/- 18+00 (Q25)

Invert Elev Dn (ft)	= 365.60	Calculations	
Pipe Length (ft)	= 116.00	Qmin (cfs)	= 33.20
Slope (%)	= 0.50	Qmax (cfs)	= 33.20
Invert Elev Up (ft)	= 366.18	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 36.0	, ,	, ,
Shape	= Circular	Highlighted	
Span (in)	= 36.0	Qtotal (cfs)	= 33.20
No. Barrels	= 1	Qpipe (cfs)	= 33.20
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 5.40
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 7.14
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 368.03
		HGL Up (ft)	= 368.06
Embankment		Hw Elev (ft)	= 369.06
Top Elevation (ft)	= 372.50	Hw/D (ft)	= 0.96
Top Width (ft)	= 50.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 100.00	-	



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

Culvert Crossing on Mulberry +/- 18+00 (Q100)

= 365.60	Calculations	
= 116.00	Qmin (cfs)	= 47.93
= 0.50	Qmax (cfs)	= 47.93
= 366.18	Tailwater Elev (ft)	= (dc+D)/2
= 36.0		
= Circular	Highlighted	
= 36.0	Qtotal (cfs)	= 47.93
= 1	Qpipe (cfs)	= 47.93
= 0.012	Qovertop (cfs)	= 0.00
= Circular Concrete	Veloc Dn (ft/s)	= 7.30
= Square edge w/headwall (C)	Veloc Up (ft/s)	= 8.42
= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 368.23
	HGL Up (ft)	= 368.43
	Hw Elev (ft)	= 370.01
= 372.50	Hw/D (ft)	= 1.28
= 50.00	Flow Regime	= Inlet Control
= 100.00	-	
	= 116.00 = 0.50 = 366.18 = 36.0 = Circular = 36.0 = 1 = 0.012 = Circular Concrete = Square edge w/headwall (C) = 0.0098, 2, 0.0398, 0.67, 0.5 = 372.50 = 50.00	= 116.00 Qmin (cfs) = 0.50 Qmax (cfs) = 366.18 Tailwater Elev (ft) = 36.0 = Circular Highlighted = 36.0 Qtotal (cfs) = 1 Qpipe (cfs) = 0.012 Qovertop (cfs) = Circular Concrete Veloc Dn (ft/s) = Square edge w/headwall (C) Veloc Up (ft/s) = 0.0098, 2, 0.0398, 0.67, 0.5 HGL Dn (ft) HGL Up (ft) HW Elev (ft) = 372.50 Hw/D (ft) = 50.00 Flow Regime

Project Name: Moody Development

Project Number:	R210002
Date:	2/3/2025
Calculated By:	RC
Checked By:	JK

CULVERT SIZING WORKSHEET (INLET CONTROL)- Tansley Loop

Step 1: Determine Q (cfs) by using Rational Equation or inputting Known Q

Enter Known Q ₂₅ (cfs):	194
------------------------------------	-----

Q value can be determined by using Hydrograph, Express, or Storm Sewers, etc...

Step 2: Q₂₅ culvert sizing with a minimum HW/D = 1.20 (Inlet Control)

Culvert Invert Up Elevation (ft): 348

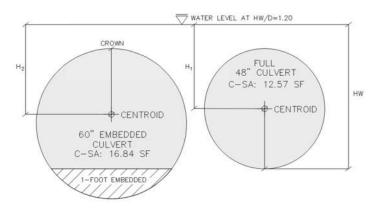
Nomenclature	Embedded?	Diamater (ft)	C-S A (sf)	Centroid Value (ft)
Culvert #1	yes	4.5	13.64	1.97
Culvert #2	yes	4.5	13.64	1.97

HW (ft):	5.40	Head h ₁ (ft):	2.87
		Head h ₂ (ft):	2.87

Culvert #1 Capacity Q ₁ (cfs):	111.26	$Q_1 = KeA(2gh_1)^{1/2}$	
Culvert #2 Capacity Q ₂ (cfs):	111.26	$Q_2 = KeA(2gh_2)^{1/2}$	
Total Capacity Q_T (cfs):	222.53	ADEQUATE QT=Q1+Q2	

Step 3: Q_{100} culvert sizing to not overtop roadway

Culvert invert (ft elev.):		348.00
Top elevation of grade above culvert (ft elev.):		362.00
Enter Known Q ₁₀₀ (cfs):		313
Vo coofficient	0.60	


Note: The Ke coefficient of 0.60 is standard for a head wall-beveled inlet

Total C-S A (sf) available:	27.28
Q ₁₀₀ Head, H (ft)	5.68 H=[(Q/KeA) ²]/2g
Headwater Depth, HW (ft):	7.93 HW=H+D/2
Headwater Elevation (ft)	355.93
Q ₁₀₀ Overtopping Roadway?	NO

Pipe Characteristics Table					
Pipe Diameter	Full Pipe		Embedded Pipe		
(ft)	C-S A (sf)	Centroid of C-S A (ft)	C-S A (sf)	Centroid to Crown Distance (ft)	
2	3.14	1.00	2.69	0.87	
2.5	4.91	1.25	4.21	1.09	
3	7.07	1.50	6.06	1.31	
3.5	9.62	1.75	8.25	1.53	
4	12.57	2.00	10.78	1.75	
4.5	15.90	2.25	13.64	1.97	
5	19.64	2.50	16.84	2.18	
6	28.27	3.00	25.18	2.70	

FIGURE BELOW IS FOR EXAMPLE PURPOSES ONLY (NOT PROJECT SPECIFIC)

PIPE CHARACTERISTIC FIGURE (MATCH CROWN IF POSSIBLE)

Project Name: Moody Development

Project Number:	R210002
Date:	2/3/2025
Calculated By:	RC
Checked Bv:	JK

CULVERT SIZING WORKSHEET (INLET CONTROL)- Mulberry

Step 1: Determine Q (cfs) by using Rational Equation or inputting Known Q

Enter Known Q₂₅ (cfs):

Q value can be determined by using Hydrograph, Express, or Storm Sewers, etc...

Step 2: Q_{25} culvert sizing with a minimum HW/D = 1.20 (Inlet Control)

Culvert Invert Up Elevation (ft): 348

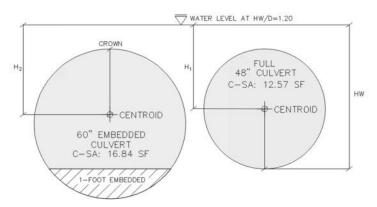
Nomenclature	Embedded?	Diamater (ft)	C-S A (sf)	Centroid Value (ft)
Culvert #1	yes	3	6.06	1.31
Culvert #2	n/a	0	0	0

HW (ft):	3.60	Head h_1 (ft):	1.91
		Head h ₂ (ft):	0.60

Culvert #1 Capacity Q ₁ (cfs):	40.33	$Q_1 = KeA(2gh_1)^{1/2}$	
Culvert #2 Capacity Q ₂ (cfs):	0.00	Q_2 =KeA(2gh ₂) ^{1/2}	2
Total Capacity Q_T (cfs):	40.33	ADEQUATE	$Q_T = Q_1 + Q_2$

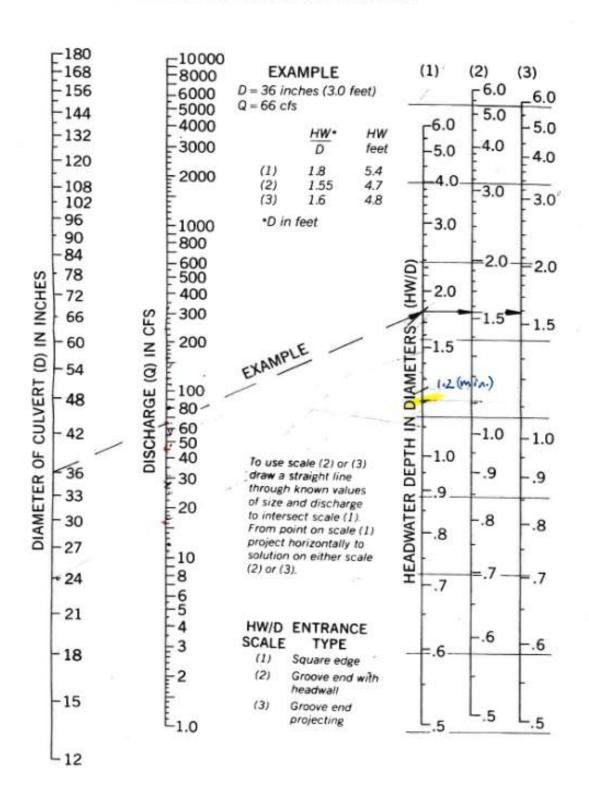
 $\textbf{Step 3:} \hspace{1cm} \textbf{Q}_{100} \hspace{1cm} \textbf{culvert sizing to not overtop roadway}$

Culvert invert /ft elev \		366.50
Culvert invert (ft elev.):		300.50
Top elevation of grade above culvert (ft elev.):		373.00
Enter Known Q ₁₀₀ (cfs):		48
Ke coefficient	0.60	


Note: The Ke coefficient of 0.60 is standard for a head wall-beveled inlet

Total C-S A (sf) available:	6.06
Q ₁₀₀ Head, H (ft)	2.71 H=[(Q/KeA) ²]/2g
Headwater Depth, HW (ft):	4.21 HW=H+D/2
Headwater Elevation (ft)	370.71
Q ₁₀₀ Overtopping Roadway?	NO

Pipe Characteristics Table					
Pipe Diameter	Full Pipe			Embedded Pipe	
(ft)	C-S A (sf)	Centroid of C-S A (ft)	C-S A (sf)	Centroid to Crown Distance (ft)	
2	3.14	1.00	2.69	0.87	
2.5	4.91	1.25	4.21	1.09	
3	7.07	1.50	6.06	1.31	
3.5	9.62	1.75	8.25	1.53	
4	12.57	2.00	10.78	1.75	
4.5	15.90	2.25	13.64	1.97	
5	19.64	2.50	16.84	2.18	
6	28.27	3.00	25.18	2.70	


FIGURE BELOW IS FOR EXAMPLE PURPOSES ONLY (NOT PROJECT SPECIFIC)

PIPE CHARACTERISTIC FIGURE (MATCH CROWN IF POSSIBLE)

FIGURE 33

HEADWATER DEPTH FOR CIRCULAR CONCRETE PIPE CULVERTS WITH INLET CONTROL

DATE: 1/27/2025
PROJECT: Moody
PROJECT# R210002

AREA: NCDOT CULVERT #1

Calculate the Travel Time and/or Time of Concentration with Overland (Sheet) Flow, Shallow Concentrated Flow, and Channel Flow. Based on Chapter 3 of the NRCS TR-55 Method.

Sheet flow (Applicable to Tc only) using Manning's Kinematic Solution

 $T_t = 0.007 * \frac{(nL)^{0.8}}{\left(P_2^{0.5} * s^{0.4}\right)}$

Suface description (table 3-1)

Manning's roughness coefficient, n (table 3-1)

Flow Length, L (Max. 300')*

Two-year 24-hour rainfall, P2

Land slope, s

Dense Grass
0.240

300 ft
300 ft
0.010 ft/ft

Travel Time, Tt 0.73 hr 43.61 min

*Once flow exceeds 300' it becomes shallow concentration flow (a maximum of 150' is typical)

Shallow concentrated flow using graphical method (see Figure 3-1)

$$T_t = \frac{L}{3600V}$$

Surface description (paved or unpaved)
Flow Length, L
Watercourse slope, s
Average velocity, V (Figure 3-1)
Unpaved
500 ft
0.015 ft/ft
2 ft/s

Travel Time, Tt 0.07 hr 4.17 min

Channel flow using Manning's Equation

$$T_t = \frac{L}{3600V}$$
 $V = \frac{1.49 * r^{\frac{2}{3}} * s^{\frac{1}{2}}}{n}$ $r = \frac{a}{p_w}$

Cross sectional flow area, a 7.00 sf
Wetted perimeter, pw 9.50 ft
Hydraulic Radius, r 0.74 ft
Channel slope, s 0.005 ft/ft
Manning's roughness coefficient, n 7.00 sf
Flow Length, L 590 ft
Velocity, V 7.81 ft/s

Travel Time, Tt 0.02 hr 1.26 min

Total Travel Time/Time of Concentration 0.82 hr 49.03 min

DATE: 1/27/2025
PROJECT: Moody
PROJECT# R210002

AREA: NCDOT CULVERT #2

Calculate the Travel Time and/or Time of Concentration with Overland (Sheet) Flow, Shallow Concentrated Flow, and Channel Flow. Based on Chapter 3 of the NRCS TR-55 Method.

Sheet flow (Applicable to Tc only) using Manning's Kinematic Solution

 $T_t = 0.007 * \frac{(nL)^{0.8}}{\left(P_2^{0.5} * s^{0.4}\right)}$

Suface description (table 3-1)

Manning's roughness coefficient, n (table 3-1)

Flow Length, L (Max. 300')*

Two-year 24-hour rainfall, P2

Land slope, s

Dense Grass
0.240

300 ft
300 ft
0.010 ft/ft

Travel Time, Tt 0.73 hr 43.61 min

*Once flow exceeds 300' it becomes shallow concentration flow (a maximum of 150' is typical)

Shallow concentrated flow using graphical method (see Figure 3-1)

$$T_t = \frac{L}{3600V}$$

Surface description (paved or unpaved)

Flow Length, L

Watercourse slope, s

Average velocity, V (Figure 3-1)

Unpaved

691 ft

0.015 ft/ft

2 ft/s

Travel Time, Tt 0.10 hr 5.76 min

Channel flow using Manning's Equation

$$T_t = \frac{L}{3600V}$$
 $V = \frac{1.49 * r^{\frac{2}{3}} * s^{\frac{1}{2}}}{n}$ $r = \frac{a}{p_w}$

Cross sectional flow area, a 7.00 sf
Wetted perimeter, pw 9.50 ft
Hydraulic Radius, r 0.74 ft
Channel slope, s 0.005 ft/ft
Manning's roughness coefficient, n 7.4 ft
Velocity, V 7.81 ft/s

Travel Time, Tt 0.03 hr 1.52 min

Total Travel Time/Time of Concentration 0.85 hr 50.89 min

DATE: 1/27/2025
PROJECT: Moody
PROJECT# R210002

AREA: OFFSITE BYPASS

Calculate the Travel Time and/or Time of Concentration with Overland (Sheet) Flow, Shallow Concentrated Flow, and Channel Flow. Based on Chapter 3 of the NRCS TR-55 Method.

Sheet flow (Applicable to Tc only) using Manning's Kinematic Solution

 $T_t = 0.007 * \frac{(nL)^{0.8}}{\left(P_2^{0.5} * s^{0.4}\right)}$

Suface description (table 3-1)

Manning's roughness coefficient, n (table 3-1)

Flow Length, L (Max. 300')*

Two-year 24-hour rainfall, P2

Land slope, s

DENSE GRASS

0.240

50 ft

50 ft

0.010 ft/ft

Travel Time, Tt 0.17 hr 10.40 min

*Once flow exceeds 300' it becomes shallow concentration flow (a maximum of 150' is typical)

Shallow concentrated flow using graphical method (see Figure 3-1)

$$T_t = \frac{L}{3600V}$$

Surface description (paved or unpaved)

Flow Length, L

Watercourse slope, s

Average velocity, V (Figure 3-1)

Unpaved

684 ft

0.005 ft/ft

1.2 ft/s

Travel Time, Tt 0.16 hr 9.50 min

Channel flow using Manning's Equation

$$T_t = \frac{L}{3600V}$$
 $V = \frac{1.49 * r^{\frac{2}{3}} * s^{\frac{1}{2}}}{n}$ $r = \frac{a}{p_w}$

Cross sectional flow area, a 7.00 sf
Wetted perimeter, pw 9.50 ft
Hydraulic Radius, r 0.74 ft
Channel slope, s 0.005 ft/ft
Manning's roughness coefficient, n 0.011
Flow Length, L 0 ft
Velocity, V 7.81 ft/s

Travel Time, Tt 0.00 hr 0.00 min

Total Travel Time/Time of Concentration 0.33 hr 19.90 min

DATE: 1/27/2025
PROJECT: Moody
PROJECT# R210002

AREA: ONSITE BYPASS

Calculate the Travel Time and/or Time of Concentration with Overland (Sheet) Flow, Shallow Concentrated Flow, and Channel Flow. Based on Chapter 3 of the NRCS TR-55 Method.

Sheet flow (Applicable to Tc only) using Manning's Kinematic Solution

 $T_t = 0.007 * \frac{(nL)^{0.8}}{\left(P_2^{0.5} * s^{0.4}\right)}$

Suface description (table 3-1)

Manning's roughness coefficient, n (table 3-1)

Flow Length, L (Max. 300')*

Two-year 24-hour rainfall, P2

Land slope, s

N/A

0.400

ft

3.46 in

0.010 ft/ft

Travel Time, Tt 0.00 hr 0.00 min

*Once flow exceeds 300' it becomes shallow concentration flow (a maximum of 150' is typical)

Shallow concentrated flow using graphical method (see Figure 3-1)

$$T_t = \frac{L}{3600V}$$

Surface description (paved or unpaved)

Flow Length, L

Watercourse slope, s

Average velocity, V (Figure 3-1)

Unpaved

1110 ft

0.013 ft/ft

1.6 ft/s

Travel Time, Tt 0.19 hr 11.56 min

Channel flow using Manning's Equation

$$T_t = \frac{L}{3600V}$$
 $V = \frac{1.49 * r^{\frac{2}{3}} * s^{\frac{1}{2}}}{n}$ $r = \frac{a}{p_w}$

Cross sectional flow area, a 7.00 sf
Wetted perimeter, pw 9.50 ft
Hydraulic Radius, r 0.74 ft
Channel slope, s 0.005 ft/ft
Manning's roughness coefficient, n 0.011
Flow Length, L 0 ft
Velocity, V 7.81 ft/s

Travel Time, Tt 0.00 hr 0.00 min

Total Travel Time/Time of Concentration 0.19 hr 11.56 min

DATE: 1/27/2025
PROJECT: Moody
PROJECT# R210002

AREA: MULBERRY CULVERT

Calculate the Travel Time and/or Time of Concentration with Overland (Sheet) Flow, Shallow Concentrated Flow, and Channel Flow. Based on Chapter 3 of the NRCS TR-55 Method.

Sheet flow (Applicable to Tc only) using Manning's Kinematic Solution

 $T_t = 0.007 * \frac{(nL)^{0.8}}{\left(P_2^{0.5} * S^{0.4}\right)}$

Suface description (table 3-1)

Manning's roughness coefficient, n (table 3-1)

Flow Length, L (Max. 300')*

Two-year 24-hour rainfall, P2

Land slope, s

Dense Grass
0.240

175 ft

3.46 in
0.010 ft/ft

Travel Time, Tt 0.47 hr 28.33 min

*Once flow exceeds 300' it becomes shallow concentration flow (a maximum of 150' is typical)

Shallow concentrated flow using graphical method (see Figure 3-1)

 $T_t = \frac{L}{3600V}$

Surface description (paved or unpaved)
Flow Length, L
Watercourse slope, s
Average velocity, V (Figure 3-1)
Unpaved
1000 ft
0.025 ft/ft
2.6 ft/s

Travel Time, Tt 0.11 hr 6.41 min

Channel flow using Manning's Equation

$$T_t = \frac{L}{3600V}$$
 $V = \frac{1.49 * r^{\frac{2}{3}} * s^{\frac{1}{2}}}{n}$ $r = \frac{a}{p_w}$

Cross sectional flow area, a 7.00 sf
Wetted perimeter, pw 9.50 ft
Hydraulic Radius, r 0.74 ft
Channel slope, s 0.005 ft/ft
Manning's roughness coefficient, n 0.011
Flow Length, L 0 ft
Velocity, V 7.81 ft/s

Travel Time, Tt 0.00 hr 0.00 min

Total Travel Time/Time of Concentration 0.58 hr 34.74 min

Figure 3-1 Average velocities for estimating travel time for shallow concentrated flow

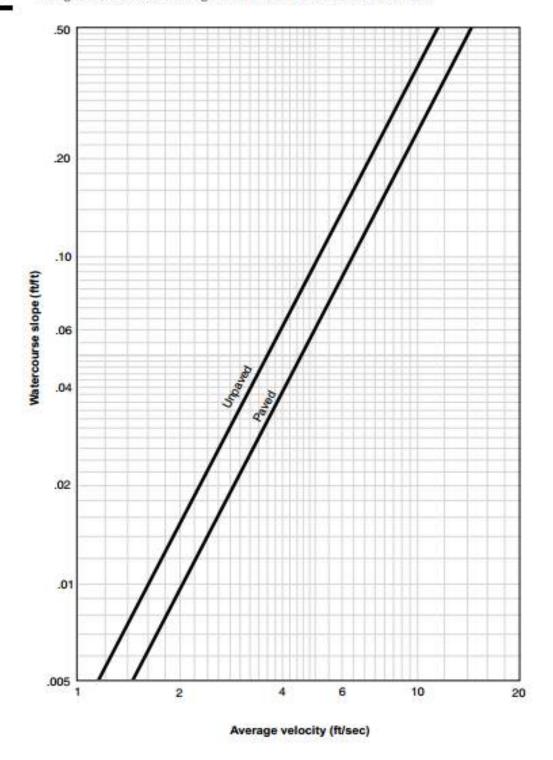


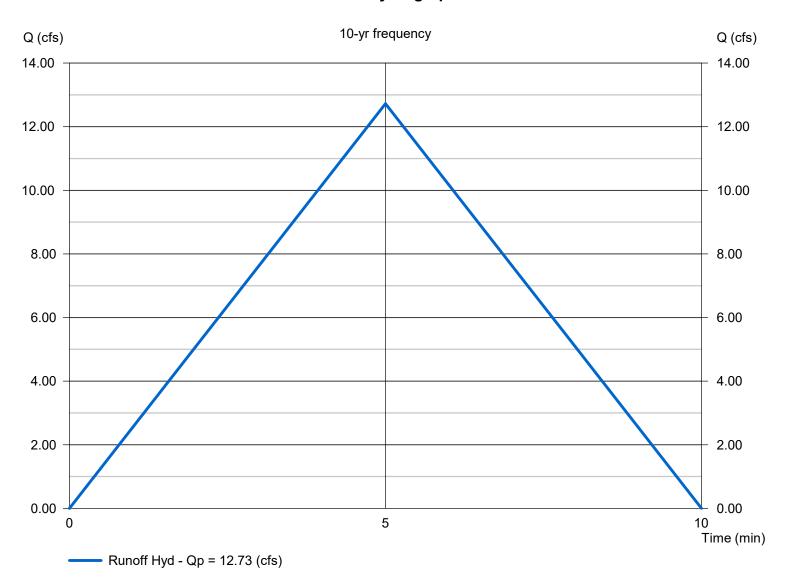
Table 3-1 Roughness coefficients (Manning's n) for sheet flow

Surface description	ην
Smooth surfaces (concrete, asphalt,	
gravel, or bare soil)	0.013
Fallow (no residue)	0.05
Cultivated soils:	
Residue cover ≤20%	0.06
Residue cover >20%	0.17
Grass:	
Short grass prairie	0.15
Dense grasses ¥	0.24
Bermudagrass	0.41
Range (natural)	0.13
Woods¥	
Light underbrush	0.40
Dense underbrush	0.80

The n values are a composite of information compiled by Engman (1986).

Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures.

When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow.


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

PDD #1 - Moody

Hydrograph type Peak discharge (cfs) = 12.73= Rational Storm frequency (yrs) Time interval (min) = 10 = 1 Drainage area (ac) = 2.880Runoff coeff. (C) = 0.6Rainfall Inten (in/hr) Tc by User (min) = 7.364= 5 **IDF** Curve Rec limb factor = 20241113 Moody IDF.IDF = 1.00

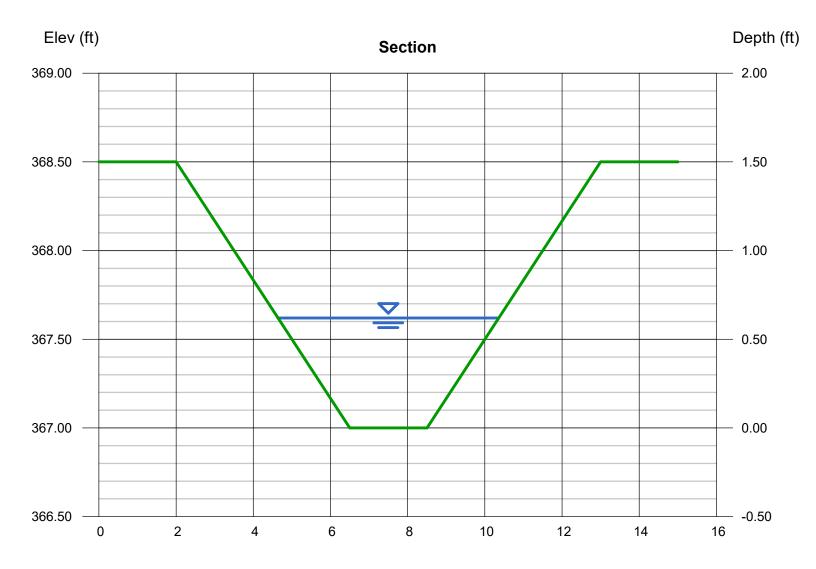
Hydrograph Volume = 3,818 (cuft); 0.088 (acft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

PDD #1 - Moody

Trapezoidal


Bottom Width (ft) = 2.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 1.50 Invert Elev (ft) = 367.00 Slope (%) = 2.71 N-Value = 0.025

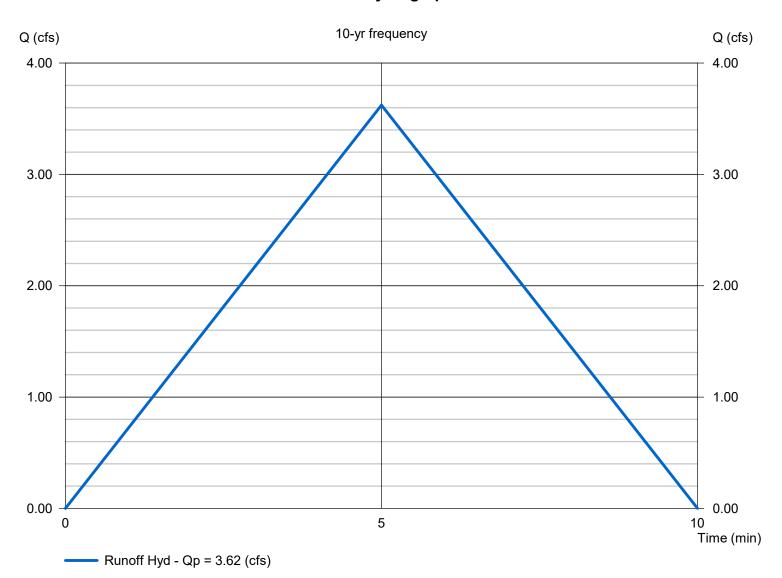
Calculations

Compute by: Known Q Known Q (cfs) = 12.73

Highlighted

Depth (ft) = 0.62Q (cfs) = 12.73Area (sqft) = 2.39Velocity (ft/s) = 5.32Wetted Perim (ft) = 5.92Crit Depth, Yc (ft) = 0.76Top Width (ft) = 5.72EGL (ft) = 1.06

Reach (ft)


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

PDD #2 - Moody

Hydrograph type = Rational Peak discharge (cfs) = 3.623Storm frequency (yrs) Time interval (min) = 10 = 1 Drainage area (ac) = 0.820Runoff coeff. (C) = 0.6Rainfall Inten (in/hr) Tc by User (min) = 7.364= 5 **IDF** Curve Rec limb factor = 20241113 Moody IDF.IDF = 1.00

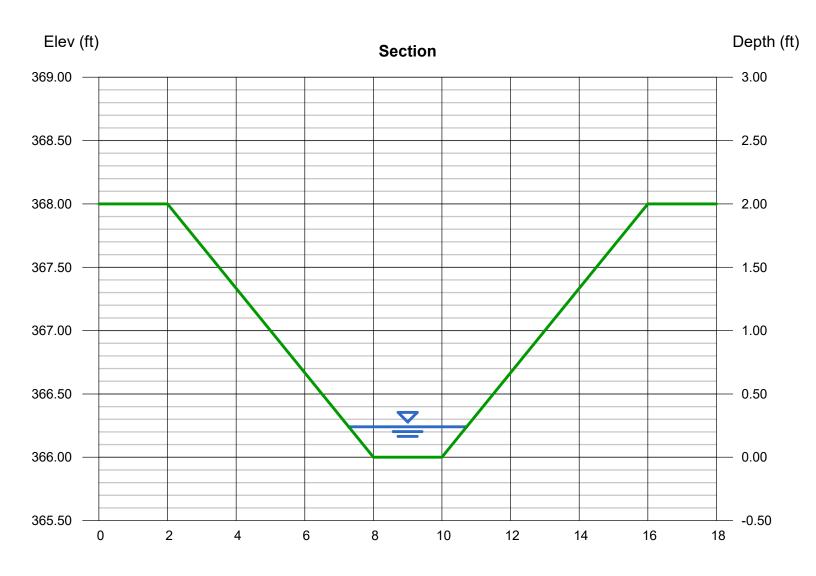
Hydrograph Volume = 1,087 (cuft); 0.025 (acft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

PDD #2 - Moody

pezo	


Bottom Width (ft) = 2.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 2.00 Invert Elev (ft) = 366.00 Slope (%) = 8.84 N-Value = 0.025

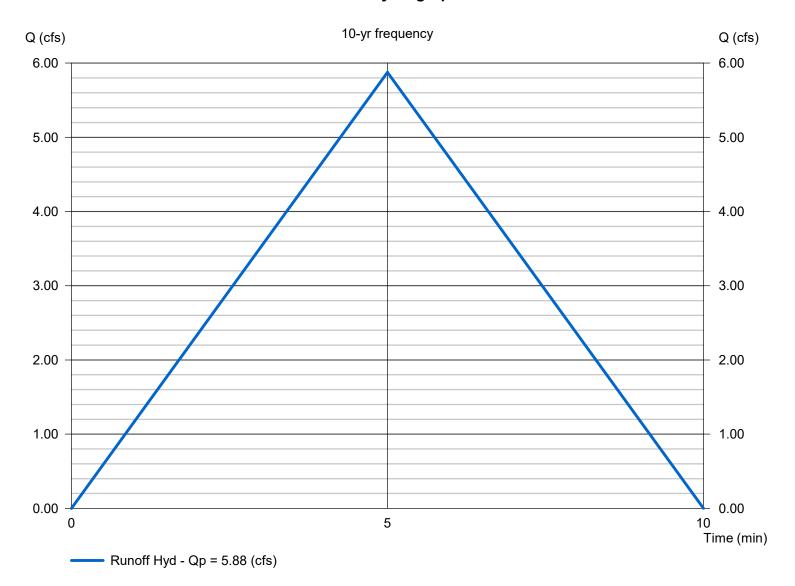
Calculations

Compute by: Known Q Known Q (cfs) = 3.62

Highlighted

= 0.24Depth (ft) Q (cfs) = 3.620Area (sqft) = 0.65Velocity (ft/s) = 5.55 Wetted Perim (ft) = 3.52Crit Depth, Yc (ft) = 0.39Top Width (ft) = 3.44EGL (ft) = 0.72

Reach (ft)


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

PDD #3 - Moody

Hydrograph type Peak discharge (cfs) = 5.877= Rational Storm frequency (yrs) Time interval (min) = 10 = 1 Drainage area (ac) = 1.330Runoff coeff. (C) = 0.6Rainfall Inten (in/hr) Tc by User (min) = 7.364= 5 **IDF** Curve Rec limb factor = 20241113 Moody IDF.IDF = 1.00

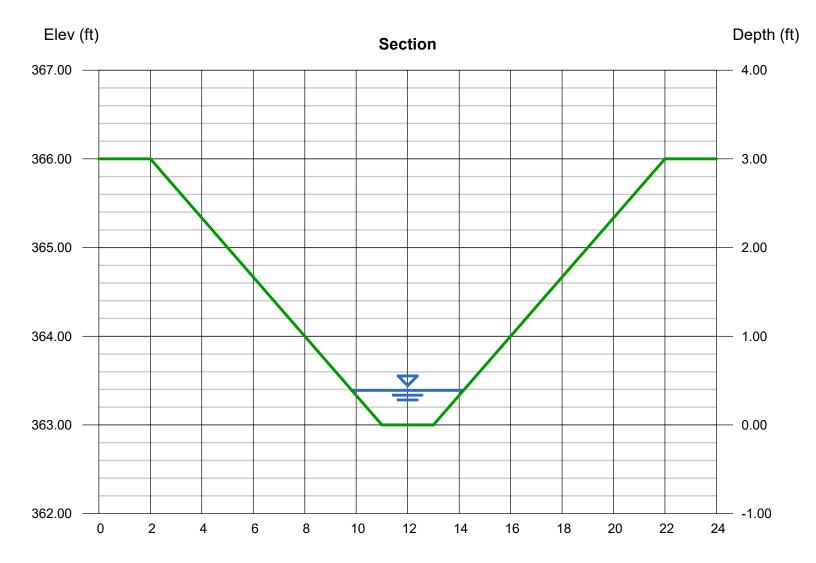
Hydrograph Volume = 1,763 (cuft); 0.040 (acft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

PDD #3 - Moody

Trapezoi	dal
----------	-----


Bottom Width (ft) = 2.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 3.00 Invert Elev (ft) = 363.00 Slope (%) = 3.67 N-Value = 0.025

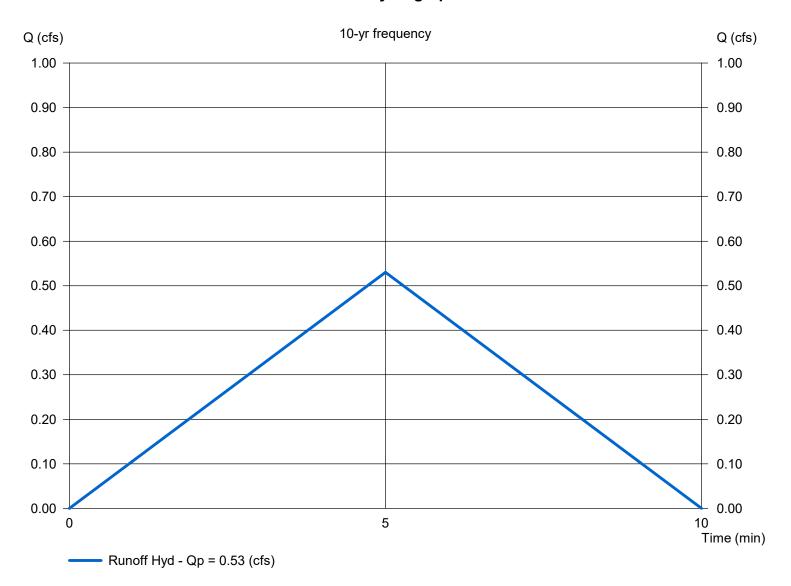
Calculations

Compute by: Known Q Known Q (cfs) = 5.88

Highlighted

= 0.39Depth (ft) Q (cfs) = 5.880Area (sqft) = 1.24Velocity (ft/s) = 4.76Wetted Perim (ft) = 4.47Crit Depth, Yc (ft) = 0.51Top Width (ft) = 4.34EGL (ft) = 0.74

Reach (ft)


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

PDD #4 - Moody

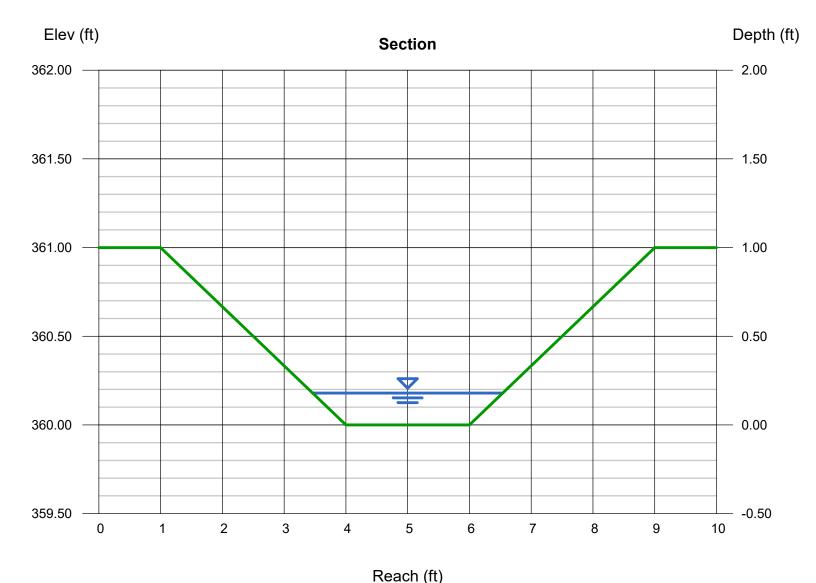
Hydrograph type Peak discharge (cfs) = Rational = 0.530Storm frequency (yrs) Time interval (min) = 10 = 1 Drainage area (ac) = 0.120Runoff coeff. (C) = 0.6Rainfall Inten (in/hr) Tc by User (min) = 7.364= 5 **IDF** Curve Rec limb factor = 1.00 = 20241113 Moody IDF.IDF

Hydrograph Volume = 159 (cuft); 0.004 (acft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

PDD #4 - Moody

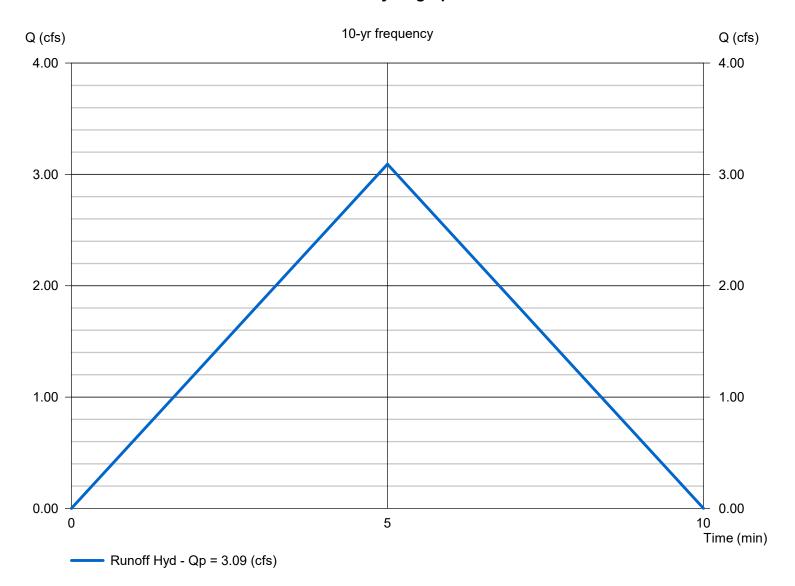

Bottom Width (ft) = 2.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 1.00 Invert Elev (ft) = 360.00 Slope (%) = 0.56 N-Value = 0.025

Calculations

Compute by: Known Q Known Q (cfs) = 0.53

Highlighted

Depth (ft) = 0.18Q (cfs) = 0.530Area (sqft) = 0.46Velocity (ft/s) = 1.16 Wetted Perim (ft) = 3.14Crit Depth, Yc (ft) = 0.13Top Width (ft) = 3.08EGL (ft) = 0.20


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

PDD #5 - Moody

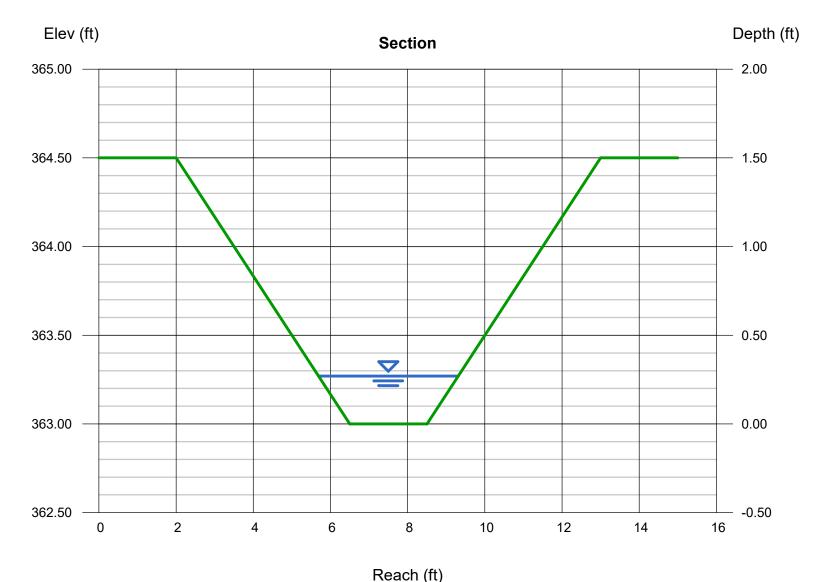
Hydrograph type = Rational Peak discharge (cfs) = 3.093Storm frequency (yrs) Time interval (min) = 10 = 1 Drainage area (ac) = 0.700Runoff coeff. (C) = 0.6Rainfall Inten (in/hr) = 7.364Tc by User (min) = 5 **IDF** Curve Rec limb factor = 20241113 Moody IDF.IDF = 1.00

Hydrograph Volume = 928 (cuft); 0.021 (acft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

PDD #5 - Moody

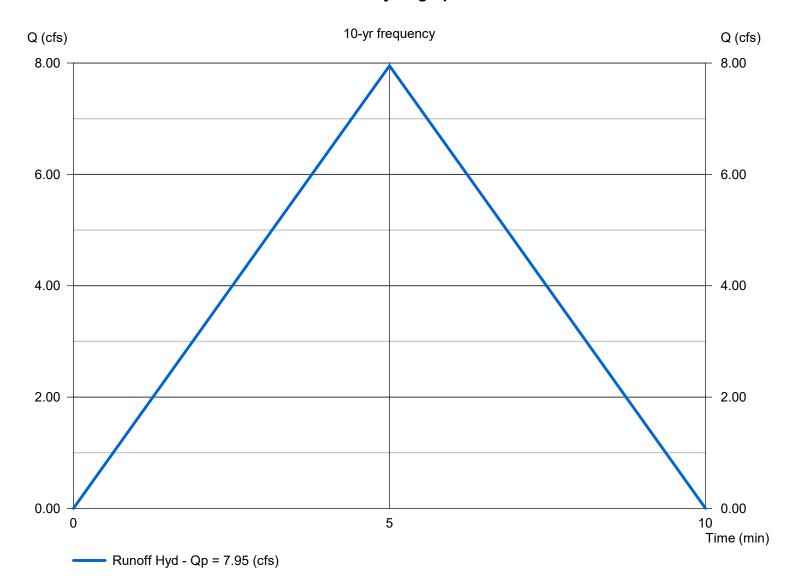

Bottom Width (ft) = 2.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 1.50 Invert Elev (ft) = 363.00 Slope (%) = 4.29 N-Value = 0.025

Calculations

Compute by: Known Q Known Q (cfs) = 3.09

Highlighted

Depth (ft) = 0.27Q (cfs) = 3.090Area (sqft) = 0.76Velocity (ft/s) = 4.07 Wetted Perim (ft) = 3.71Crit Depth, Yc (ft) = 0.36Top Width (ft) = 3.62EGL (ft) = 0.53


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

PDD #6 - Moody

Hydrograph type = Rational Peak discharge (cfs) = 7.953Storm frequency (yrs) Time interval (min) = 10 = 1 Drainage area (ac) = 1.800Runoff coeff. (C) = 0.6Rainfall Inten (in/hr) = 7.364Tc by User (min) = 5 **IDF** Curve Rec limb factor = 20241113 Moody IDF.IDF = 1.00

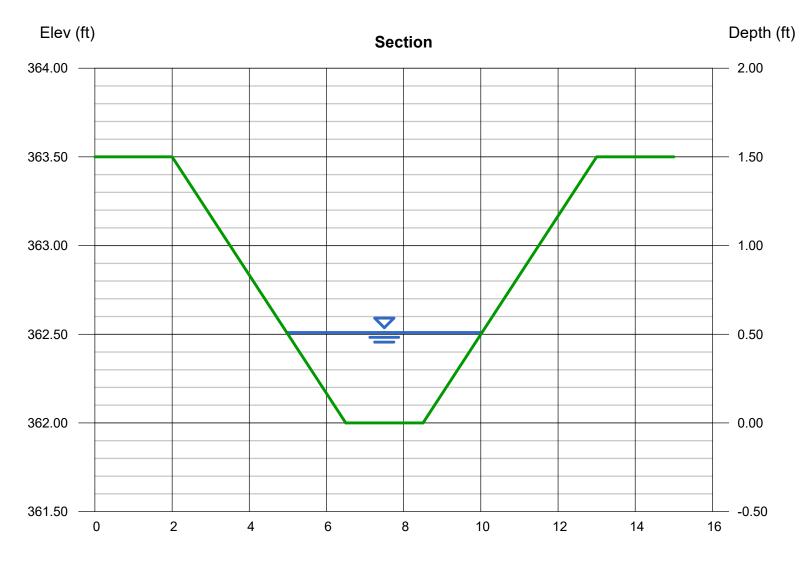
Hydrograph Volume = 2,386 (cuft); 0.055 (acft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

PDD #6 - Moody

Trapezoidal	l
-------------	---


Bottom Width (ft) = 2.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 1.50 Invert Elev (ft) = 362.00 Slope (%) = 2.42 N-Value = 0.025

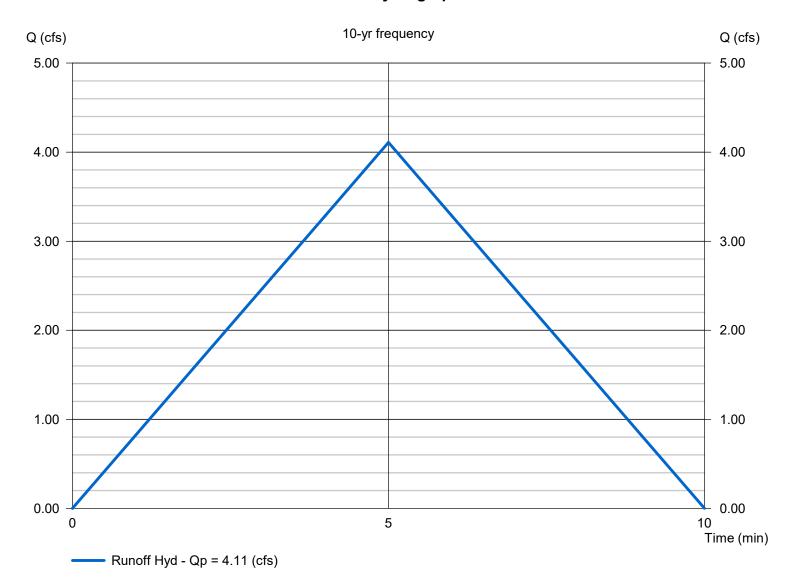
Calculations

Compute by: Known Q Known Q (cfs) = 7.95

Highlighted

Depth (ft) = 0.51Q (cfs) = 7.950Area (sqft) = 1.80Velocity (ft/s) = 4.42 Wetted Perim (ft) = 5.23Crit Depth, Yc (ft) = 0.59Top Width (ft) = 5.06EGL (ft) = 0.81

Reach (ft)


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

PDD #7 - Moody

Hydrograph type = Rational Peak discharge (cfs) = 4.109Storm frequency (yrs) Time interval (min) = 10 = 1 Drainage area (ac) = 0.930Runoff coeff. (C) = 0.6Rainfall Inten (in/hr) Tc by User (min) = 7.364= 5 **IDF** Curve Rec limb factor = 20241113 Moody IDF.IDF = 1.00

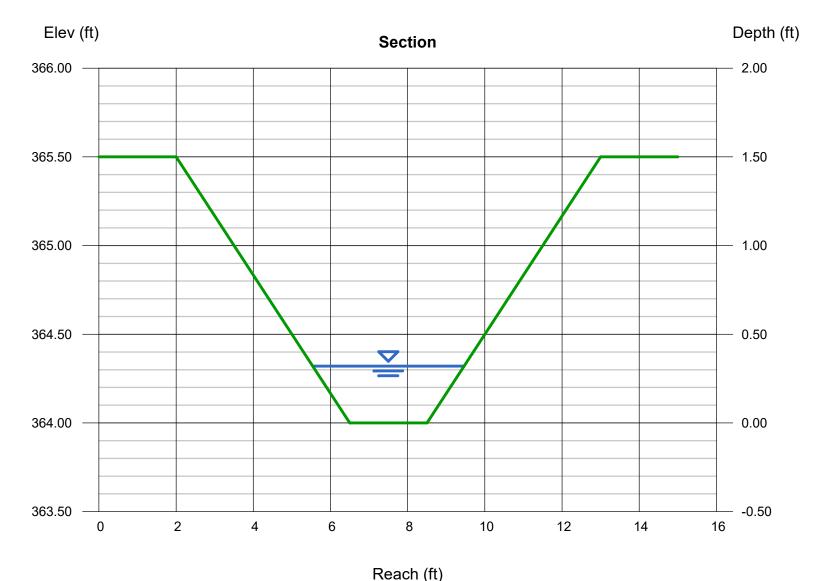
Hydrograph Volume = 1,233 (cuft); 0.028 (acft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

PDD #7 - Moody

r	a	р	е	Z	0	Ì	d	a	

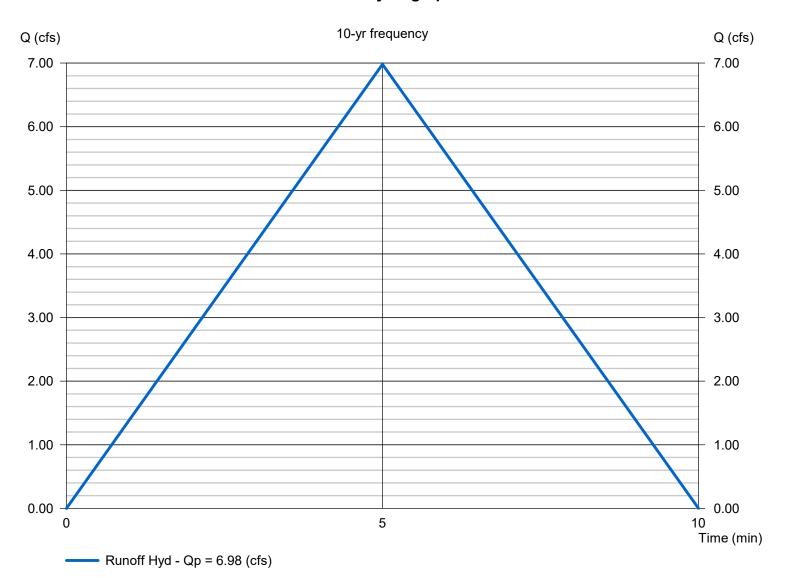

Bottom Width (ft) = 2.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 1.50 Invert Elev (ft) = 364.00 Slope (%) = 3.99 N-Value = 0.025

Calculations

Compute by: Known Q Known Q (cfs) = 4.11

Highlighted

Depth (ft) = 0.32Q (cfs) = 4.110 Area (sqft) = 0.95Velocity (ft/s) = 4.34Wetted Perim (ft) = 4.02Crit Depth, Yc (ft) = 0.42Top Width (ft) = 3.92EGL (ft) = 0.61


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

PDD #8 - Moody

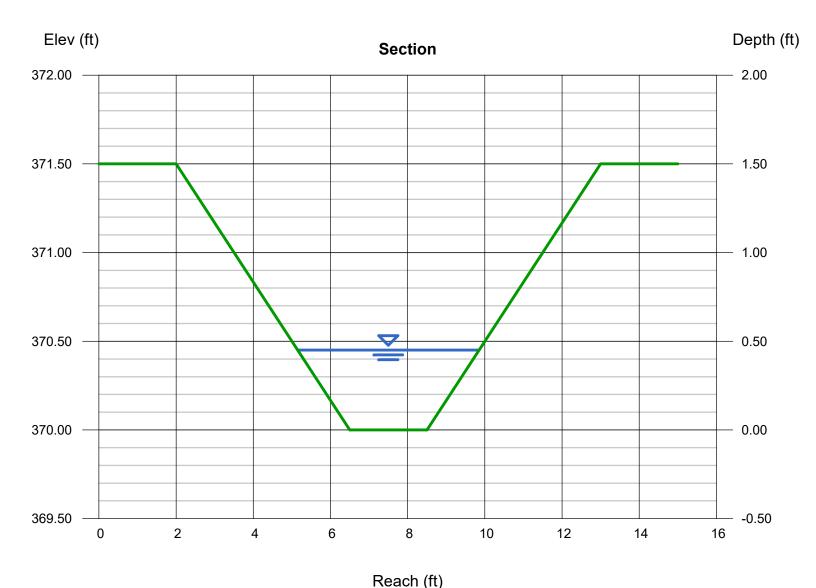
Hydrograph type Peak discharge (cfs) = 6.981= Rational Storm frequency (yrs) Time interval (min) = 10 = 1 Drainage area (ac) = 1.580Runoff coeff. (C) = 0.6Rainfall Inten (in/hr) Tc by User (min) = 7.364= 5 **IDF** Curve Rec limb factor = 1.00 = 20241113 Moody IDF.IDF

Hydrograph Volume = 2,094 (cuft); 0.048 (acft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

PDD #8 - Moody

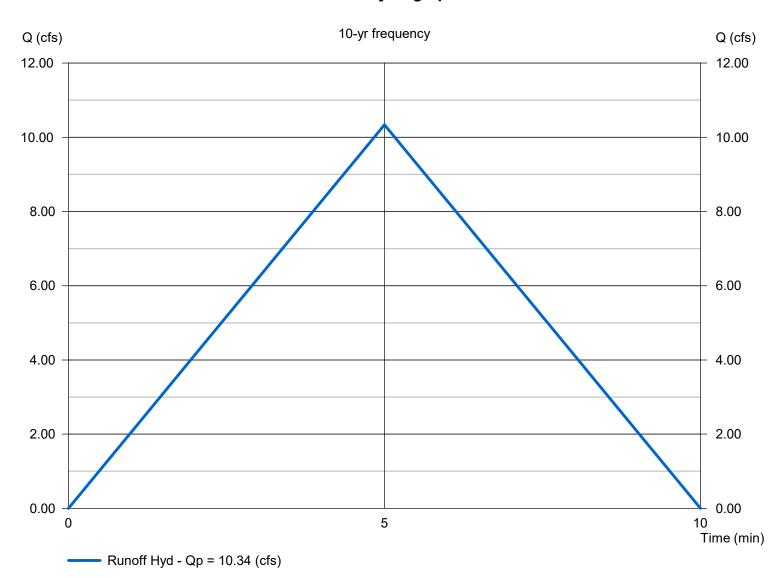

Bottom Width (ft) = 2.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 1.50 Invert Elev (ft) = 370.00 Slope (%) = 2.95 N-Value = 0.025

Calculations

Compute by: Known Q Known Q (cfs) = 6.98

Highlighted

= 0.45Depth (ft) Q (cfs) = 6.980Area (sqft) = 1.51 Velocity (ft/s) = 4.63 Wetted Perim (ft) = 4.85Crit Depth, Yc (ft) = 0.55Top Width (ft) = 4.70EGL (ft) = 0.78

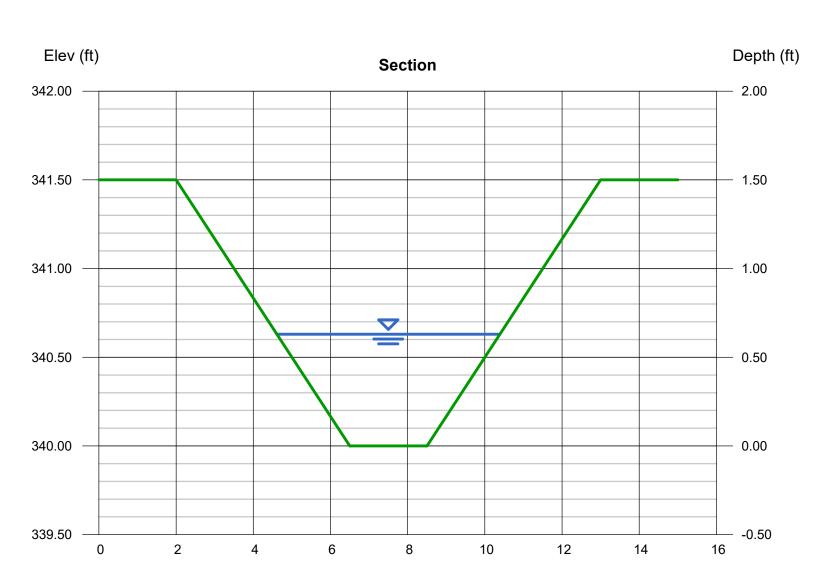

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

PDD #9 - Moody

Hydrograph type = Rational Peak discharge (cfs) = 10.34Storm frequency (yrs) Time interval (min) = 10 = 1 Drainage area (ac) = 2.340Runoff coeff. (C) = 0.6Rainfall Inten (in/hr) Tc by User (min) = 7.364= 5 **IDF** Curve Rec limb factor = 20241113 Moody IDF.IDF = 1.00

Hydrograph Volume = 3,102 (cuft); 0.071 (acft)


Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Feb 3 2025

PDD #9 - Moody

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.63
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 17.32
Total Depth (ft)	= 1.50	Area (sqft)	= 2.45
Invert Elev (ft)	= 340.00	Velocity (ft/s)	= 7.07
Slope (%)	= 4.83	Wetted Perim (ft)	= 5.98
N-Value	= 0.025	Crit Depth, Yc (ft)	= 0.88
		Top Width (ft)	= 5.78
Calculations		EGL (ft)	= 1.41
Compute by:	Known Q		
Known Q (cfs)	= 17.32 10.34 + 6.98 (P	DD#8 + PDD #9) = 17.32	

Reach (ft)

Determine maximum area to on-grade inlet using input factors as shown below.

Inlet No. Allowable Spread=Pvm't + Gutter Width: 7.5 ft

Road:

Compute "C" Factor: One Half R/W Width: 25 One Half B/B Width: 13.5 S/W Width 5

Paved Area "C": 0.95 Grass Area 0.2 0.70 0.05

Mulberry Tree Drive (27' B-B)

Gutter Width= Total Allow. Spread = 7.50 ft. Manning's n = 0.015 Weir C = 3.33

> Inlet Type Inlet Types 1 NCDOT Std. 840.03

Composite Rational C = 0.76 I (2yr.) = 4.00 iph

0.02 Varies Manual Input Roadway X-slope =

Project:

Moody

								Max Fl	ow for Lim	ited Spre	ad							1
C.B.	Long.	ROAD	E. O. P.	Weir	C&G Flow	C&G Flow	C&G	Road	Road	Total	Total	MAX Q FOR	On-Grade	Max Drainage	tual Drainage Ar	al Drainage	Check	1
NUMBER	Slope	X-SLOPE	Depth	Depth	Area 1	Area 2	WP	Flow Area	WP	Flow A	WP	SPREAD, CFS	Spread	Area (S.F.)	Area (S.F.)	Area (ACRE)]
CB 107	0.030	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.91	7.50	25436	4637	0.11	GOOD	A .
CB 105	0.030	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.91	7.50	25436	5793	0.13	GOOD	
CB 106	0.030	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.91	7.50	50872	32403	0.74	GOOD	*dbl
CB 104	0.030	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.91	7.50	25436	6542	0.15	GOOD	
CB 103	0.030	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.91	7.50	25436	12632	0.29	GOOD	
CB 305	0.030	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.91	7.50	25436	16988	0.39	GOOD	
CB 306	0.030	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.91	7.50	25436	5227	0.12	GOOD	
CB 304	0.015	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.35	7.50	17986	2178	0.05	GOOD	
CB 303	0.015	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.35	7.50	17986	3049	0.07	GOOD	
CB 302	0.005	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	0.78	7.50	20769	5663	0.13	GOOD	
CB 301	0.005	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	0.78	7.50	10384	5227	0.12	GOOD	
CB 330	0.010	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.10	7.50	14686	1742	0.04	GOOD	
CB 332	0.010	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.10	7.50	14686	7405	0.17	GOOD	
CB 333	0.010	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.10	7.50	14686	2178	0.05	GOOD	
CB 334	0.010	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.10	7.50	14686	11326	0.26	GOOD	
CB 412	0.010	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.10	7.50	14686	4792	0.11	GOOD	
CB 413	0.010	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.10	7.50	14686	9583	0.22	GOOD	

Date:

12/5/24

Standard Curb and Gutter Profile (see diagram above)

0.04

0.19

Gutter Length (ft) Gutter Slope (ft/ft)

Ponding Rise on Curb (ft)

E. O. P. - Edge of Pavement

WP - Wetted Perimeter (ft.)

A - Area (s. f.)

C&G - Curb and gutter

V - Velocity (fps)

Note: Program uses Manning's formula for open channel flow.

Tansley Crest Loop (27' B-B)

Determine maximum area to on-grade inlet using input factors as shown below.

2.00 ft

Inlet No. 1 Allowable Spread=Pvm't + Gutter Width: 7.5 ft

Road:

Compute "C" Factor:

One Half R/W Width: 25 One Half B/B Width: 13.5 S/W Width 5

Paved Area "C": 0.95 Grass Area 0.2

0.70 0.05

Total Allow. Spread = 7.50 ft. Manning's n = 0.015 Weir C = 3.33

Inlet Type 1 Inlet Types 1 NCDOT Std. 840.03

Composite Rational C = 0.76 I (2yr.) = 4.00 iph

Roadway X-slope = 0.02 Varies Manual Input

Moody

Project:

Gutter Width=

								Max Flov	w for Limit	ed Spread							
C.B.	Long.	ROAD	E. O. P.	Weir	C&G Flow	C&G Flow	C&G	Road	Road	Total	Total	MAX Q FOR	On-Grade	Max Drainage	tual Drainage Ar	al Drainage	Check
NUMBER	Slope	X-SLOPE	Depth	Depth	Area 1	Area 2	WP	Flow Area	WP	Flow A	WP	SPREAD, CFS	Spread	Area (S.F.)	Area (S.F.)	Area (ACRE)	
CB 421	0.030	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.91	7.50	25436	3485	0.08	GOOD
CB 422	0.030	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.91	7.50	25436	3920	0.09	GOOD
CB 401	0.012	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.21	7.50	16087	3049	0.07	GOOD
CB 402	0.012	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.21	7.50	16087	436	0.01	GOOD
CB 407	0.012	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.21	7.50	16087	1742	0.04	GOOD
CB 408	0.012	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.21	7.50	16087	2614	0.06	GOOD
CB 408A/408B	0.012	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.21	7.50	16087	3485	0.08	GOOD
CB 409	0.020	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.56	7.50	20769	3049	0.07	GOOD
CB 409A	0.020	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.56	7.50	20769	3049	0.07	GOOD
CB 410	0.036	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	2.09	7.50	55728	2614	0.06	GOOD
CB 410A	0.036	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	2.09	7.50	27864	6970	0.16	GOOD
CB 411	0.027	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.81	7.50	24131	871	0.02	GOOD
CB 505	0.010	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.10	7.50	14686	1264	0.03	GOOD
CB 506	0.010	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.10	7.50	14686	4356	0.10	GOOD
CB 510	0.042	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	2.26	7.50	30097	3049	0.07	GOOD
CB 511	0.042	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	2.26	7.50	30097	3049	0.07	GOOD
CB 512	0.010	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.10	7.50	14686	1879	0.04	GOOD
CB 513	0.010	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.10	7.50	14686	2370	0.05	GOOD
CB 516	0.030	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.91	7.50	25436	5227	0.12	GOOD
CB 517	0.030	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.91	7.50	25436	4792	0.11	GOOD

12/5/24

Standard Curb and Gutter Profile (see diagram above)

0.04

0.19

Gutter Length (ft)

Gutter Slope (ft/ft)

Ponding Rise on Curb (ft)

Date:

E. O. P. - Edge of Pavement C&G - Curb and gutter A - Area (s. f.) V - Velocity (fps) Note: Program uses Manning's formula for open channel flow.

WP - Wetted Perimeter (ft.)

Determine maximum area to on-grade inlet using input factors as shown below.

Inlet No. 1 Allowable Spread=Pvm't + Gutter Width: 7.5 ft

Compute "C" Factor: One Half R/W Width: 25 One Half B/B Width: 13.5 S/W Width 5

Paved Area "C": 0.95 Grass Area 0.2 0.70 0.05

Vintage Vinery Court (27' B-B)

Gutter Width= 2.00 ft.

Total Allow. Spread = 7.50 ft. Manning's n = 0.015 Weir C = 3.33

Inlet Type 1 Inlet Types 1 NCDOT Std. 840.03

Composite Rational C = 0.76 I (2yr.) = 4.00 iph

Roadway X-slope = 0.02 Varies Manual Input

Project:

Moody

								Max Fl	ow for Lim	ited Sprea	ad						
C.B.	Long.	ROAD	E. O. P.	Weir	C&G Flow	C&G Flow	C&G	Road	Road	Total	Total	MAX Q FOR	On-Grade	Max Drainage	tual Drainage A	ral Drainage	Check
NUMBER	Slope	X-SLOPE	Depth	Depth	Area 1	Area 2	WP	Flow Area	WP	Flow A	WP	SPREAD, CFS	Spread	Area (S.F.)	Area (S.F.)	Area (ACRE)	
CB 307	0.050	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	2.47	7.50	32838	4356	0.10	GOOD
CB 308	0.050	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	2.47	7.50	32838	3485	0.08	GOOD
CB 309	0.050	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	2.47	7.50	32838	2178	0.05	GOOD
CB 311	0.040	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	2.21	7.50	29371	2614	0.06	GOOD
CB 312	0.010	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.10	7.50	14686	3049	0.07	GOOD
CB 313	0.010	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.10	7.50	14686	10454	0.24	GOOD
CB 315	0.010	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.10	7.50	14686	2178	0.05	GOOD
CB 317	0.010	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.10	7.50	14686	2178	0.05	GOOD
CB 319	0.010	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.10	7.50	14686	12981	0.30	GOOD
CB 323	0.028	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.85	7.50	24574	19166	0.44	GOOD
CB 325	0.005	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	0.78	7.50	20769	6970	0.16	GOOD
CB 514	0.039	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	2.18	7.50	29002	6098	0.14	GOOD
CB 515	0.039	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	2.18	7.50	29002	6098	0.14	GOOD
CB 507	0.039	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	2.18	7.50	58004	28750	0.66	GOOD
CB 508	0.039	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	2.18	7.50	29002	8276	0.19	GOOD
CB 504	0.047	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	2.39	7.50	31838	1742	0.04	GOOD
CB 503	0.025	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.74	7.50	23220	11326	0.26	GOOD
CB 502	0.025	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.74	7.50	23220	12197	0.28	GOOD

Date:

12/5/24

Standard Curb and Gutter Profile (see diagram above)

0.04

0.19

Gutter Length (ft)

Gutter Slope (ft/ft)

Ponding Rise on Curb (ft)

E. O. P. - Edge of Pavement C&G - Curb and gutter

A - Area (s. f.)

V - Velocity (fps)

WP - Wetted Perimeter (ft.)

Note: Program uses Manning's formula for open channel flow.

 $Z: \label{thm:conditions} In the absolute of the property of the conditions of the$

Determine maximum area to on-grade inlet using input factors as shown below.

Inlet No. Allowable Spread=Pvm't + Gutter Width: 1

Road:

One Half R/W Width: 25 One Half B/B Width: Compute "C" Factor: 13.5 S/W Width Paved Area "C": 0.95 Grass Area 0.2

Manning's n =

0.70 0.05 Gutter Width=

> Inlet Type 1 Inlet Types NCDOT Std. 840.03

0.015

Cranapple Lane (27' B-B)

Composite Rational C = 0.76 I (2yr.) = 4.00 iph

Roadway X-slope = 0.02 Varies Manual Input

Moody

Project:

Total Allow. Spread =

								Max Fl	ow for Lim	ited Sprea	ad						
C.B.	Long.	ROAD	E. O. P.	Weir	C&G Flow	C&G Flow	C&G	Road	Road	Total	Total	MAX Q FOR	On-Grade	Max Drainage	tual Drainage A	al Drainage	Check
NUMBER	Slope	X-SLOPE	Depth	Depth	Area 1	Area 2	WP	Flow Area	WP	Flow A	WP	SPREAD, CFS	Spread	Area (S.F.)	Area (S.F.)	Area (ACRE)	
CB 406	0.018	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.48	7.50	19703	13939	0.32	GOOD
CB 405	0.035	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	2.06	7.50	27474	10890	0.25	GOOD
CB 404	0.035	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	2.06	7.50	27474	9148	0.21	GOOD
CB 403	0.035	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	2.06	7.50	27474	10890	0.25	GOOD

3.33

Weir C =

Date:

12/5/24

Standard Curb and Gutter Profile (see diagram above)

0.04

0.19

Gutter Length (ft)

Gutter Slope (ft/ft)

Ponding Rise on Curb (ft)

E. O. P. - Edge of Pavement

A - Area (s. f.) C&G - Curb and gutter V - Velocity (fps)

WP - Wetted Perimeter (ft.)

Note: Program uses Manning's formula for open channel flow.

Determine maximum area to on-grade inlet using input factors as shown below.

Inlet No. Allowable Spread=Pvm't + Gutter Width:

Road:

One Half R/W Width: 25 One Half B/B Width: Compute "C" Factor: 13.5 S/W Width

Paved Area "C": 0.95 Grass Area 0.2 0.05

Wineberry Bush Lane (27' B-B)

Manning's n = 0.015 3.33 Weir C =

Inlet Type 1 Inlet Types NCDOT Std. 840.03

Composite Rational C = 0.76 I (2yr.) = 4.00 iph

Roadway X-slope = 0.02 Varies Manual Input

Moody

Project:

Gutter Width=

Total Allow. Spread =

								Max Fl	ow for Lim	ited Sprea	nd						
C.B.	Long.	ROAD	E. O. P.	Weir	C&G Flow	C&G Flow	C&G	Road	Road	Total	Total	MAX Q FOR	On-Grade	Max Drainage	tual Drainage Ar	al Drainage	Check
NUMBER	Slope	X-SLOPE	Depth	Depth	Area 1	Area 2	WP	Flow Area	WP	Flow A	WP	SPREAD, CFS	Spread	Area (S.F.)	Area (S.F.)	Area (ACRE)	
CB 101	0.025	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.74	7.50	23220	3049	0.07	GOOD
CB 102	0.025	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.74	7.50	23220	8712	0.20	GOOD
CB 121	0.020	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.56	7.50	20769	16553	0.38	GOOD
CB 122	0.020	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.56	7.50	20769	13068	0.30	GOOD
CB 123	0.015	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.35	7.50	17986	2178	0.05	GOOD

Date:

12/5/24

Standard Curb and Gutter Profile (see diagram above)

0.04

0.19

Gutter Length (ft)

Gutter Slope (ft/ft)

Ponding Rise on Curb (ft)

E. O. P. - Edge of Pavement C&G - Curb and gutter

A - Area (s. f.) V - Velocity (fps) Note: Program uses Manning's formula for open channel flow.

WP - Wetted Perimeter (ft.)

Determine maximum area to on-grade inlet using input factors as shown below.

Inlet No. 1 Allowable Spread=Pvm't + Gutter Width: 7.5 ft

Road:

Compute "C" Factor:

One Half R/W Width:

Paved Area "C":

One Half B/B Width:

Grass Area

0.2

0.95 Grass Area 0.2 0.70 0.05

2.00 ft. 7.50 ft. Manning's n = 0.015 Weir C = 3.33

Clover Cottage Lane (27' B-B)

Inlet Type 1 Inlet Types 1 NCDOT Std. 840.03

Composite Rational C = 0.76 I (2yr.) = 4.00 iph

Roadway X-slope = 0.02 Varies Manual Input

								Max Flo	ow for Lim	ited Sprea	ad							
C.B.	Long.	ROAD	E. O. P.	Weir	C&G Flow	C&G Flow	C&G	Road	Road	Total	Total	MAX Q FOR	On-Grade	Max Drainage	tual Drainage Ar	al Drainage	Check	1
NUMBER	Slope	X-SLOPE	Depth	Depth	Area 1	Area 2	WP	Flow Area	WP	Flow A	WP	SPREAD, CFS	Spread	Area (S.F.)	Area (S.F.)	Area (ACRE)		Ī
CB 111	0.010	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.10	7.50	29371	25700	0.59	GOOD	*db
CB 114	0.010	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.10	7.50	14686	3485	0.08	GOOD	Ī
CB 115	0.010	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.10	7.50	29371	24394	0.56	GOOD	*db
CB 116	0.010	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.10	7.50	29371	20038	0.46	GOOD	*db

Note: Program uses Manning's formula for open channel flow.

Date:

12/5/24

CAG MEAZ

Standard Curb and Gutter Profile (see diagram above)

0.04

0.19

Gutter Length (ft)

Gutter Slope (ft/ft)

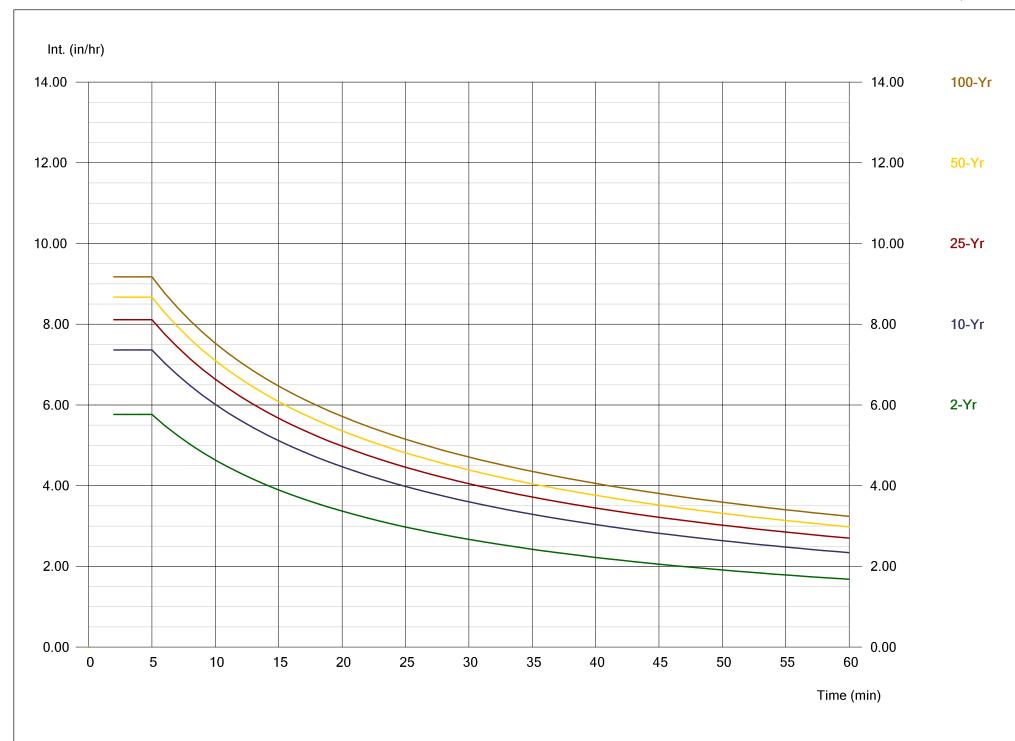
Ponding Rise on Curb (ft)

E. O. P. - Edge of Pavement

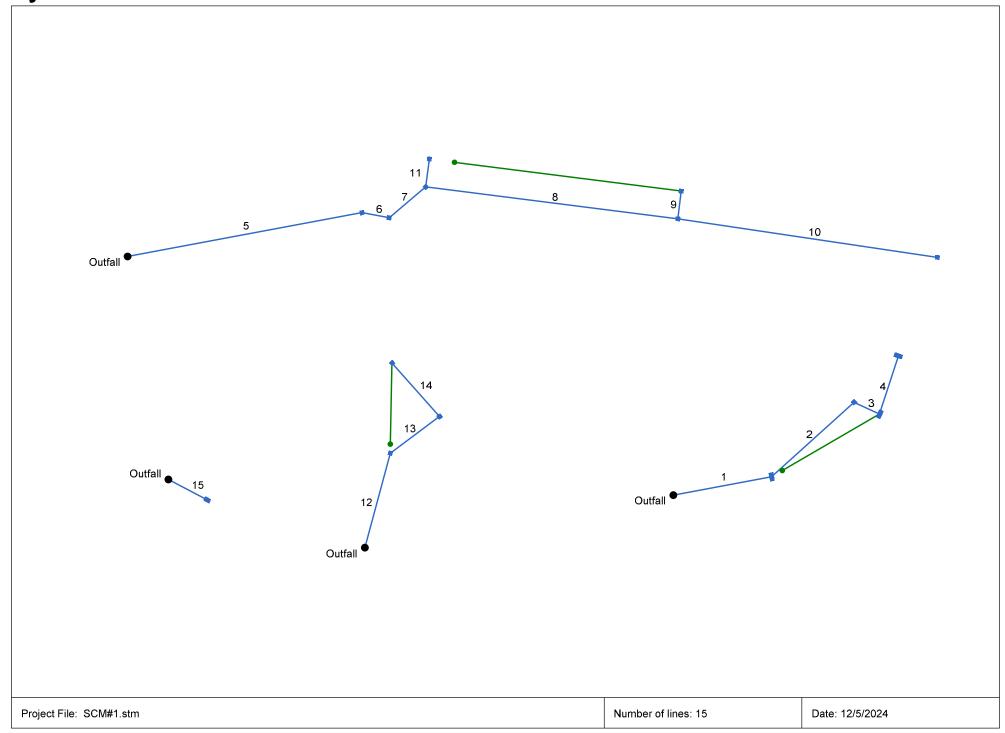
A - Area (s. f.)

C&G - Curb and gutter

Project:


Gutter Width=

Total Allow. Spread =


Moody

V - Velocity (fps)

WP - Wetted Perimeter (ft.)

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan 10-Year SCM#1 Report

Storm Sewer Inventory Report

ine		Aligni	ment			Flow	Data					Physical	Data				Line ID
0.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	96.027	-10.617	Comb	0.00	0.59	0.57	10.0	380.50	0.58	381.06	18	Cir	0.013	0.87	386.00	Pipe - (97)
2	1	107.000	-31.568	Comb	0.00	0.08	0.57	10.0	381.63	0.77	382.45	15	Cir	0.013	1.40	387.03	Pipe - (95)
3	2	26.999	67.120	Comb	0.00	0.56	0.57	10.0	382.55	0.67	382.73	15	Cir	0.013	1.50	387.04	Pipe - (94)
4	3	59.003	-96.968	Comb	0.00	0.46	0.57	10.0	382.83	0.75	383.27	15	Cir	0.013	1.00	387.89	Pipe - (93)
5	End	229.120	-10.656	Comb	0.00	0.07	0.57	10.0	363.00	2.20	368.04	18	Cir	0.013	0.63	373.98	Pipe - (86)
6	5	27.000	21.423	Comb	0.00	0.20	0.57	10.0	368.14	0.52	368.28	18	Cir	0.013	1.22	373.87	Pipe - (85)
7	6	45.912	-51.157	Comb	0.00	0.29	0.57	10.0	368.38	3.48	369.98	18	Cir	0.013	1.62	375.04	Pipe - (84)
8	7	244.371	47.632	Comb	0.00	0.13	0.57	10.0	370.08	2.96	377.31	15	Cir	0.013	1.50	382.57	Pipe - (83)
9	8	27.044	-90.017	Comb	0.00	0.74	0.57	10.0	378.23	0.63	378.40	15	Cir	0.013	1.00	382.57	Pipe - (88)
10	8	252.428	1.235	Comb	0.00	0.11	0.57	10.0	377.42	2.97	384.92	15	Cir	0.013	1.00	390.04	Pipe - (82)
11	7	27.000	-42.459	Comb	0.00	0.15	0.57	10.0	370.18	0.52	370.32	15	Cir	0.013	1.00	375.04	Pipe - (87)
12	End	94.321	-74.896	Comb	0.00	0.38	0.57	10.0	368.50	0.56	369.03	15	Cir	0.013	1.00	374.00	Pipe - (92)
13	12	59.044	38.083	Comb	0.00	0.30	0.57	10.0	369.13	1.00	369.72	15	Cir	0.013	1.50	374.04	Pipe - (91)
14	13	68.947	-94.675	Comb	0.00	0.05	0.57	10.0	369.82	1.00	370.51	15	Cir	0.013	1.00	375.01	Pipe - (90)
15	End	42.000	27.855	DrGrt	0.00	2.88	0.57	10.0	363.50	0.50	363.71	24	Cir	0.013	1.00	366.50	Pipe - (89)
roject l	File: SCN	<i>I</i> l#1.stm										Number	of lines: 15			Date: 1	2/5/2024

Structure Report

Project File: SCM#1.stm

Struct	Structure ID	Junction	Rim		Structure			Line Ou	t		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1	CB 111	Combination	386.00	Rect	4.00	8.00	18	Cir	381.06	15	Cir	381.63
2	CB 114	Combination	387.03	Rect	4.00	4.00	15	Cir	382.45	15	Cir	382.55
3	CB 115	Combination	387.04	Rect	4.00	8.00	15	Cir	382.73	15	Cir	382.83
4	CB 116	Combination	387.89	Rect	4.00	8.00	15	Cir	383.27			
5	CB 101	Combination	373.98	Rect	4.00	4.00	18	Cir	368.04	18	Cir	368.14
6	CB 102	Combination	373.87	Rect	4.00	4.00	18	Cir	368.28	18	Cir	368.38
7	CB 103	Combination	375.04	Rect	4.00	4.00	18	Cir	369.98	15 15	Cir Cir	370.08 370.18
8	CB 105	Combination	382.57	Rect	4.00	4.00	15	Cir	377.31	15 15	Cir Cir	378.23 377.42
9	CB 106	Combination	382.57	Rect	4.00	4.00	15	Cir	378.40			
10	CB 107	Combination	390.04	Rect	4.00	4.00	15	Cir	384.92			
11	CB 104	Combination	375.04	Rect	4.00	4.00	15	Cir	370.32			
12	CB 121	Combination	374.00	Rect	4.00	4.00	15	Cir	369.03	15	Cir	369.13
13	CB 122	Combination	374.04	Rect	4.00	4.00	15	Cir	369.72	15	Cir	369.82
14	CB 123	Combination	375.01	Rect	4.00	4.00	15	Cir	370.51			
15	DI 126	DropGrate	366.50	Rect	6.00	4.00	24	Cir	363.71			

Number of Structures: 15 Run Date: 12/5/2024

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	Pipe - (97)	5.63	18	Cir	96.027	380.50	381.06	0.583	382.00	382.22	0.20	382.42	End	Combination
2	Pipe - (95)	3.71	15	Cir	107.000	381.63	382.45	0.766	382.42	383.23	n/a	383.23 j	1	Combination
3	Pipe - (94)	3.45	15	Cir	26.999	382.55	382.73	0.667	383.29	383.48	n/a	383.48	2	Combination
4	Pipe - (93)	1.58	15	Cir	59.003	382.83	383.27	0.746	383.48	383.77	n/a	383.77 j	3	Combination
5	Pipe - (86)	5.06	18	Cir	229.120	363.00	368.04	2.200	364.50	368.91	n/a	368.91 j	End	Combination
6	Pipe - (85)	4.87	18	Cir	27.000	368.14	368.28	0.518	369.02	369.15	0.39	369.55	5	Combination
7	Pipe - (84)	4.29	18	Cir	45.912	368.38	369.98	3.485	369.55	370.77	n/a	370.77 j	6	Combination
8	Pipe - (83)	3.05	15	Cir	244.371	370.08	377.31	2.959	370.77	378.01	0.43	378.01	7	Combination
9	Pipe - (88)	2.54	15	Cir	27.044	378.23	378.40	0.629	378.85	379.04	n/a	379.04	8	Combination
10	Pipe - (82)	0.38	15	Cir	252.428	377.42	384.92	2.971	378.01	385.16	n/a	385.16 j	8	Combination
11	Pipe - (87)	0.51	15	Cir	27.000	370.18	370.32	0.519	370.77	370.78	0.02	370.80	7	Combination
12	Pipe - (92)	2.39	15	Cir	94.321	368.50	369.03	0.562	369.75	369.86	0.12	369.98	End	Combination
13	Pipe - (91)	1.16	15	Cir	59.044	369.13	369.72	0.999	369.98	370.14	n/a	370.14 j	12	Combination
14	Pipe - (90)	0.17	15	Cir	68.947	369.82	370.51	1.001	370.14	370.67	n/a	370.67 j	13	Combination
15	Pipe - (89)	9.87	24	Cir	42.000	363.50	363.71	0.500	365.50	365.56	0.16	365.73	End	DropGrate

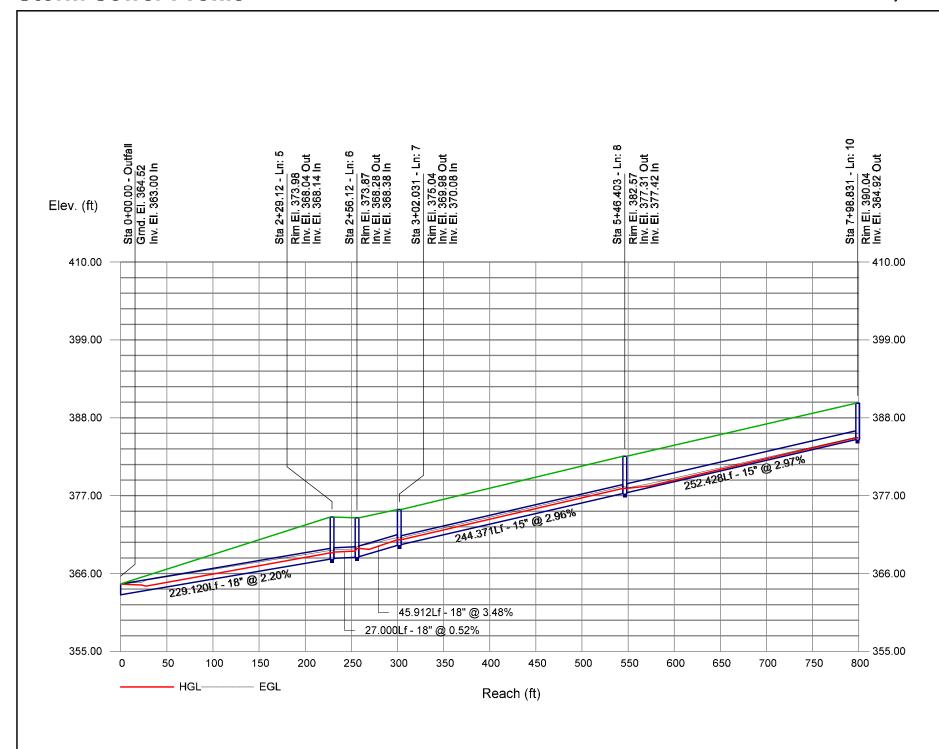
Project File: SCM#1.stm Number of lines: 15 Run Date: 12/5/2024

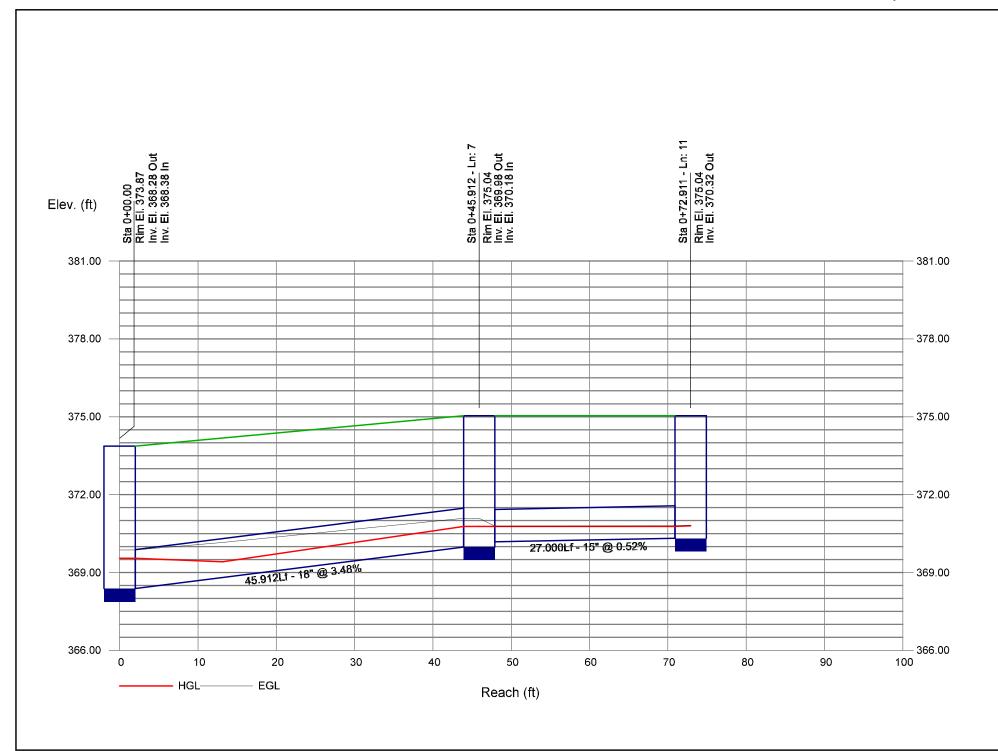
NOTES: Return period = 10 Yrs.; j - Line contains hyd. jump.

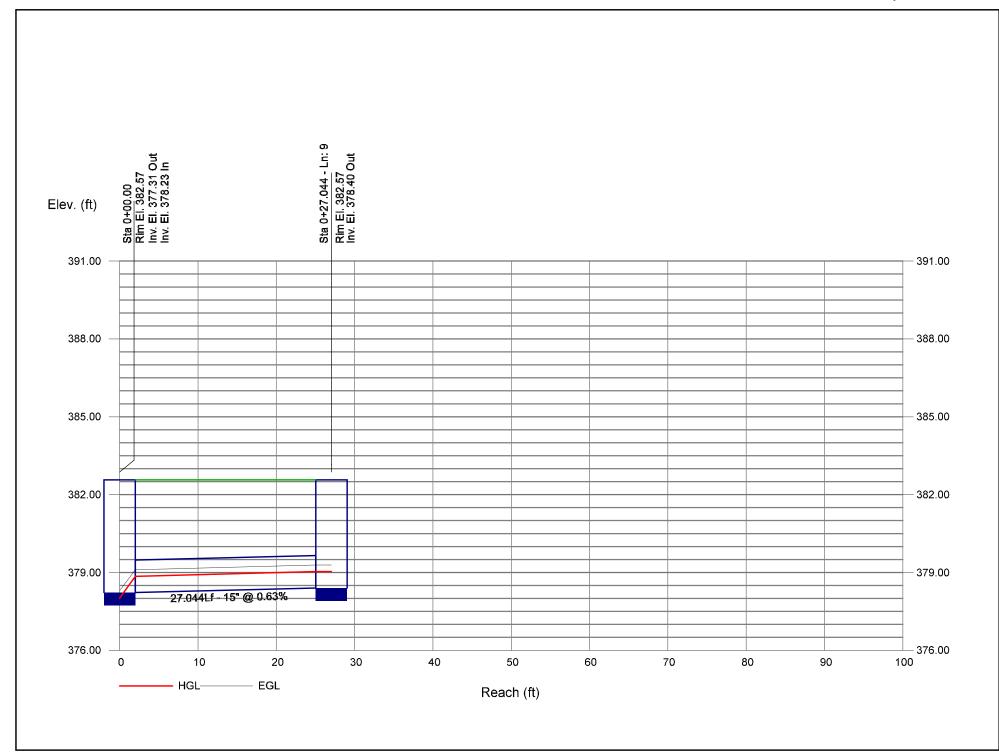
Inlet Report

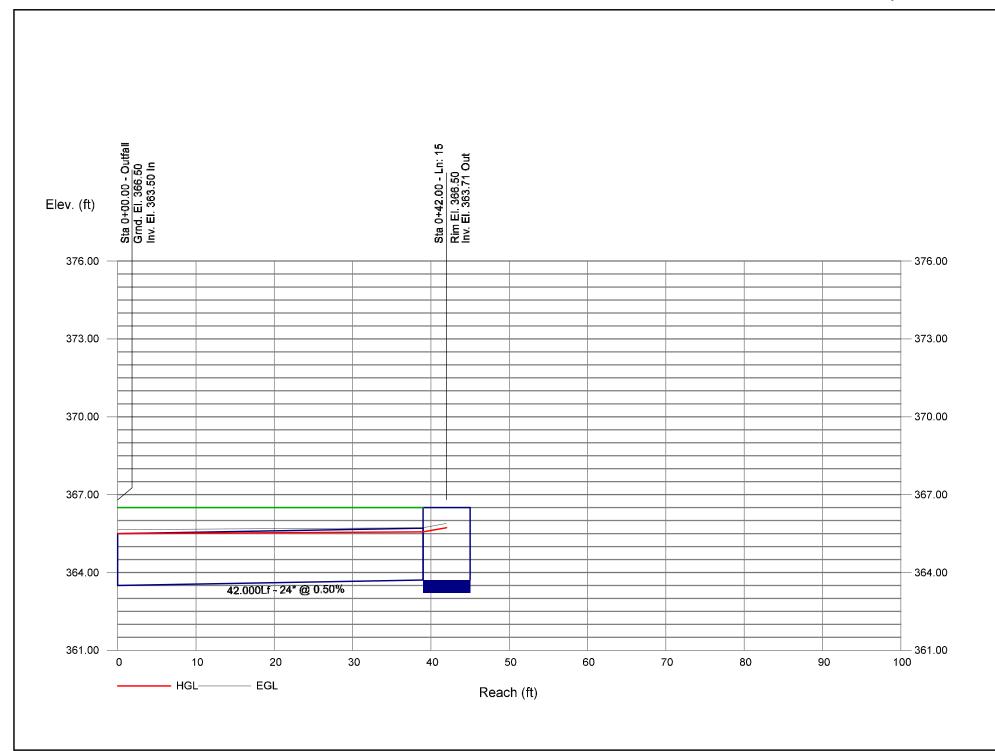
Line	Inlet ID	Q =	Q	Q	Q	Junc	Ht L Area L W So							G	utter					Inlet		Вур
No		CIA (cfs)	carry (cfs)	capt (cfs)	Byp (cfs)	Туре	Ht (in)	L (ft)		L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	Line No
1	CB 111	2.02	0.87	2.89	0.00	Comb	6.0	3.00	7.50	3.00	5.00	Sag	2.00	0.040	0.020	0.013	0.22	8.89	0.38	8.89	2.0	Off
2	CB 114	0.27	0.00	0.27	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.11	3.28	0.19	0.70	2.0	1
3	CB 115	1.92	0.46	1.51	0.86	Comb	6.0	1.50	0.00	3.00	5.00	0.010	2.00	0.040	0.020	0.013	0.22	8.87	0.32	5.79	2.0	1
4	CB 116	1.58	0.00	1.12	0.46	Comb	6.0	1.50	0.00	3.00	5.00	0.010	2.00	0.040	0.020	0.013	0.19	7.49	0.29	4.30	2.0	3
5	CB 101	0.24	0.00	0.24	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.025	2.00	0.040	0.020	0.013	0.09	2.27	0.17	0.00	2.0	Off
6	CB 102	0.69	0.15	0.84	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.10	2.87	0.26	2.87	2.0	Off
7	CB 103	0.99	0.01	0.86	0.15	Comb	6.0	1.50	0.00	3.00	2.50	0.030	2.00	0.040	0.020	0.013	0.14	4.83	0.24	1.73	2.0	6
8	CB 105	0.45	0.01	0.44	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.030	2.00	0.040	0.020	0.013	0.10	3.19	0.19	0.70	2.0	7
9	CB 106	2.54	0.00	1.71	0.82	Comb	6.0	1.50	0.00	3.00	2.50	0.030	2.00	0.040	0.020	0.013	0.19	7.26	0.29	4.38	2.0	11
10	CB 107	0.38	0.00	0.37	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.030	2.00	0.040	0.020	0.013	0.10	2.87	0.19	0.51	2.0	8
11	CB 104	0.51	0.82	1.07	0.27	Comb	6.0	1.50	0.00	3.00	2.50	0.030	2.00	0.040	0.020	0.013	0.15	5.50	0.25	2.31	2.0	Off
12	CB 121	1.30	0.22	1.52	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.12	3.79	0.28	3.79	2.0	Off
13	CB 122	1.03	0.00	0.81	0.22	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.16	6.24	0.26	2.90	2.0	12
14	CB 123	0.17	0.00	0.17	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.09	2.46	0.18	0.24	2.0	12
15	DI 126	9.87	0.00	9.87	0.00	DrGrt	0.0	0.00	9.00	3.00	5.00	Sag	6.00	0.020	0.020	0.013	0.35	40.82	0.35	40.82	0.0	Off

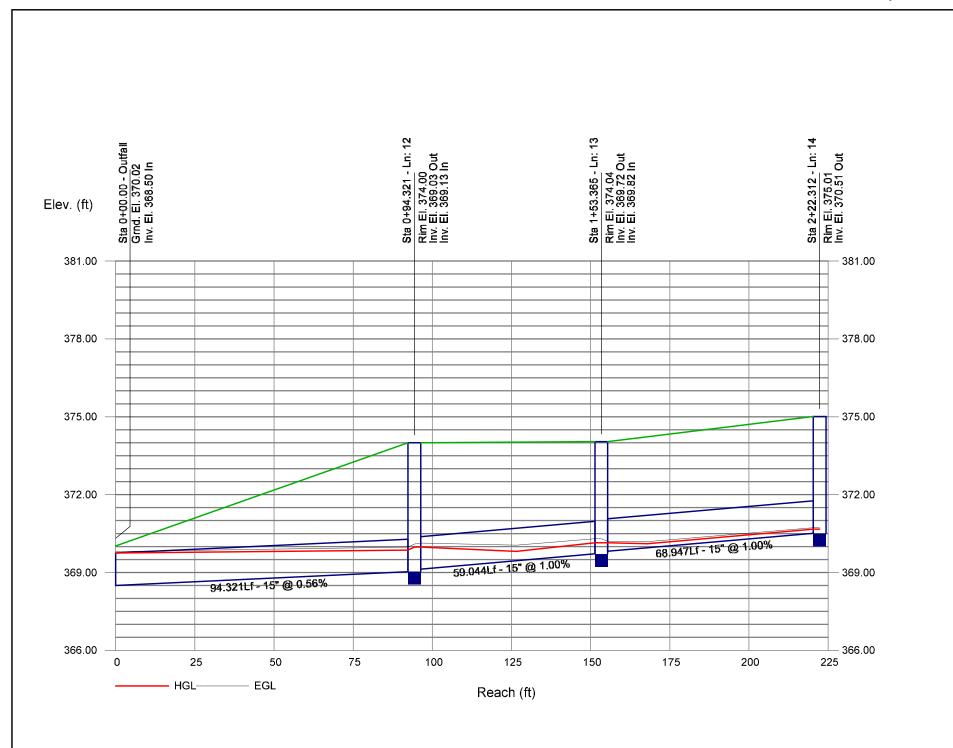
Project File: SCM#1.stm Number of lines: 15 Run Date: 12/5/2024

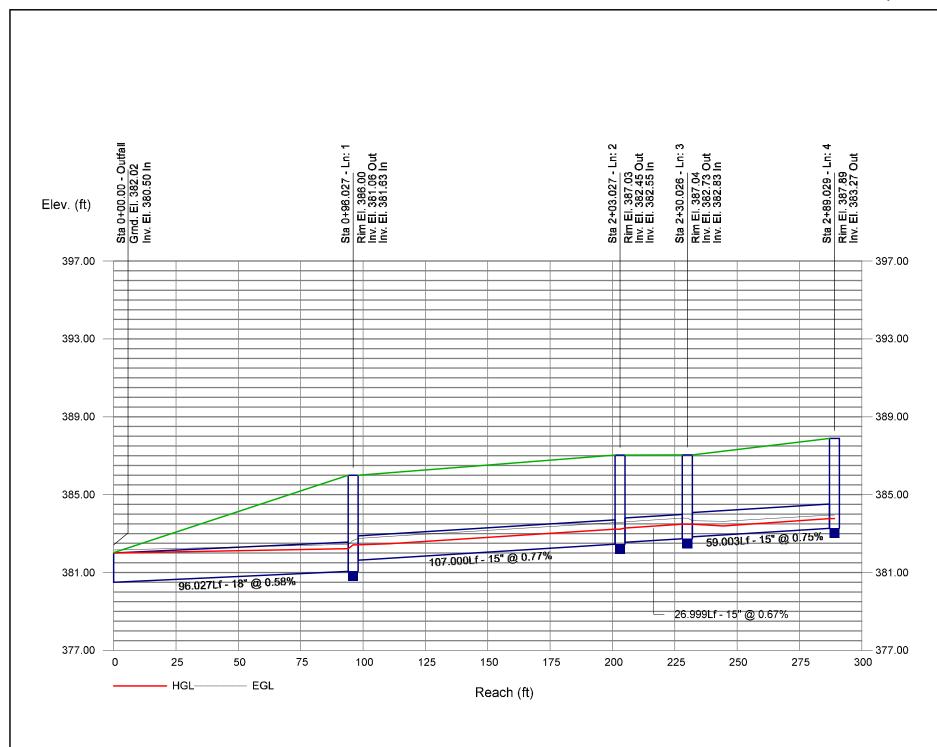

NOTES: Inlet N-Values = 0.016; Intensity = 74.09 / (Inlet time + 12.50) ^ 0.81; Return period = 10 Yrs.; * Indicates Known Q added. All curb inlets are throat.


Hydraulic Grade Line Computations


Line	Size	Q			D	ownstre	eam				Len				Upsti	ream				Chec	k	JL	Minor
(1)	(in) (2)	(cfs) (3)	Invert elev (ft) (4)	HGL elev (ft) (5)	Depth (ft) (6)	Area (sqft) (7)	Vel (ft/s) (8)	Vel head (ft) (9)	EGL elev (ft) (10)	Sf (%) (11)	(ft) (12)	Invert elev (ft) (13)	HGL elev (ft) (14)	Depth (ft) (15)	Area (sqft) (16)	Vel (ft/s) (17)	Vel head (ft) (18)	EGL elev (ft) (19)	Sf (%) (20)	Ave Sf (%) (21)	Enrgy loss (ft) (22)	(K) (23)	(ft) (24)
1	18	5.63	380.50	382.00	1.50	1.77	3.18	0.16	382.16	0.287	96.027	381.06	382.22	1.16	1.47	3.83	0.23	382.45	0.321	0.304	0.292	0.87	0.20
2	15	3.71	381.63	382.42	0.79	0.80	4.54	0.33	382.75	0.000	107.00	0382.45	383.23 j	0.78**	0.80	4.62	0.33	383.56	0.000	0.000	n/a	1.40	0.47
3	15	3.45	382.55	383.29	0.74*	0.75	4.58	0.31	383.60	0.000	26.999	382.73	383.48	0.75**	0.77	4.50	0.31	383.79	0.000	0.000	n/a	1.50	n/a
4	15	1.58	382.83	383.48	0.65	0.46	2.45	0.19	383.67	0.000	59.003	383.27	383.77 j	0.50**	0.46	3.46	0.19	383.95	0.000	0.000	n/a	1.00	0.19
5	18	5.06	363.00	364.50	1.50*	1.06	2.87	0.13	364.63	0.233	229.12	0368.04	368.91 j	0.87**	1.06	4.80	0.36	369.26	0.582	0.408	n/a	0.63	0.23
6	18	4.87	368.14	369.02	0.88*	1.07	4.54	0.32	369.34	0.518	27.000	368.28	369.15	0.87	1.07	4.56	0.32	369.48	0.522	0.520	0.140	1.22	0.39
7	18	4.29	368.38	369.55	1.17	0.95	2.91	0.32	369.87	0.000	45.912	369.98	370.77 j	0.79**	0.95	4.52	0.32	371.09	0.000	0.000	n/a	1.62	n/a
8	15	3.05	370.08	370.77	0.69	0.70	4.36	0.29	371.06	0.000	244.37	1377.31	378.01	0.70**	0.71	4.30	0.29	378.30	0.000	0.000	n/a	1.50	0.43
9	15	2.54	378.23	378.85	0.62*	0.61	4.16	0.25	379.10	0.000	27.044	378.40	379.04	0.64**	0.63	4.03	0.25	379.29	0.000	0.000	n/a	1.00	n/a
10	15	0.38	377.42	378.01	0.59	0.16	0.66	0.08	378.10	0.000	252.42	8384.92	385.16 j	0.24**	0.16	2.31	0.08	385.24	0.000	0.000	n/a	1.00	0.08
11	15	0.51	370.18	370.77	0.59	0.57	0.89	0.01	370.79	0.030	27.000	370.32	370.78	0.46	0.41	1.26	0.02	370.80	0.078	0.054	0.015	1.00	0.02
12	15	2.39	368.50	369.75	1.25*	1.23	1.95	0.06	369.81	0.137	94.321	369.03	369.86	0.83	0.87	2.75	0.12	369.98	0.223	0.180	0.170	1.00	0.12
13	15	1.16	369.13	369.98	0.85	0.37	1.31	0.16	370.14	0.000	59.044	369.72	370.14 j	0.42**	0.37	3.17	0.16	370.30	0.000	0.000	n/a	1.50	0.23
14	15	0.17	369.82	370.14	0.32	0.09	0.68	0.05	370.20	0.000	68.947	370.51	370.67 j	0.16**	0.09	1.88	0.05	370.72	0.000	0.000	n/a	1.00	0.05
15	24	9.87	363.50	365.50	2.00*	3.14	3.14	0.15	365.65	0.191	42.000	363.71	365.56	1.85	3.04	3.25	0.16	365.73	0.165	0.178	0.075	1.00	0.16


Project File: SCM#1.stm Number of lines: 15 Run Date: 12/5/2024


Notes: * depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box



Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan 10-Year SCM#2 Report Outfall Project File: SCM#2.stm Number of lines: 1 Date: 12/5/2024

Line		Aligni	ment			Flow	Data					Physica	l Data				Line ID
No.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	No. End	64.790	(deg)		0.00	0.82	0.57	10.0	(ft) 361.50	1.16	(ft) 362.25	(in) 18	Cir	0.013	1.00	366.00	Pipe - (164)
Project	ot File: SCN	√√#2 stm										Number	of lines: 1			Date: 1	2/5/2024

Structure Report

Struct	Structure ID	Junction	Rim		Structure				Line Out			Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)		Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1	YI 204	DropGrate	366.00	Rect	4.00	4.00	18		Cir	362.25			
Project I	File: SCM#2.stm							Numk	ber of Structur	es: 1	Rui	n Date: 12/5/202	4

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	Pipe - (164)	2.81	18	Cir	64.790	361.50	362.25	1.158	363.00	363.00	0.16	363.16	End	DropGrate
	File: SCM#2.stm								Number o	f lines: 1		Run		2024

NOTES: Return period = 10 Yrs.

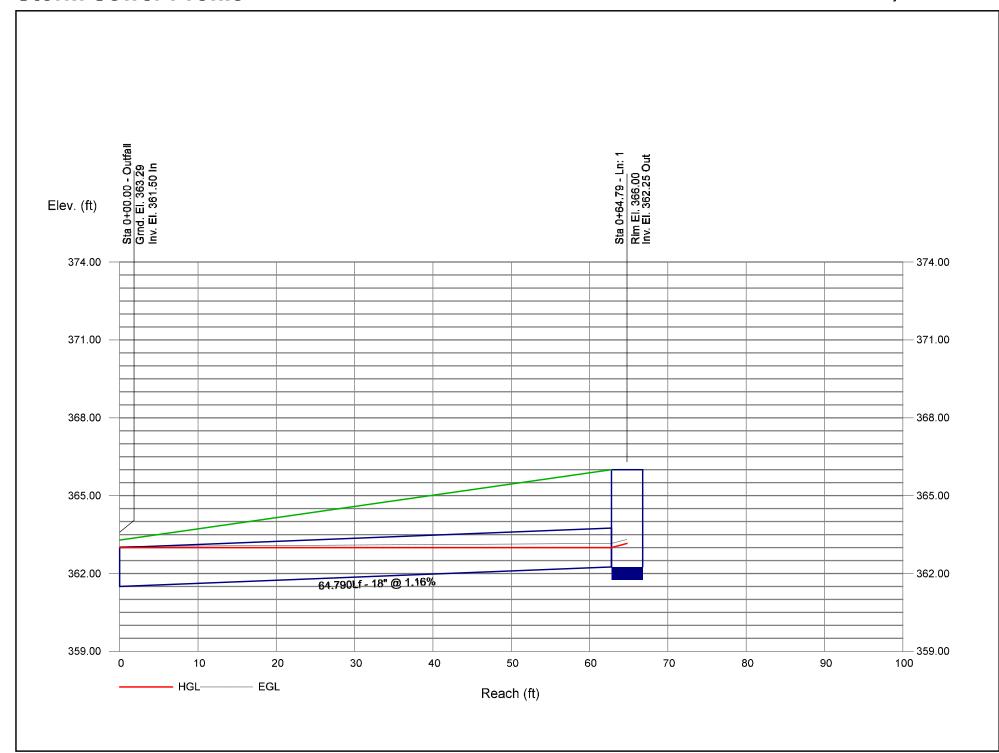
Inlet Report

ine Io	Inlet ID	Q = CIA	Q carry	Q capt	Q Byp	Junc Type	Curb li	nlet	Gra	te Inlet				G	utter			Inlet		Byp Line		
		(cfs)		(cfs)	(cfs)		Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
1	YI 204	2.81	0.00	2.81	0.00	DrGrt	0.0	0.00	3.00	3.00	3.00	Sag	6.00	0.020	0.020	0.013	0.18	24.25	0.18	24.25	0.0	Off

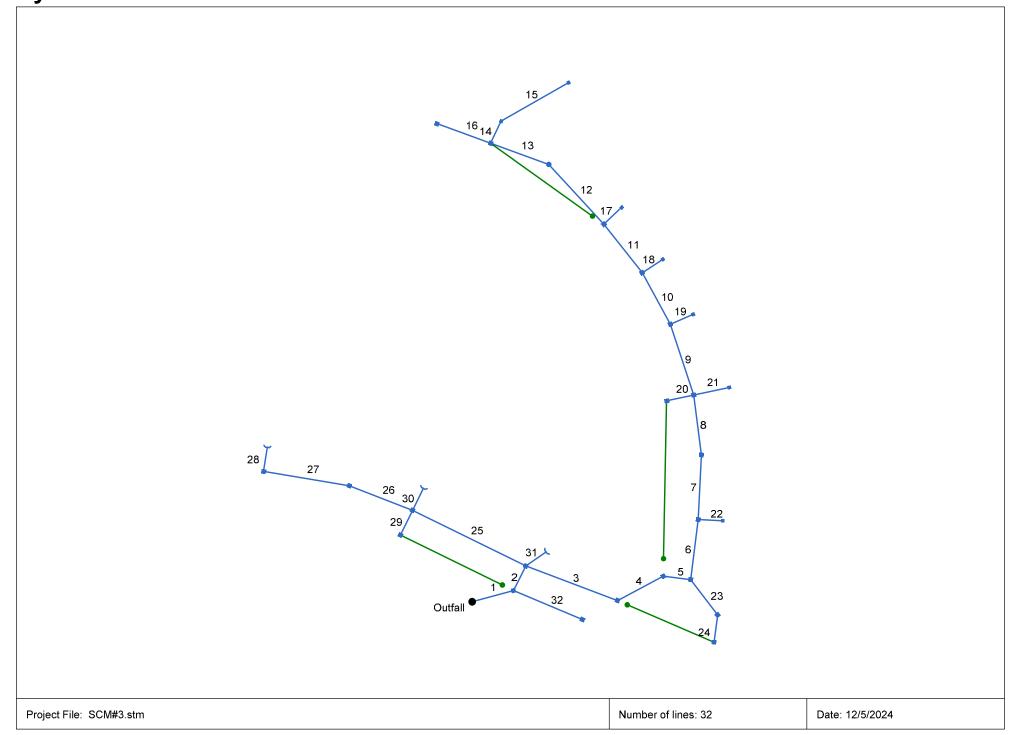
Project File: SCM#2.stm Number of lines: 1 Run Date: 12/5/2024

NOTES: Inlet N-Values = 0.016; Intensity = 74.09 / (Inlet time + 12.50) ^ 0.81; Return period = 10 Yrs.; * Indicates Known Q added. All curb inlets are throat.

Hydraulic Grade Line Computations


Line	Size	Q			D	ownstre	eam				Len					Chec	k	JL	Minor				
(1)	(in) (2)	(cfs) (3)	Invert elev (ft) (4)	HGL elev (ft) (5)	Depth (ft) (6)	Area (sqft) (7)	Vel (ft/s) (8)	Vel head (ft) (9)	EGL elev (ft) (10)	Sf (%) (11)		Invert elev (ft) (13)	HGL elev (ft) (14)	Depth (ft) (15)	Area (sqft) (16)	Vel (ft/s) (17)	Vel head (ft) (18)	EGL elev (ft) (19)	Sf (%) (20)	∣Sf	Enrgy loss (ft) (22)	(K) (23)	(ft) (24)
1	18	2.81	361.50	363.00	1.50	1.77	1.59	0.04	363.04	0.072	64.790	362.25	363.00	0.75	0.88	3.19	0.16	363.16	0.289	0.180	0.117	1.00	0.16

Number of lines: 1


; c = cir e = ellip b = box

Project File: SCM#2.stm

Storm Sewers v2023.00

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan 10-Year SCM#3 Report

Storm Sewer Inventory Report

ine		Align	ment			Flow	Data					Physical	Data				Line ID
No.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	42.067	-15.170	Comb	0.00	0.12	0.57	10.0	361.00	0.50	361.21	36	Cir	0.013	1.18	365.97	Pipe - (51)
2	1	27.000	-48.608	Comb	0.00	0.13	0.57	10.0	361.31	0.48	361.44	36	Cir	0.013	1.50	366.04	Pipe - (50)
3	2	95.970	84.571	Comb	0.00	0.05	0.57	10.0	361.65	0.69	362.31	30	Cir	0.013	1.19	366.98	Pipe - (49) (1)
4	3	50.862	-48.939	Comb	0.00	0.10	0.57	10.0	362.56	0.49	362.81	24	Cir	0.013	0.95	367.04	Pipe - (68)
5	4	27.000	35.381	Comb	0.00	0.08	0.57	10.0	362.91	0.52	363.05	24	Cir	0.013	1.70	367.09	Pipe - (67)
6	5	59.521	-90.000	Comb	0.00	0.05	0.57	10.0	363.34	2.91	365.07	24	Cir	0.013	1.50	370.04	Pipe - (66)
7	6	63.410	-4.578	Comb	0.00	0.06	0.57	10.0	365.15	3.00	367.05	24	Cir	0.013	0.50	373.03	Pipe - (65)
8	7	59.348	-9.943	Comb	0.00	0.07	0.57	10.0	367.15	3.00	368.93	18	Cir	0.013	2.24	374.74	Pipe - (64)
9	8	73.131	-10.753	Comb	0.00	0.05	0.57	10.0	369.43	1.00	370.16	18	Cir	0.013	1.49	375.97	Pipe - (63)
10	9	57.694	-10.618	Comb	0.00	0.05	0.57	10.0	370.26	1.01	370.84	18	Cir	0.013	1.50	376.00	Pipe - (62)
11	10	60.773	-9.612	Comb	0.00	0.29	0.57	10.0	370.94	1.00	371.55	18	Cir	0.013	1.50	377.14	Pipe - (61)
12	11	79.646	-4.271	мн	0.00	0.00	0.57	10.0	373.45	0.50	373.85	15	Cir	0.013	0.52	378.03	Pipe - (60) (1)
13	12	60.480	-27.352	Comb	0.00	0.44	0.57	10.0	373.95	0.50	374.25	15	Cir	0.013	1.50	378.04	Pipe - (60)
14	13	24.001	94.878	DrGrt	0.00	0.24	0.57	10.0	374.75	5.67	376.11	15	Cir	0.013	0.94	382.30	Pipe - (75)
15	14	76.039	35.232	DrGrt	0.00	0.27	0.57	10.0	377.70	2.37	379.50	15	Cir	0.013	1.00	385.27	Pipe - (76)
16	13	55.875	-0.060	Comb	0.00	0.16	0.57	10.0	374.45	1.00	375.01	15	Cir	0.013	1.00	378.78	Pipe - (59)
17	11	24.000	85.069	DrGrt	0.00	0.48	0.57	10.0	373.26	1.00	373.50	15	Cir	0.013	1.00	378.58	Pipe - (78)
18	10	24.000	85.319	DrGrt	0.00	0.31	0.57	10.0	371.60	1.00	371.84	15	Cir	0.013	1.00	376.93	Pipe - (74)
19	9	24.000	84.063	DrGrt	0.00	0.26	0.57	10.0	371.20	5.00	372.40	15	Cir	0.013	1.00	377.58	Pipe - (73)
20	8	27.000	-94.816	Comb	0.00	0.24	0.57	10.0	369.94	0.67	370.12	15	Cir	0.013	1.00	374.73	Pipe - (71)
21	8	35.500	85.182	DrGrt	0.00	0.28	0.57	10.0	369.94	2.99	371.00	15	Cir	0.013	1.00	378.00	Pipe - (72)
22	6	24.000	85.596	DrGrt	0.00	0.54	0.57	10.0	365.80	1.00	366.04	15	Cir	0.013	1.00	372.06	Pipe - (70)
23	5	43.537	45.555	Comb	0.00	0.12	0.57	10.0	363.55	1.01	363.99	24	Cir	0.013	1.12	368.91	Pipe - (56) (1)
	t File: SCI	/l#3.stm										Number	of lines: 32			Date: 1	2/5/2024

Storm Sewer Inventory Report

_ine		Aligni	nent			Flow	/ Data					Physical	Data				Line ID
No.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
24	23	27.000	44.445	Comb	0.00	0.39	0.57	10.0	364.58	1.15	364.89	15	Cir	0.013	1.00	368.93	Pipe - (56)
25	2	123.519	-90.000	Comb	0.00	0.04	0.57	10.0	361.54	0.50	362.16	24	Cir	0.013	2.25	367.00	Pipe - (49)
26	25	66.365	-4.879	Comb	0.00	0.05	0.57	10.0	362.67	0.50	363.00	24	Cir	0.013	0.50	367.90	Pipe - (48)
27	26	85.141	-11.831	Comb	0.00	0.26	0.57	10.0	363.20	0.51	363.63	18	Cir	0.013	1.50	368.63	Pipe - (47)
28	27	24.000	89.190	Hdwl	0.00	0.93	0.57	10.0	363.73	0.50	363.85	18	Cir	0.013	1.00	367.00	Pipe - (46)
29	25	27.000	-90.000	Comb	0.00	0.17	0.57	10.0	363.20	0.52	363.34	15	Cir	0.013	1.00	367.03	Pipe - (54)
30	25	24.000	90.193	Hdwl	0.00	1.80	0.57	10.0	362.42	0.50	362.54	24	Cir	0.013	1.00	363.96	Pipe - (53)
31	2	24.000	29.044	Hdwl	0.00	0.70	0.57	10.0	361.94	1.04	362.19	18	Cir	0.013	1.00	363.71	Pipe - (55)
32	1	73.029	38.107	Comb	0.00	0.07	0.57	10.0	362.30	0.48	362.65	24	Cir	0.013	1.00	366.75	Pipe - (58)
 Proiec	t File: SCN	/l#3.stm										Number	of lines: 32			Date: 1	2/5/2024

Structure Report

Project File: SCM#3.stm

Struct	Structure ID	Junction	Rim		Structure			Line Out			Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1	CB 301	Combination	365.97	Rect	4.00	4.00	36	Cir	361.21	36 24	Cir Cir	361.31 362.30
2	CB 302	Combination	366.04	Rect	4.00	4.00	36	Cir	361.44	30 24 18	Cir Cir Cir	361.65 361.54 361.94
3	CB 304	Combination	366.98	Rect	4.00	4.00	30	Cir	362.31	24	Cir	362.56
4	CB 307	Combination	367.04	Rect	4.00	4.00	24	Cir	362.81	24	Cir	362.91
5	CB 308	Combination	367.09	Rect	4.00	4.00	24	Cir	363.05	24 24	Cir Cir	363.34 363.55
6	CB 309	Combination	370.04	Rect	4.00	4.00	24	Cir	365.07	24 15	Cir Cir	365.15 365.80
7	CB 311	Combination	373.03	Rect	4.00	4.00	24	Cir	367.05	18	Cir	367.15
8	CB 312	Combination	374.74	Rect	4.00	4.00	18	Cir	368.93	18 15 15	Cir Cir Cir	369.43 369.94 369.94
9	CB 315	Combination	375.97	Rect	4.00	4.00	18	Cir	370.16	18 15	Cir Cir	370.26 371.20
10	CB 317	Combination	376.00	Rect	4.00	4.00	18	Cir	370.84	18 15	Cir Cir	370.94 371.60
11	CB 319	Combination	377.14	Rect	4.00	4.00	18	Cir	371.55	15 15	Cir Cir	373.45 373.26
12	JB 176	Manhole	378.03	Cir	4.00	4.00	15	Cir	373.85	15	Cir	373.95
13	CB 323	Combination	378.04	Rect	4.00	4.00	15	Cir	374.25	15 15	Cir Cir	374.75 374.45
14	YI 324	DropGrate	382.30	Rect	3.00	3.00	15	Cir	376.11	15	Cir	377.70
15	YI 322	DropGrate	385.27	Rect	3.00	3.00	15	Cir	379.50			
16	CB 325	Combination	378.78	Rect	4.00	4.00	15	Cir	375.01			
17	YI 320	DropGrate	378.58	Rect	3.00	3.00	15	Cir	373.50			

Number of Structures: 32

Storm Sewers v2023.00

Structure Report

Project File: SCM#3.stm

Struct	Structure ID	Junction	Rim		Structure			Line Ou	t		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
18	YI 318	DropGrate	376.93	Rect	3.00	3.00	15	Cir	371.84			
19	YI 316	DropGrate	377.58	Rect	3.00	3.00	15	Cir	372.40			
20	CB 313	Combination	374.73	Rect	4.00	4.00	15	Cir	370.12			
21	YI 314	DropGrate	378.00	Rect	3.00	3.00	15	Cir	371.00			
22	YI 310	DropGrate	372.06	Rect	3.00	3.00	15	Cir	366.04			
23	CB 306	Combination	368.91	Rect	4.00	4.00	24	Cir	363.99	15	Cir	364.58
24	CB 305	Combination	368.93	Rect	4.00	4.00	15	Cir	364.89			
25	CB 330	Combination	367.00	Rect	4.00	4.00	24	Cir	362.16	24 15 24	Cir Cir Cir	362.67 363.20 362.42
26	CB 333	Combination	367.90	Rect	4.00	4.00	24	Cir	363.00	18	Cir	363.20
27	CB 334	Combination	368.63	Rect	4.00	4.00	18	Cir	363.63	18	Cir	363.73
28	FES INLET 335	OpenHeadwall	367.00	n/a	n/a	n/a	18	Cir	363.85			
29	CB 332	Combination	367.03	Rect	4.00	4.00	15	Cir	363.34			
30	FES INLET 331	OpenHeadwall	363.96	n/a	n/a	n/a	24	Cir	362.54			
31	FES INLET 302 A	OpenHeadwall	363.71	n/a	n/a	n/a	18	Cir	362.19			
32	CB 303	Combination	366.75	Rect	4.00	4.00	24	Cir	362.65			

Number of Structures: 32

Storm Sewers v2023.00

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	Pipe - (51)	20.31	36	Cir	42.067	361.00	361.21	0.499	364.00	364.03	0.16	364.19	End	Combination
2	Pipe - (50)	26.82	36	Cir	27.000	361.31	361.44	0.481	364.19	363.11	n/a	363.11	1	Combination
3	Pipe - (49) (1)	14.25	30	Cir	95.970	361.65	362.31	0.688	363.11	363.58	n/a	363.58 j	2	Combination
4	Pipe - (68)	14.16	24	Cir	50.862	362.56	362.81	0.492	364.03	364.28	0.48	364.76	3	Combination
5	Pipe - (67)	13.89	24	Cir	27.000	362.91	363.05	0.518	364.76	364.84	0.58	365.42	4	Combination
6	Pipe - (66)	12.10	24	Cir	59.521	363.34	365.07	2.907	365.42	366.32	n/a	366.32 j	5	Combination
7	Pipe - (65)	10.28	24	Cir	63.410	365.15	367.05	2.996	366.32	368.20	n/a	368.20 j	6	Combination
8	Pipe - (64)	10.14	18	Cir	59.348	367.15	368.93	2.999	368.20	370.16	n/a	370.16	7	Combination
9	Pipe - (63)	8.28	18	Cir	73.131	369.43	370.16	0.998	370.44	371.27	n/a	371.27	8	Combination
10	Pipe - (62)	7.32	18	Cir	57.694	370.26	370.84	1.005	371.27	371.89	0.72	371.89	9	Combination
11	Pipe - (61)	6.18	18	Cir	60.773	370.94	371.55	1.004	371.89	372.51	0.62	372.51	10	Combination
12	Pipe - (60) (1)	3.69	15	Cir	79.646	373.45	373.85	0.500	374.30	374.70	0.14	374.84	11	Manhole
13	Pipe - (60)	3.72	15	Cir	60.480	373.95	374.25	0.496	374.84	375.11	0.40	375.51	12	Combination
14	Pipe - (75)	1.73	15	Cir	24.001	374.75	376.11	5.666	375.51	376.63	n/a	376.63 j	13	DropGrate
15	Pipe - (76)	0.93	15	Cir	76.039	377.70	379.50	2.367	377.96	379.88	n/a	379.88	14	DropGrate
16	Pipe - (59)	0.55	15	Cir	55.875	374.45	375.01	1.002	375.51	375.30	n/a	375.30	13	Combination
17	Pipe - (78)	1.65	15	Cir	24.000	373.26	373.50	1.000	373.69	374.01	n/a	374.01	11	DropGrate
18	Pipe - (74)	1.06	15	Cir	24.000	371.60	371.84	1.000	371.94	372.25	0.15	372.25	10	DropGrate
19	Pipe - (73)	0.89	15	Cir	24.000	371.20	372.40	5.000	371.41	372.77	0.13	372.77	9	DropGrate
20	Pipe - (71)	0.82	15	Cir	27.000	369.94	370.12	0.667	370.27	370.47	n/a	370.47	8	Combination
21	Pipe - (72)	0.96	15	Cir	35.500	369.94	371.00	2.986	370.19	371.38	0.14	371.38	8	DropGrate
22	Pipe - (70)	1.85	15	Cir	24.000	365.80	366.04	1.000	366.32	366.58	n/a	366.58	6	DropGrate
23	Pipe - (56) (1)	1.74	24	Cir	43.537	363.55	363.99	1.011	365.42	364.45	n/a	364.45	5	Combination
24	Pipe - (56)	1.34	15	Cir	27.000	364.58	364.89	1.148	364.95	365.35	n/a	365.35	23	Combination

Number of lines: 32

NOTES: Return period = 10 Yrs.; j - Line contains hyd. jump.

Project File: SCM#3.stm

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
25	Pipe - (49)	10.79	24	Cir	123.519	361.54	362.16	0.502	363.11	363.37	1.04	364.41	2	Combination
26	Pipe - (48)	4.18	24	Cir	66.365	362.67	363.00	0.497	364.41	363.72	0.13	363.72	25	Combination
27	Pipe - (47)	4.05	18	Cir	85.141	363.20	363.63	0.505	363.99	364.42	0.43	364.85	26	Combination
28	Pipe - (46)	3.19	18	Cir	24.000	363.73	363.85	0.500	364.85	364.86	0.10	364.96	27	OpenHeadwall
29	Pipe - (54)	0.58	15	Cir	27.000	363.20	363.34	0.518	364.41	364.41	0.00	364.41	25	Combination
30	Pipe - (53)	6.17	24	Cir	24.000	362.42	362.54	0.500	364.41	363.42	n/a	363.42	25	OpenHeadwall
31	Pipe - (55)	2.40	18	Cir	24.000	361.94	362.19	1.042	363.11	362.78	0.22	362.78	2	OpenHeadwall
32	Pipe - (58)	0.24	24	Cir	73.029	362.30	362.65	0.479	364.19	364.19	0.00	364.19	1	Combination

Number of lines: 32 Run Date: 12/5/2024 Project File: SCM#3.stm

NOTES: Return period = 10 Yrs.; j - Line contains hyd. jump.

10-Year SCM#3 Report Page 1

Inlet Report

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb I	nlet	Gra	ate Inlet				G	utter					Inlet		Вур
No		CIA (cfs)	carry (cfs)	capt (cfs)	Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	Line No
1	CB 301	0.41	0.07	0.48	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.04	1.71	0.21	1.71	2.0	Off
2	CB 302	0.45	0.03	0.47	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.04	1.69	0.21	1.69	2.0	Off
3	CB 304	0.17	0.27	0.41	0.03	Comb	6.0	1.50	0.00	3.00	2.50	0.014	2.00	0.040	0.020	0.013	0.12	3.89	0.21	1.08	2.0	2
4	CB 307	0.34	0.15	0.49	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.05	1.72	0.21	1.72	2.0	Off
5	CB 308	0.27	0.01	0.28	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	-0.01	1.28	0.16	1.28	2.0	Off
6	CB 309	0.17	0.00	0.17	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.050	2.00	0.040	0.020	0.013	0.07	1.65	0.17	0.00	2.0	5
7	CB 311	0.21	0.00	0.21	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.040	2.00	0.040	0.020	0.013	0.07	1.86	0.17	0.00	2.0	6
8	CB 312	0.24	0.00	0.24	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.10	3.07	0.19	0.58	2.0	7
9	CB 315	0.17	0.06	0.23	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.10	2.99	0.19	0.53	2.0	8
10	CB 317	0.17	0.38	0.49	0.06	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.13	4.71	0.23	1.53	2.0	9
11	CB 319	0.99	0.41	1.03	0.38	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.18	7.14	0.28	3.92	2.0	10
12	JB 176	0.00	0.00	0.00	0.00	МН	0.0	2.00	0.00	2.00	0.00	0.000	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
13	CB 323	1.51	0.07	1.17	0.41	Comb	6.0	1.50	0.00	3.00	2.50	0.020	2.00	0.040	0.020	0.013	0.17	6.48	0.27	3.39	2.0	11
14	YI 324	0.82	0.00	0.82	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	3.00	0.020	0.020	0.013	0.11	13.54	0.11	13.54	0.0	Off
15	YI 322	0.93	0.00	0.93	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	3.00	0.020	0.020	0.013	0.11	14.40	0.11	14.40	0.0	Off
16	CB 325	0.55	0.00	0.47	0.07	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.040	0.020	0.013	0.15	5.51	0.24	1.85	2.0	13
17	YI 320	1.65	0.00	1.65	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	3.00	0.020	0.020	0.013	0.17	19.73	0.17	19.73	0.0	Off
18	YI 318	1.06	0.00	1.06	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	3.00	0.020	0.020	0.013	0.13	15.50	0.13	15.50	0.0	Off
19	YI 316	0.89	0.00	0.89	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	3.00	0.020	0.020	0.013	0.11	14.12	0.11	14.12	0.0	Off
20	CB 313	0.82	0.00	0.68	0.15	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.15	5.66	0.25	2.21	2.0	4
21	YI 314	0.96	0.00	0.96	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	3.00	0.020	0.020	0.013	0.12	14.68	0.12	14.68	0.0	Off
22	YI 310	1.85	0.00	1.85	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	3.00	0.020	0.020	0.013	0.18	21.10	0.18	21.10	0.0	Off
23	CB 306	0.41	0.00	0.40	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.029	2.00	0.040	0.020	0.013	0.10	3.05	0.19	0.62	2.0	5

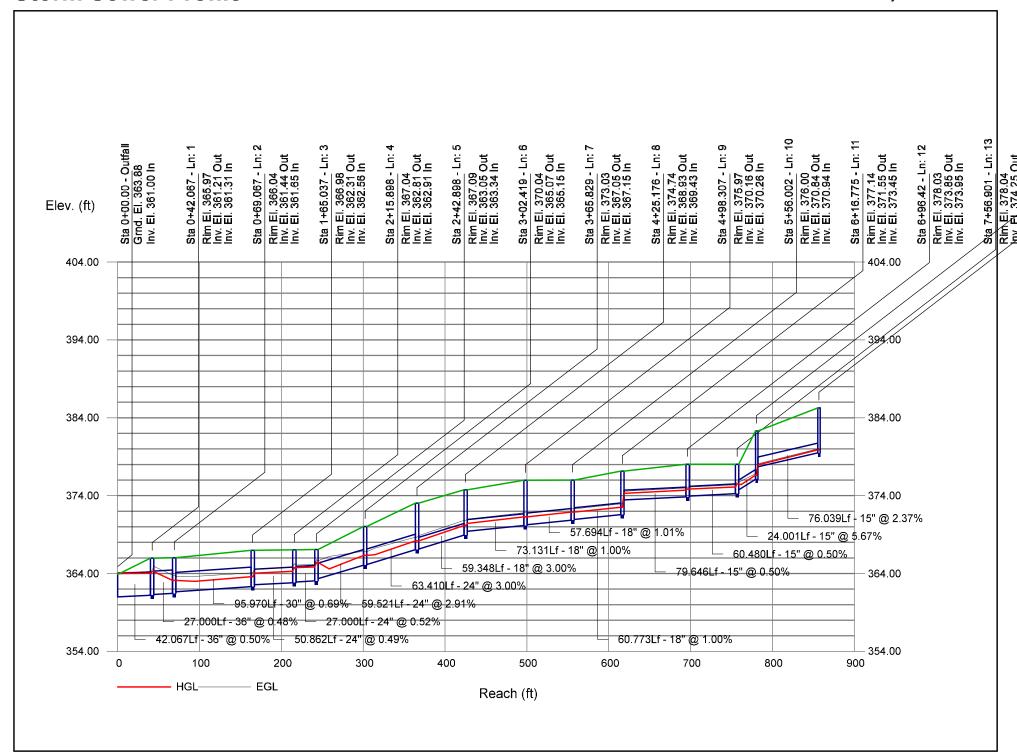
Number of lines: 32 Run Date: 12/5/2024 Project File: SCM#3.stm

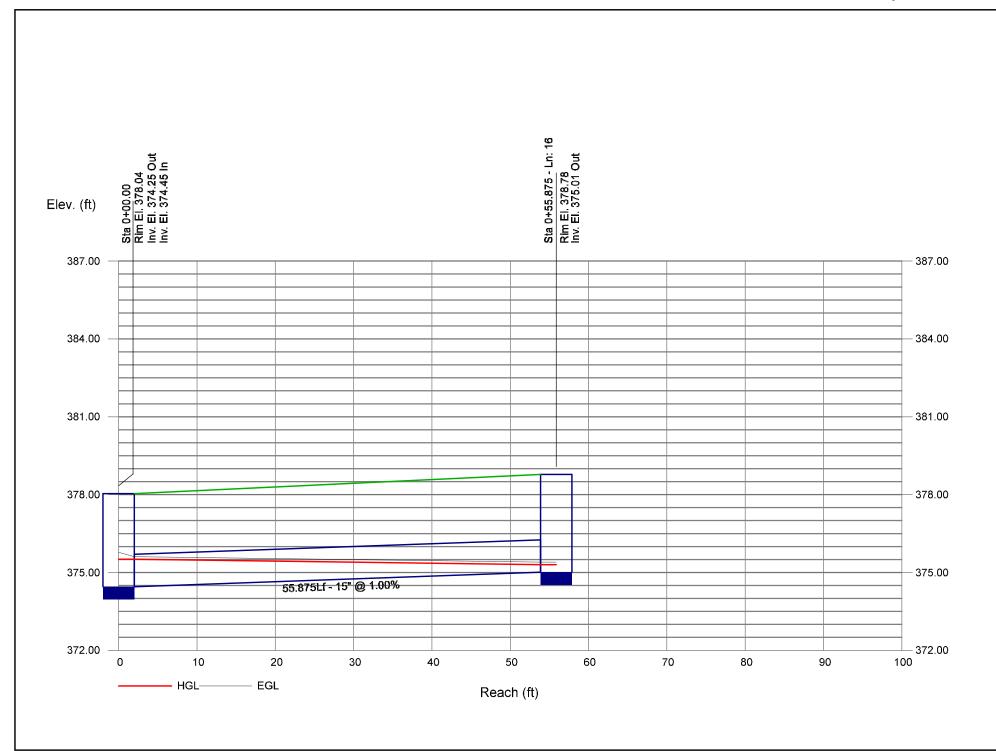
NOTES: Inlet N-Values = 0.016; Intensity = 74.09 / (Inlet time + 12.50) ^ 0.81; Return period = 10 Yrs.; * Indicates Known Q added. All curb inlets are throat.

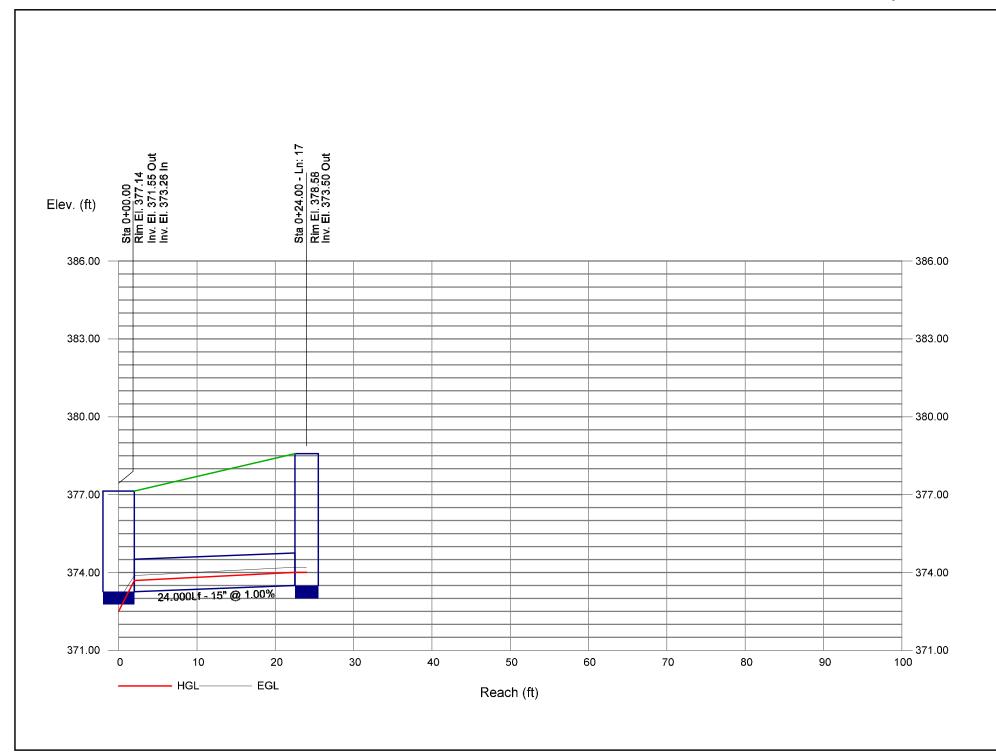
Inlet Report

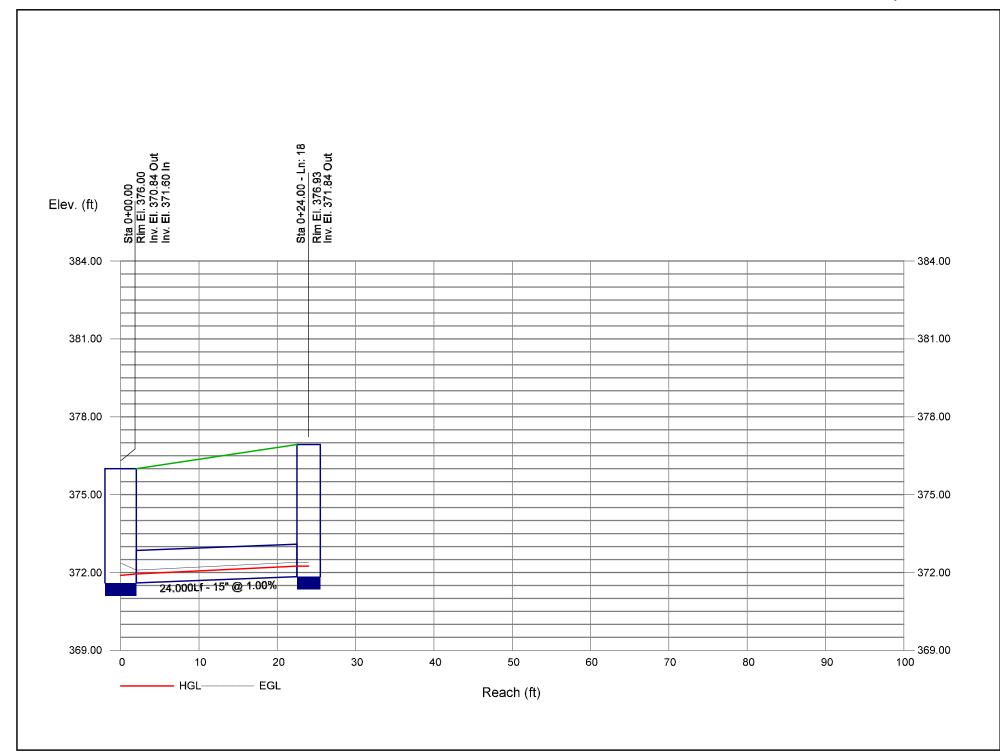
Line No	Inlet ID	Q = CIA (cfs)	Q carry (cfs)	Q capt (cfs)	Q Byp (cfs)	Junc Type	Curb Inlet		Grate Inlet			Gutter						Inlet			Byp Line	
							Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)		Spread (ft)	Depr (in)	No No
24	CB 305	1.34	0.00	1.06	0.27	Comb	6.0	1.50	0.00	3.00	2.50	0.029	2.00	0.040	0.020	0.013	0.15	5.54	0.25	2.35	2.0	3
25	CB 330	0.14	0.02	0.15	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.09	2.29	0.17	0.00	2.0	2
26	CB 333	0.17	0.17	0.32	0.02	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.11	3.70	0.20	0.94	2.0	25
27	CB 334	0.89	0.00	0.72	0.17	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.16	5.86	0.26	2.45	2.0	26
28	FES INLET 335	3.19	0.00	3.19	0.00	Hdwl	0.0	0.00	0.00	0.00	0.00	Sag	3.00	0.020	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
29	CB 332	0.58	0.00	0.51	0.07	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.14	4.83	0.23	1.60	2.0	1
30	FES INLET 331	6.17	0.00	6.17	0.00	Hdwl	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.0	Off
31	FES INLET 302 A	2.40	0.00	2.40	0.00	Hdwl	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.0	Off
32	CB 303	0.24	0.00	0.24	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.014	2.00	0.040	0.020	0.013	0.09	2.75	0.18	0.39	2.0	1

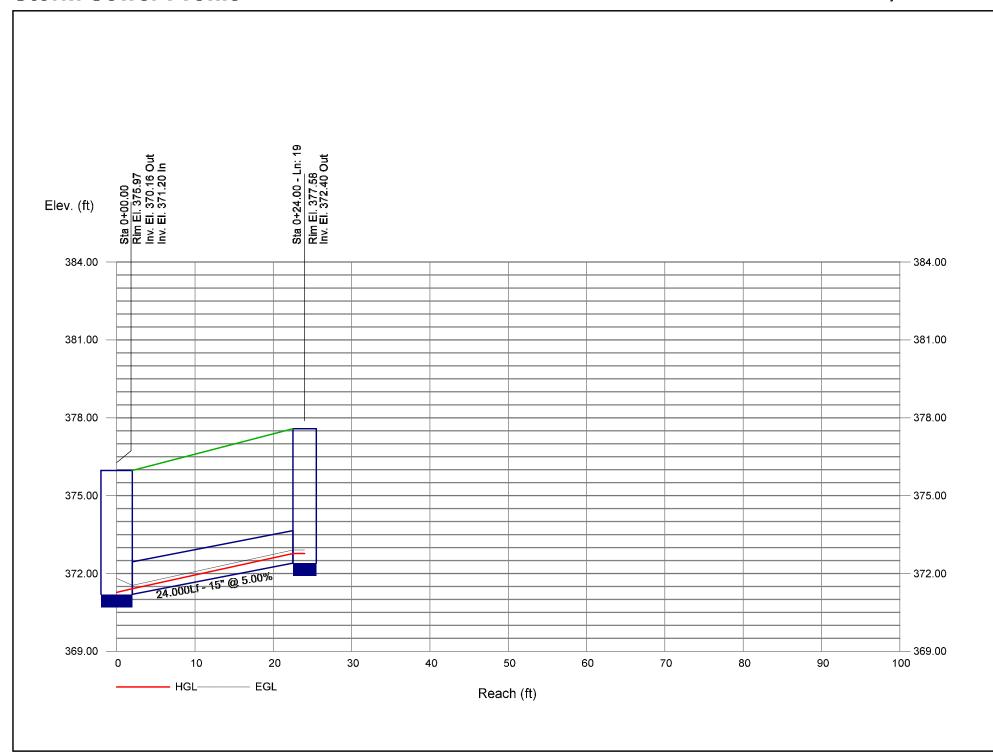
Project File: SCM#3.stm Number of lines: 32 Run Date: 12/5/2024

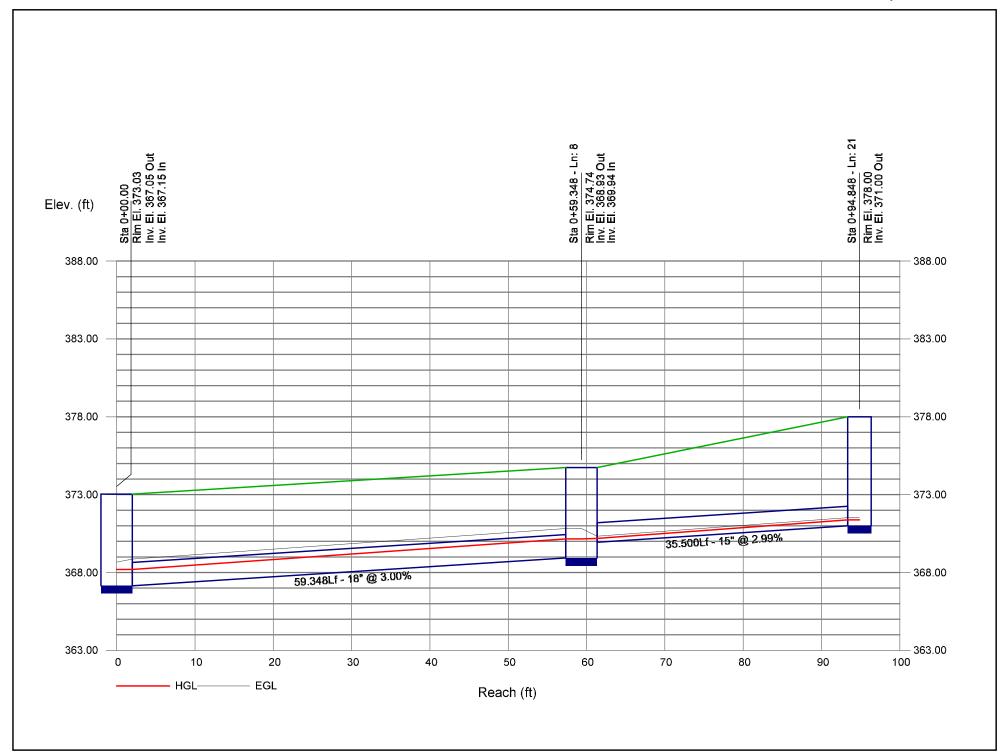

NOTES: Inlet N-Values = 0.016; Intensity = 74.09 / (Inlet time + 12.50) ^ 0.81; Return period = 10 Yrs.; * Indicates Known Q added. All curb inlets are throat.

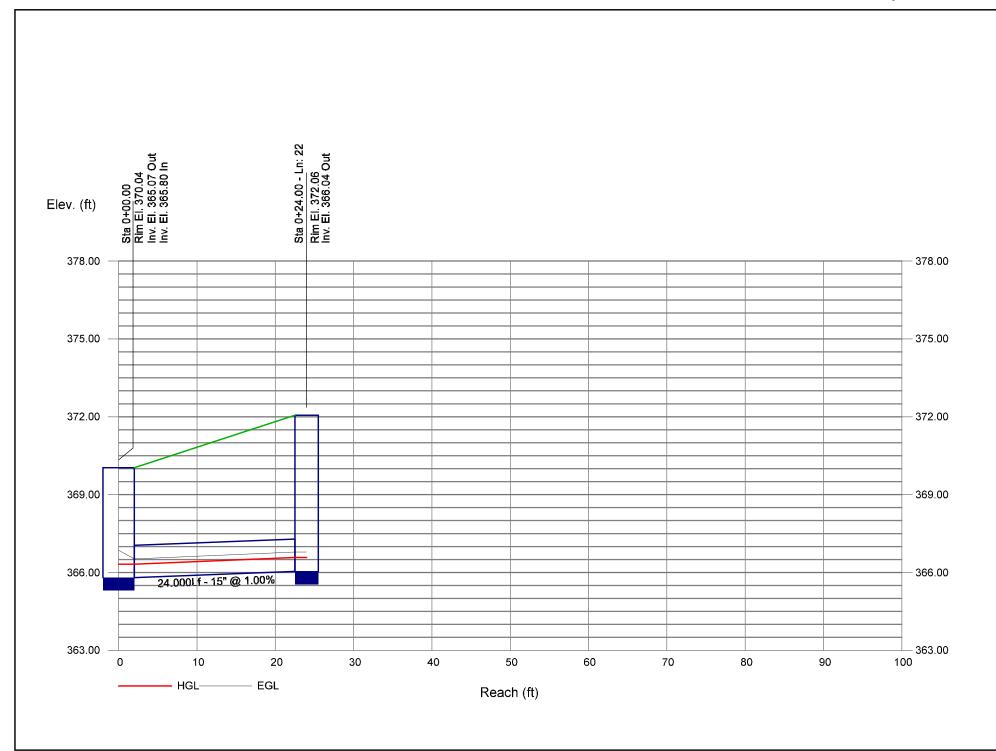

i i	Size	Q			D	ownstre	eam				Len				Upst	ream				Chec	k	JL	Minor
(1)	(in) (2)	(cfs) (3)	Invert elev (ft) (4)	HGL elev (ft)	Depth (ft) (6)	Area (sqft) (7)	Vel (ft/s) (8)	Vel head (ft) (9)	EGL elev (ft) (10)	Sf (%) (11)	(ft) (12)	Invert elev (ft) (13)	HGL elev (ft) (14)	Depth (ft) (15)	Area (sqft) (16)	Vel (ft/s) (17)	Vel head (ft) (18)	EGL elev (ft) (19)	Sf (%) (20)	Ave Sf (%) (21)	Enrgy loss (ft) (22)	(K) (23)	(ft) (24)
1	36	20.31	361.00	364.00	3.00	7.07	2.87	0.13	364.13	0.093	42.067	361.21	364.03	2.82	6.89	2.95	0.13	364.16	0.080	0.086	0.036	1.18	0.16
2	36	26.82	361.31	364.19	2.88	4.05	3.85	0.68	364.87	0.147	27.000	361.44	363.11	1.67**	4.05	6.62	0.68	363.79	0.129	0.138	n/a	1.50	n/a
3	30	14.25	361.65	363.11	1.46	2.50	4.78	0.50	363.62	0.111	95.970	362.31	363.58 j	1.27**	2.50	5.69	0.50	364.08	0.099	0.105	n/a	1.19	0.60
4	24	14.16	362.56	364.03	1.47*	2.48	5.71	0.51	364.54	0.492	50.862	362.81	364.28	1.47	2.48	5.71	0.51	364.79	0.493	0.492	0.250	0.95	0.48
5	24	13.89	362.91	364.76	1.85	3.04	4.57	0.32	365.09	0.326	27.000		364.84	1.79	2.96	4.69	0.34	365.18	0.334	0.330	0.089	1.70	0.58
6	24	12.10	363.34	365.42	2.00	2.06	3.85	0.23	365.65	0.286	59.521		366.32 j		2.06	5.87	0.53	366.85	0.563	0.424	n/a	1.50	0.80
7	24	10.28	365.15	366.32	1.17	1.86	5.39	0.47	366.79	0.000		367.05	368.20 j		1.86	5.52	0.47	368.67	0.000	0.000	n/a	0.50	n/a
8	18 18	10.14 8.28	367.15 369.43	368.20 370.44	1.05	1.32	7.69	0.67	368.87	0.000		368.93 370.16	370.16	1.23**	1.55	6.56 5.89	0.67	370.82 371.81	0.000	0.000	n/a n/a	1.49	n/a n/a
10	18	7.32	370.26	370.44	1.01	1.27	5.76	0.54	370.97	0.000		370.16	371.89	1.05**	1.32	5.56	0.54	371.61	0.000	0.000	n/a	1.49	0.72
11	18	6.18	370.20	371.89	0.95	1.18	5.26	0.43	372.30	0.000		371.55	372.51	0.96**	1.19	5.18	0.43	372.93	0.000	0.000	n/a	1.50	0.62
12	15	3.69	373.45	374.30	0.85*	0.89	4.14	0.27	374.57	0.500		373.85	374.70	0.85	0.89	4.14	0.27	374.97	0.499	0.499	0.398	0.52	0.14
13	15	3.72	373.95	374.84	0.89	0.93	3.99	0.25	375.09	0.455		374.25	375.11	0.86	0.90	4.16	0.27	375.37	0.502	0.478	0.289	1.50	0.40
14	15	1.73	374.75	375.51	0.76	0.48	2.22	0.20	375.71	0.000	24.001	376.11	376.63 j	0.52**	0.48	3.56	0.20	376.83	0.000	0.000	n/a	0.94	0.19
15	15	0.93	377.70	377.96	0.26*	0.18	5.07	0.14	378.09	0.000	76.039	379.50	379.88	0.38**	0.31	2.96	0.14	380.01	0.000	0.000	n/a	1.00	n/a
16	15	0.55	374.45	375.51	1.06	0.21	0.49	0.10	375.61	0.000	55.875	375.01	375.30	0.29**	0.21	2.56	0.10	375.40	0.000	0.000	n/a	1.00	n/a
17	15	1.65	373.26	373.69	0.43*	0.37	4.40	0.19	373.88	0.000	24.000	373.50	374.01	0.51**	0.47	3.51	0.19	374.20	0.000	0.000	n/a	1.00	n/a
18	15	1.06	371.60	371.94	0.34*	0.27	3.88	0.15	372.09	0.000	24.000	371.84	372.25	0.41**	0.34	3.08	0.15	372.39	0.000	0.000	n/a	1.00	0.15
19	15	0.89	371.20	371.41	0.21*	0.14	6.52	0.13	371.54	0.000	24.000	372.40	372.77	0.37**	0.30	2.93	0.13	372.90	0.000	0.000	n/a	1.00	0.13
20	15	0.82	369.94	370.27	0.33*	0.26	3.12	0.13	370.40	0.000	27.000	370.12	370.47	0.35**	0.29	2.87	0.13	370.60	0.000	0.000	n/a	1.00	n/a
21	15	0.96	369.94	370.19	0.25*	0.17	5.56	0.14	370.33	0.000	35.500	371.00	371.38	0.38**	0.32	3.00	0.14	371.52	0.000	0.000	n/a	1.00	0.14

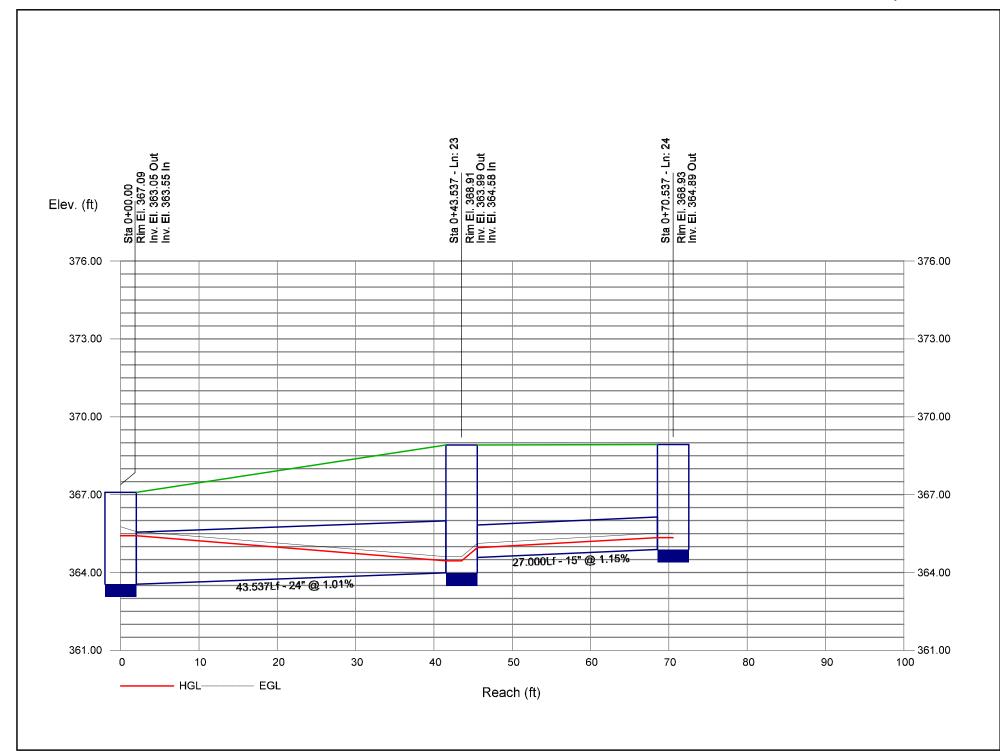

Project File: SCM#3.stm Number of lines: 32 Run Date: 12/5/2024

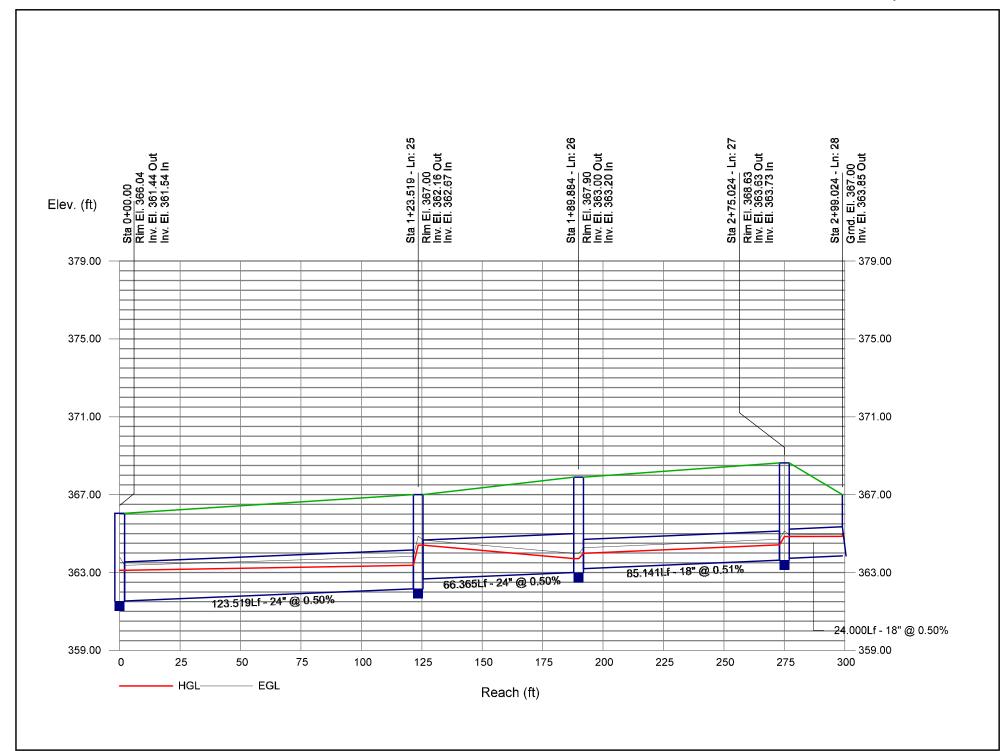

Line	Size	Q			D	ownstre	am				Len				Upsti	eam				Chec	k	JL	Minor
(1)	(in) (2)	(cfs) (3)	Invert elev (ft) (4)	HGL elev (ft)	Depth (ft) (6)	Area (sqft) (7)	VeI (ft/s) (8)	Vel head (ft) (9)	EGL elev (ft) (10)	Sf (%) (11)	(ft) (12)	Invert elev (ft) (13)	HGL elev (ft) (14)	Depth (ft) (15)	Area (sqft) (16)	Vel (ft/s) (17)	Vel head (ft) (18)	EGL elev (ft) (19)	Sf (%) (20)	Ave Sf (%) (21)	Enrgy loss (ft) (22)	(K) (23)	(ft) (24)
22	15	1.85	365.80	366.32	0.52	0.48	3.85	0.21	366.52	0.000	24.000	366.04	366.58	0.54**	0.51	3.64	0.21	366.79	0.000	0.000	n/a	1.00	n/a
23	24	1.74	363.55	365.42	1.87	0.54	0.57	0.16	365.58	0.006	43.537	363.99	364.45	0.46**	0.54	3.22	0.16	364.61	0.005	0.006	n/a	1.12	n/a
24	15	1.34	364.58	364.95	0.37*	0.31	4.36	0.17	365.12	0.043	27.000	364.89	365.35	0.46**	0.41	3.30	0.17	365.52	0.040	0.042	n/a	1.00	n/a
25	24	10.79	361.54	363.11	1.57	2.65	4.07	0.26	363.37	0.247		9362.16	363.37	1.21	1.98	5.45	0.46	363.83	0.497	0.372	0.459	2.25	1.04
26	24	4.18	362.67	364.41	1.74	1.01	1.44	0.26	364.67	0.034		363.00	363.72	0.72**	1.01	4.13	0.26	363.98	0.034	0.034	n/a	0.50	0.13
27	18	4.05	363.20	363.99	0.79*	0.94	4.31	0.29	364.28	0.504		363.63	364.42	0.79	0.94	4.30	0.29	364.71	0.503	0.503	0.429	1.50	0.43
28	18	3.19 0.58	363.73 363.20	364.85 364.41	1.12	1.42	0.48	0.08	364.93 364.41	0.112		363.85 363.34	364.86 364.41	1.01	1.27	2.52 0.52	0.10	364.96 364.41	0.146	0.129	0.031	1.00	0.10
30	24	6.17	362.42	364.41	1.99	1.33	1.97	0.00	364.74	0.007		362.54	363.42	0.88**	1.33	4.65	0.00	363.75	0.008	0.007	n/a	1.00	n/a
31	18	2.40	361.94	363.11	1.17	0.64	1.62	0.22	363.33	0.052		362.19	362.78	0.59**	0.64	3.75	0.22	362.99	0.052	0.052	n/a	1.00	0.22
32	24	0.24	362.30	364.19	1.89	3.07	0.08	0.00	364.19	0.000		362.65	364.19	1.54	2.59	0.09	0.00	364.19	0.000	0.000	0.000	1.00	0.00

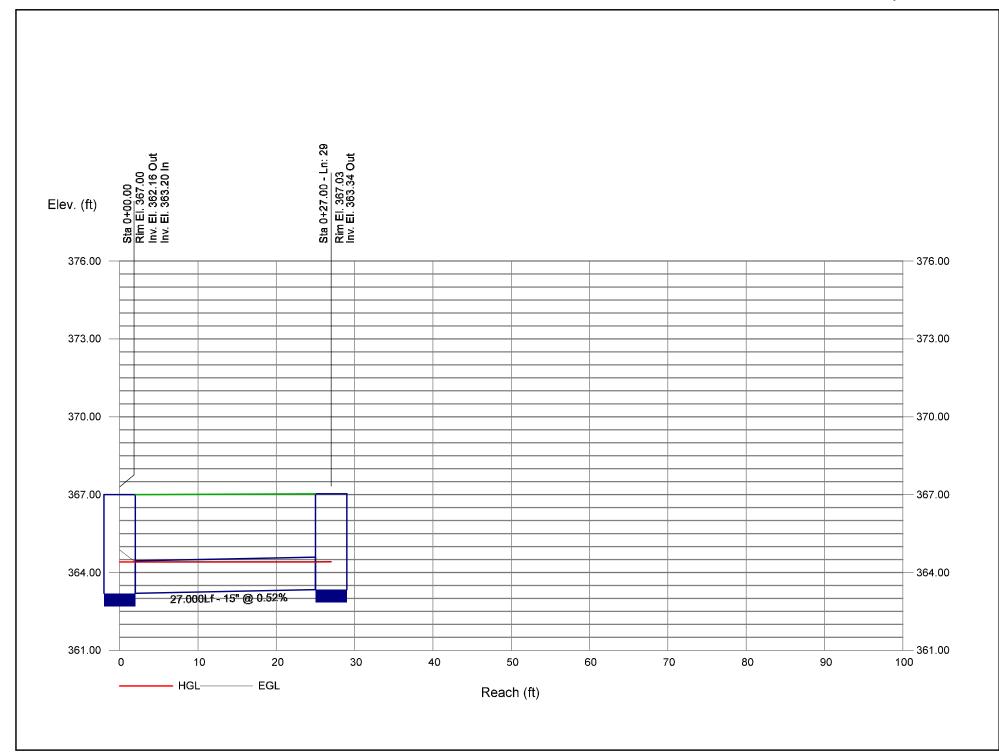

Project File: SCM#3.stm Number of lines: 32 Run Date: 12/5/2024

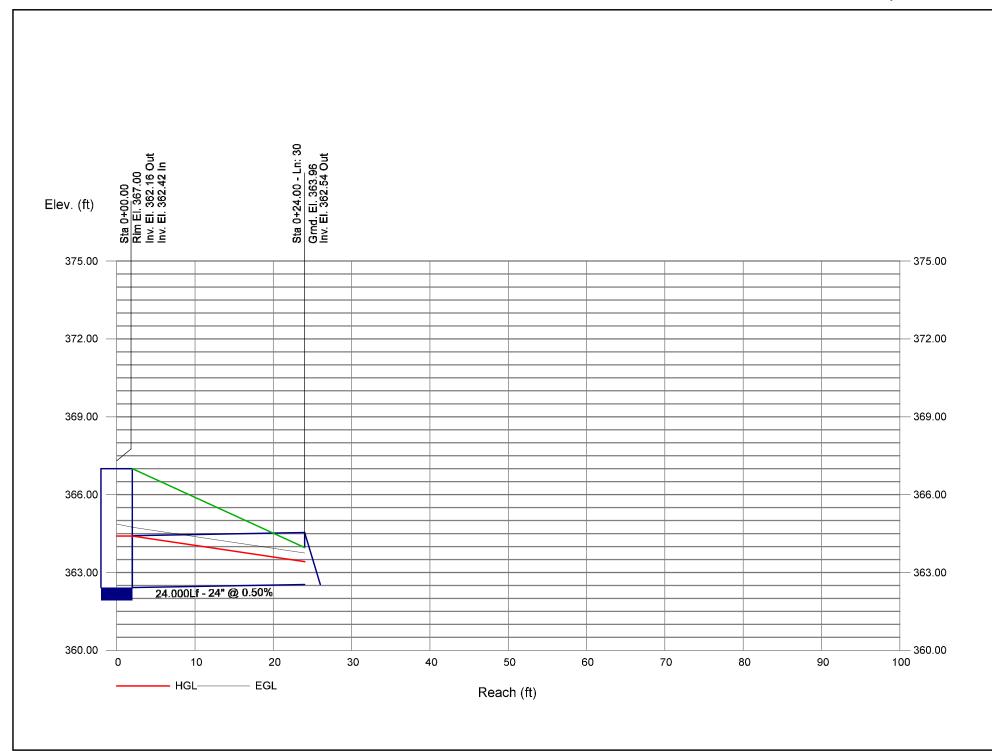


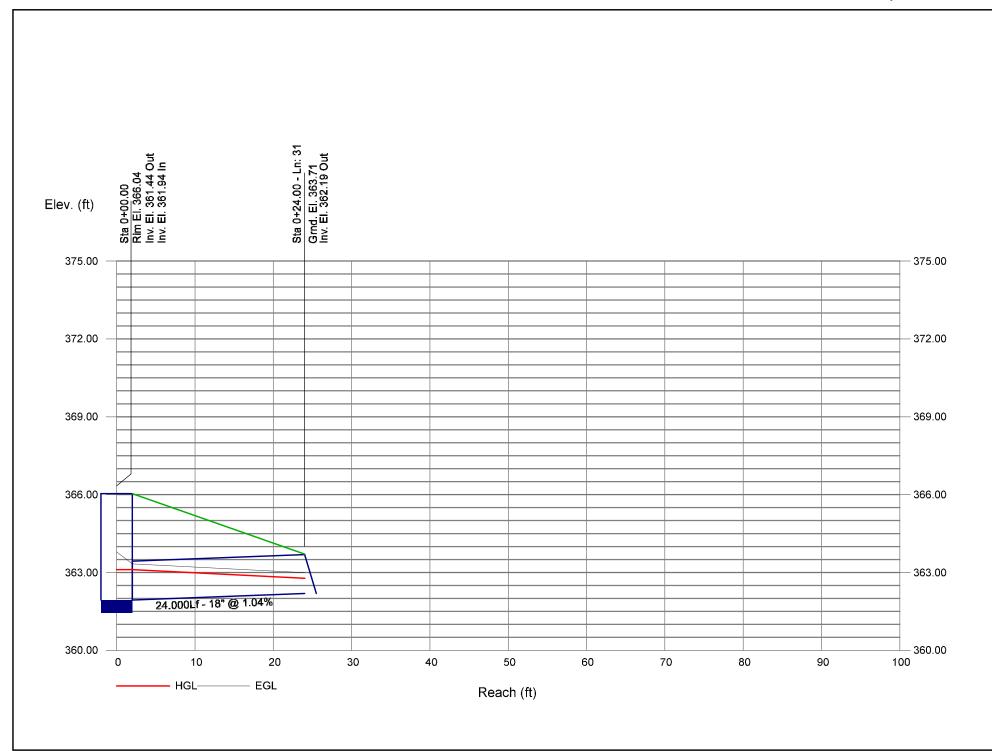


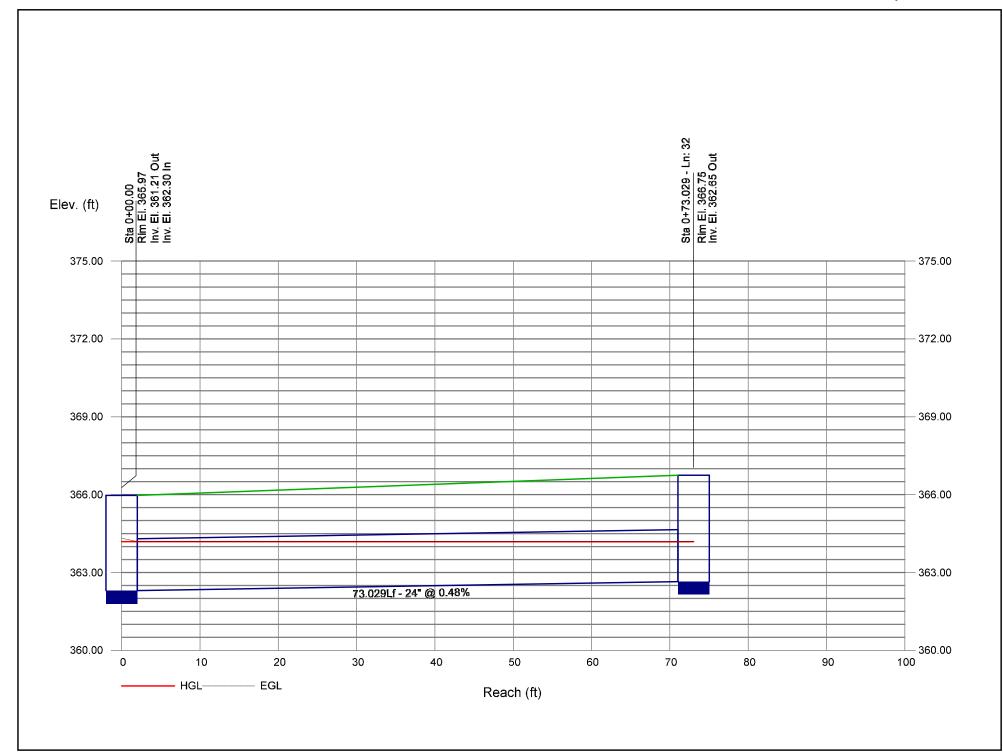


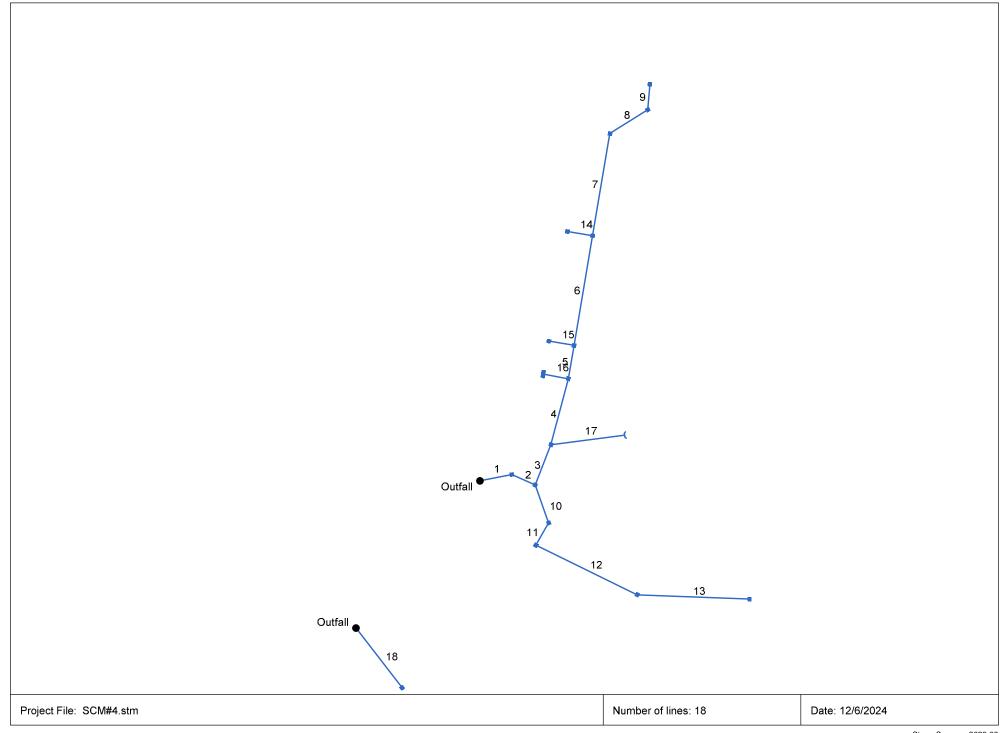












Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan 10-Year SCM#4 Report

Storm Sewer Inventory Report

ine		Aligni	ment			Flow	Data					Physica	l Data				Line ID
No.	Dnstr Line No.		Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	34.253	-11.231	Comb	0.00	0.07	0.57	10.0	357.00	0.50	357.17	24	Cir	0.013	0.95	363.04	Pipe - (14)
2	1	27.000	35.364	Comb	0.00	0.01	0.57	10.0	357.27	0.48	357.40	24	Cir	0.013	1.72	363.02	Pipe - (19)
3	2	45.598	-92.825	Comb	0.00	0.04	0.57	10.0	357.50	0.50	357.73	24	Cir	0.013	1.35	362.81	Pipe - (13) (1)
4	3	72.000	-6.548	Comb	0.00	0.06	0.57	10.0	357.95	0.64	358.41	24	Cir	0.013	1.50	362.04	Pipe - (13)
5	4	35.770	-5.010	Comb	0.00	0.07	0.57	10.0	358.54	0.50	358.72	18	Cir	0.013	1.50	362.04	Pipe - (12)
6	5	117.298	-0.174	Comb	0.00	0.06	0.57	10.0	358.86	1.19	360.25	15	Cir	0.013	1.50	364.99	Pipe - (11)
7	6	109.503	0.000	Comb	0.00	0.02	0.57	10.0	360.58	3.41	364.31	15	Cir	0.013	1.18	368.85	Pipe - (9)
8	7	47.144	48.466	Comb	0.00	0.11	0.57	10.0	364.41	0.51	364.65	15	Cir	0.013	1.25	369.03	Pipe - (8)
9	8	27.000	-53.413	Comb	0.00	0.52	0.57	10.0	364.75	0.52	364.89	15	Cir	0.013	1.00	369.03	Pipe - (7)
10	2	42.392	46.461	Comb	0.00	0.25	0.57	10.0	357.51	0.50	357.72	24	Cir	0.013	1.19	363.00	Pipe - (18)
11	10	27.000	48.827	Comb	0.00	0.21	0.57	10.0	358.32	0.52	358.46	18	Cir	0.013	1.50	363.00	Pipe - (17)
12	11	118.810	-93.248	Comb	0.00	0.25	0.57	10.0	359.07	2.35	361.86	15	Cir	0.013	0.69	368.09	Pipe - (16)
13	12	118.495	-24.060	Comb	0.00	0.32	0.57	10.0	363.06	1.31	364.61	15	Cir	0.013	1.00	372.03	Pipe - (15)
14	6	27.000	-90.000	Comb	0.00	0.16	0.57	10.0	360.64	0.96	360.90	15	Cir	0.013	1.00	364.99	Pipe - (10)
15	5	27.000	-90.174	Comb	0.00	0.07	0.57	10.0	358.68	1.41	359.06	15	Cir	0.013	1.00	362.16	Pipe - (20)
16	4	27.000	-94.006	Comb	0.00	0.08	0.57	10.0	358.68	0.74	358.88	15	Cir	0.013	1.00	362.03	Pipe - (21)
17	3	78.211	61.239	Hdwl	0.00	0.90	0.57	10.0	358.33	0.51	358.73	18	Cir	0.013	1.00	359.75	Pipe - (163)
18	End	79.656	52.362	DrGrt	0.00	1.33	0.57	10.0	356.95	1.00	357.75	18	Cir	0.013	1.00	363.00	Pipe - (24)(0)
Project	File: SCI	√l#4.stm										Number	of lines: 18			Date: 1	2/6/2024

Structure Report

Project File: SCM#4.stm

Struct	Structure ID	Junction	Rim		Structure			Line Out	i		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1	CB 401	Combination	363.04	Rect	4.00	4.00	24	Cir	357.17	24	Cir	357.27
2	CB 402	Combination	363.02	Rect	4.00	4.00	24	Cir	357.40	24 24	Cir Cir	357.50 357.51
3	CB 407	Combination	362.81	Rect	4.00	4.00	24	Cir	357.73	24 18	Cir Cir	357.95 358.33
4	CB 408	Combination	362.04	Rect	4.00	4.00	24	Cir	358.41	18 15	Cir Cir	358.54 358.68
5	CB 409	Combination	362.04	Rect	4.00	4.00	18	Cir	358.72	15 15	Cir Cir	358.86 358.68
6	CB 410	Combination	364.99	Rect	4.00	4.00	15	Cir	360.25	15 15	Cir Cir	360.58 360.64
7	CB 411	Combination	368.85	Rect	4.00	4.00	15	Cir	364.31	15	Cir	364.41
8	CB 412	Combination	369.03	Rect	4.00	4.00	15	Cir	364.65	15	Cir	364.75
9	CB 413	Combination	369.03	Rect	4.00	4.00	15	Cir	364.89			
10	CB 403	Combination	363.00	Rect	4.00	4.00	24	Cir	357.72	18	Cir	358.32
11	CB 404	Combination	363.00	Rect	4.00	4.00	18	Cir	358.46	15	Cir	359.07
12	CB 405	Combination	368.09	Rect	4.00	4.00	15	Cir	361.86	15	Cir	363.06
13	CB 406	Combination	372.03	Rect	4.00	4.00	15	Cir	364.61			
14	CB 410A	Combination	364.99	Rect	4.00	4.00	15	Cir	360.90			
15	CB 409A	Combination	362.16	Rect	4.00	4.00	15	Cir	359.06			
16	CB 408A	Combination	362.03	Rect	4.00	8.00	15	Cir	358.88			
17	FES INLET 407A	OpenHeadwall	359.75	n/a	n/a	n/a	18	Cir	358.73			
18	YI 421	DropGrate	363.00	Rect	4.00	4.00	18	Cir	357.75			

Run Date: 12/6/2024

Number of Structures: 18

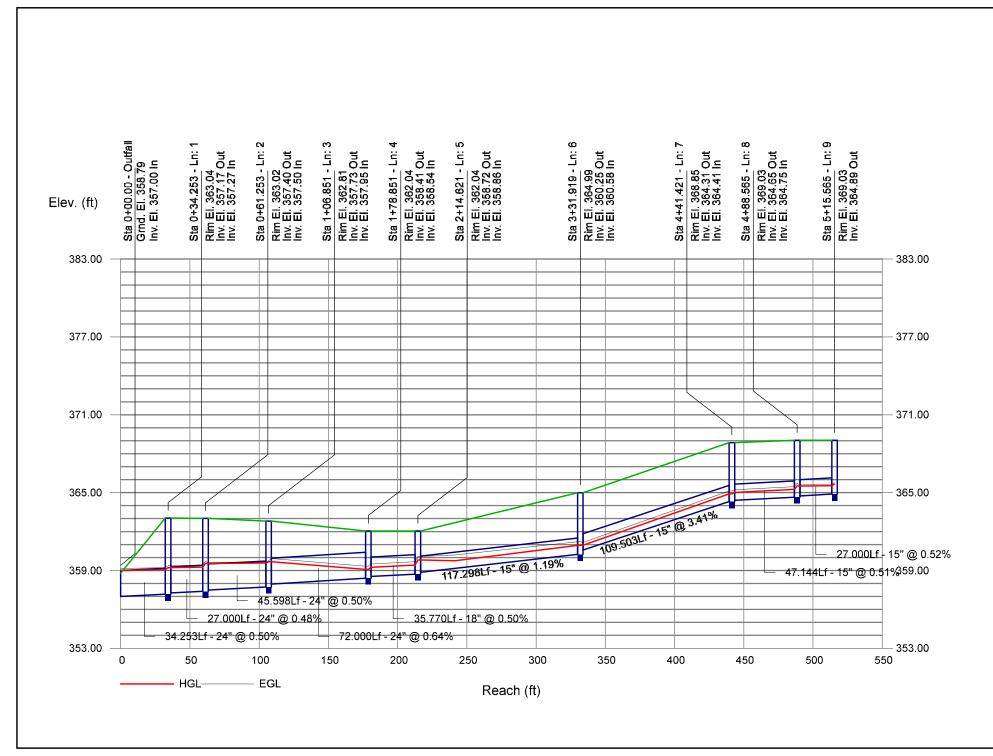
Storm Sewer Summary Report

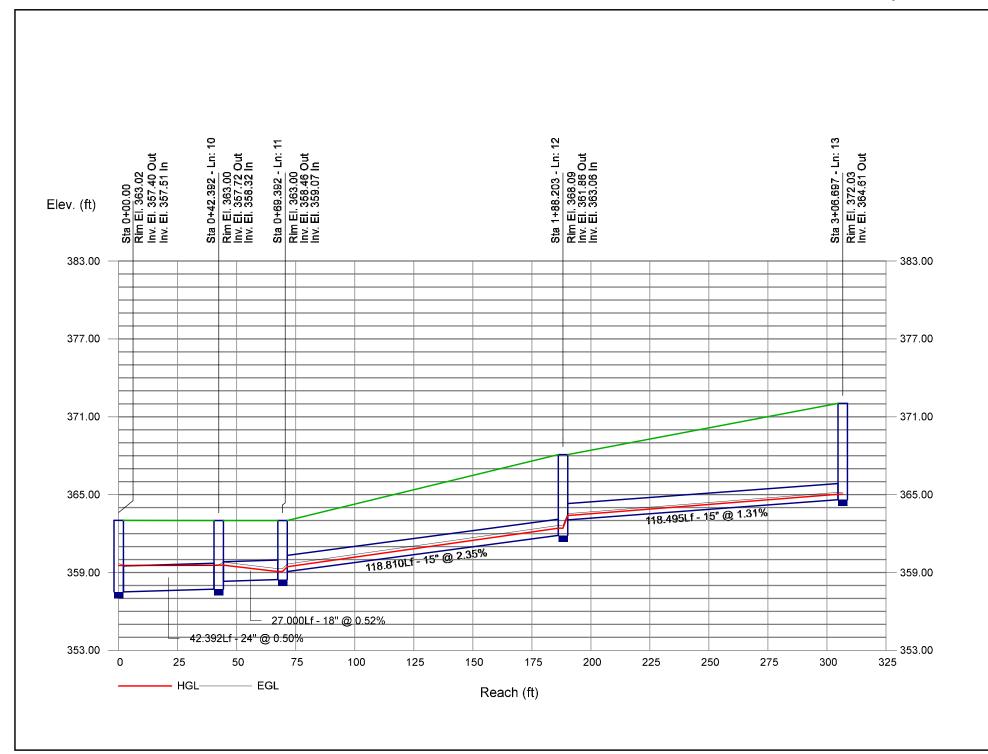
Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	Pipe - (14)	10.12	24	Cir	34.253	357.00	357.17	0.496	359.00	359.06	0.16	359.22	End	Combination
2	Pipe - (19)	9.95	24	Cir	27.000	357.27	357.40	0.481	359.22	359.25	0.29	359.54	1	Combination
3	Pipe - (13) (1)	6.72	24	Cir	45.598	357.50	357.73	0.504	359.54	359.57	0.10	359.68	2	Combination
4	Pipe - (13)	3.75	24	Cir	72.000	357.95	358.41	0.639	359.68	359.09	n/a	359.09	3	Combination
5	Pipe - (12)	3.31	18	Cir	35.770	358.54	358.72	0.503	359.24	359.42	0.39	359.81	4	Combination
6	Pipe - (11)	2.91	15	Cir	117.298	358.86	360.25	1.185	359.81	360.93	n/a	360.93 j	5	Combination
7	Pipe - (9)	2.20	15	Cir	109.503	360.58	364.31	3.406	360.94	364.90	n/a	364.90	6	Combination
8	Pipe - (8)	2.15	15	Cir	47.144	364.41	364.65	0.509	365.01	365.25	0.26	365.51	7	Combination
9	Pipe - (7)	1.78	15	Cir	27.000	364.75	364.89	0.519	365.51	365.53	0.12	365.65	8	Combination
10	Pipe - (18)	3.40	24	Cir	42.392	357.51	357.72	0.495	359.54	359.55	0.02	359.57	2	Combination
11	Pipe - (17)	2.59	18	Cir	27.000	358.32	358.46	0.518	359.57	359.07	n/a	359.07	10	Combination
12	Pipe - (16)	1.92	15	Cir	118.810	359.07	361.86	2.348	359.44	362.41	n/a	362.41	11	Combination
13	Pipe - (15)	1.10	15	Cir	118.495	363.06	364.61	1.308	363.39	365.02	0.15	365.02	12	Combination
14	Pipe - (10)	0.55	15	Cir	27.000	360.64	360.90	0.963	360.93	361.19	n/a	361.19 j	6	Combination
15	Pipe - (20)	0.24	15	Cir	27.000	358.68	359.06	1.407	359.81	359.25	0.07	359.25	5	Combination
16	Pipe - (21)	0.27	15	Cir	27.000	358.68	358.88	0.741	359.09	359.08	n/a	359.08 j	4	Combination
17	Pipe - (163)	3.08	18	Cir	78.211	358.33	358.73	0.511	359.68	359.72	0.10	359.82	3	OpenHeadwall
18	Pipe - (24)(0)	4.56	18	Cir	79.656	356.95	357.75	1.004	358.45	358.57	n/a	358.57 j	End	DropGrate

Project File: SCM#4.stm Run Date: 12/6/2024

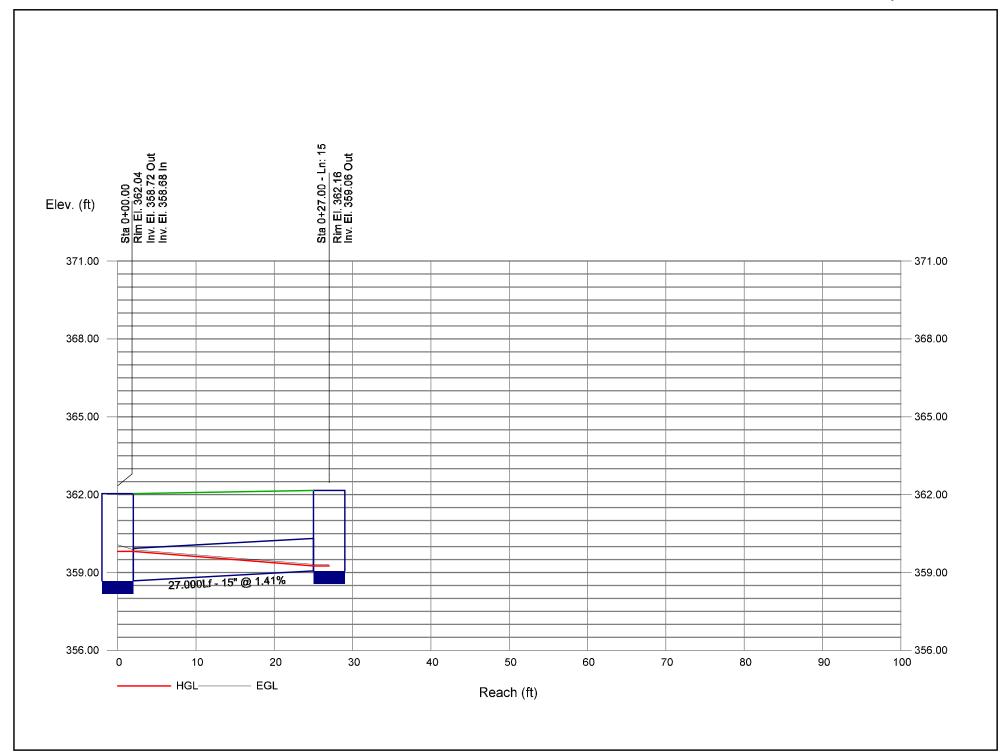
NOTES: Return period = 10 Yrs.; j - Line contains hyd. jump.

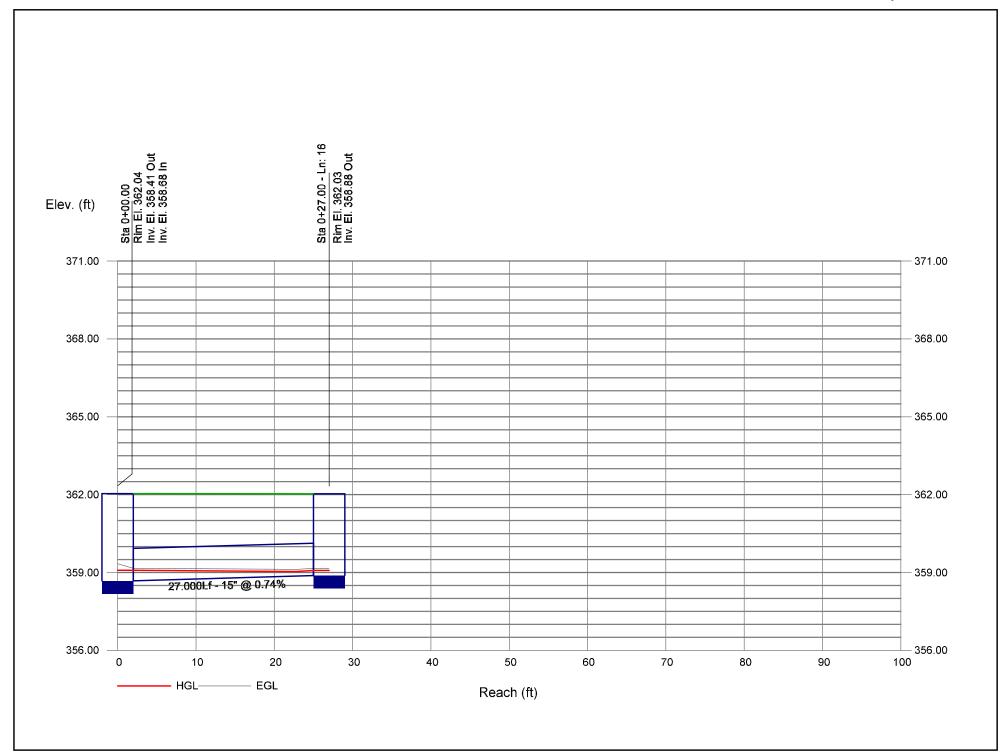
Inlet Report

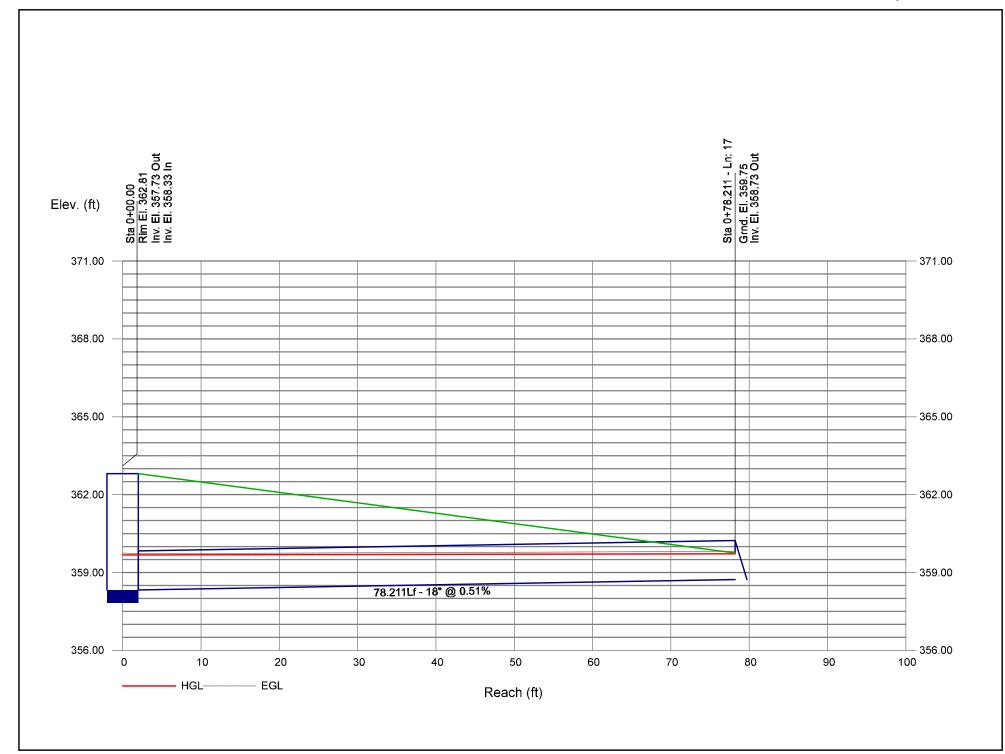

Line No	Inlet ID	Q =	Q	Q	Q	Junc	Curb I	nlet	Gra	ate Inlet				G	utter					Inlet		Byp Line
NO		CIA (cfs)	carry (cfs)	capt (cfs)	Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n		Spread (ft)		Spread (ft)	Depr (in)	No No
1	CB 401	0.24	0.00	0.24	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.10	3.04	0.19	0.55	2.0	Off
2	CB 402	0.03	0.16	0.19	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.09	2.65	0.18	0.33	2.0	Off
3	CB 407	0.14	0.00	0.14	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.08	2.11	0.17	0.00	2.0	Off
4	CB 408	0.21	0.00	0.21	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.020	2.00	0.040	0.020	0.013	0.08	2.20	0.17	0.00	2.0	Off
5	CB 409	0.24	0.00	0.24	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	-0.02	1.16	0.14	1.16	2.0	Off
6	CB 410	0.21	0.00	0.20	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.10	2.77	0.18	0.39	2.0	Off
7	CB 411	0.07	0.00	0.07	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.030	2.00	0.040	0.020	0.013	0.05	1.29	0.17	0.00	2.0	6
8	CB 412	0.38	0.00	0.38	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.02	1.50	0.18	1.50	2.0	Off
9	CB 413	1.78	0.00	1.78	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.13	4.67	0.30	4.67	2.0	Off
10	CB 403	0.86	0.00	0.70	0.16	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.16	5.76	0.25	2.33	2.0	2
11	CB 404	0.72	0.00	0.65	0.07	Comb	6.0	1.50	0.00	3.00	2.50	0.030	2.00	0.040	0.020	0.013	0.12	4.10	0.22	1.27	2.0	Off
12	CB 405	0.86	0.21	0.91	0.15	Comb	6.0	1.50	0.00	3.00	2.50	0.038	2.00	0.040	0.020	0.013	0.13	4.69	0.23	1.66	2.0	Off
13	CB 406	1.10	0.00	0.89	0.21	Comb	6.0	1.50	7.50	3.00	2.50	0.020	2.00	0.040	0.020	0.013	0.15	5.51	0.25	2.24	2.0	12
14	CB 410A	0.55	0.00	0.49	0.06	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.13	4.69	0.23	1.52	2.0	Off
15	CB 409A	0.24	0.00	0.24	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	-0.02	1.16	0.14	1.16	2.0	Off
16	CB 408A	0.27	0.00	0.27	0.00	Comb	6.0	1.50	0.00	3.00	5.00	0.020	2.00	0.040	0.020	0.013	0.09	2.67	0.18	0.39	2.0	Off
17	FES INLET 407A	3.08	0.00	3.08	0.00	Hdwl	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.040	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
18	YI 421	4.56	0.00	4.56	0.00	DrGrt	0.0	0.00	9.00	3.00	3.00	Sag	4.00	0.020	0.020	0.013	0.25	29.20	0.25	29.20	0.0	Off

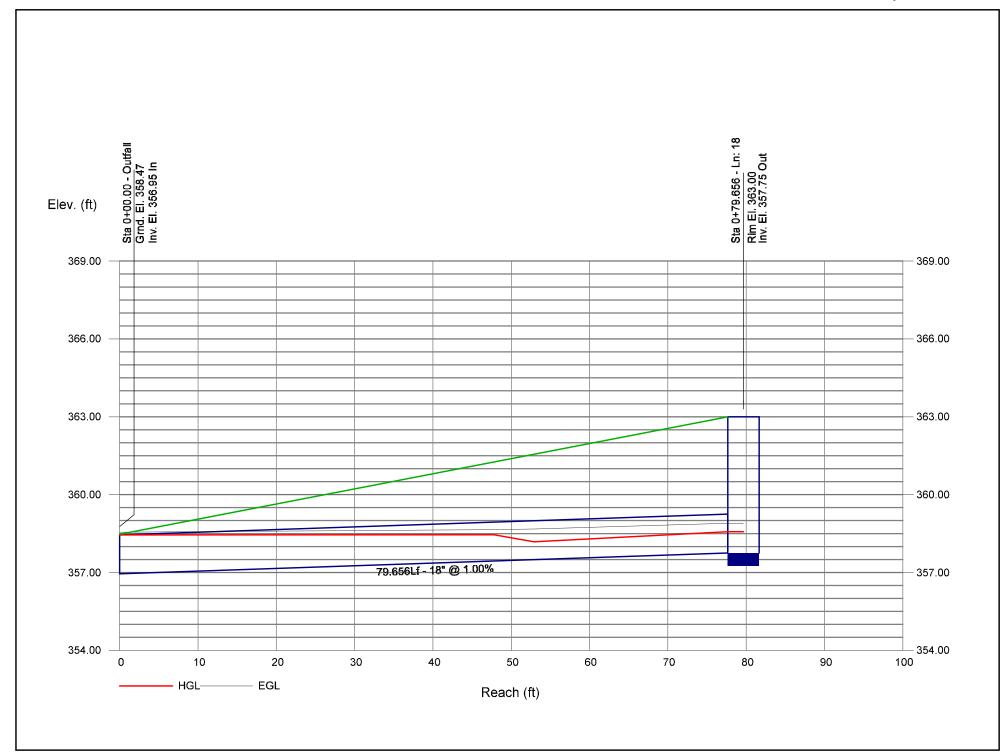

Project File: SCM#4.stm Number of lines: 18 Run Date: 12/6/2024

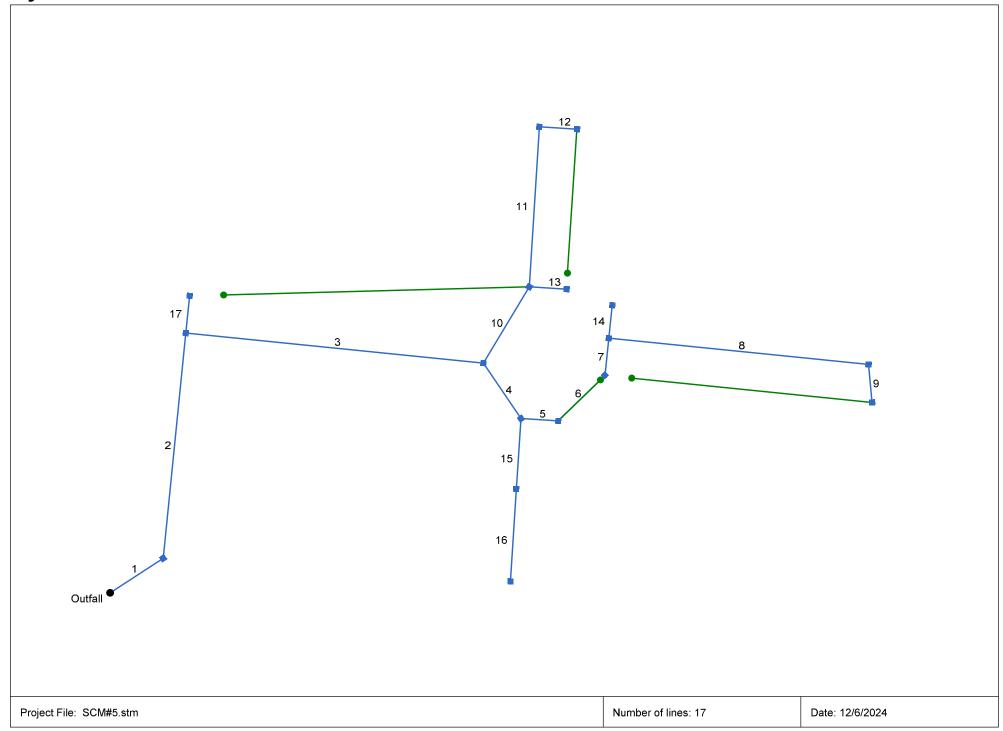
NOTES: Inlet N-Values = 0.016; Intensity = 74.09 / (Inlet time + 12.50) ^ 0.81; Return period = 10 Yrs.; * Indicates Known Q added. All curb inlets are throat.


L	.ine	Size	Q			D	ownstre	am				Len				Upstr	eam				Chec	k	JL "	Minor
				Invert	HGL	Depth	Area	Vel	Vel	EGL	Sf		Invert	HGL	Depth	Area	Vel	Vel	EGL	Sf	Ave Sf	Enrgy	coeff	loss
		(in)	(cfs)	elev (ft)	elev (ft)	(ft)	(sqft)	(ft/s)	head (ft)	elev (ft)	(%)	(ft)	elev (ft)	elev (ft)	(ft)	(sqft)	(ft/s)	head (ft)	elev (ft)	(%)	(%)	loss (ft)	(K)	(ft)
	4	24	10.10	257.00	250.00	0.00	244	2 22	0.40	250.46	0.000	04.050	057.47	250.00	4.00	2.07	0.00	0.47	250.00	0.470	0.407	0.004	0.05	0.40
	1 2	24 24	10.12 9.95	357.00 357.27	359.00 359.22	1.95	3.14	3.22	0.16	359.16 359.37	0.200		357.17 357.40	359.06 359.25	1.89	3.07	3.30	0.17	359.22 359.42	0.173	0.187	0.064	0.95 1.72	0.16
	3	24	6.72	357.50	359.54	2.00	3.14	2.14	0.16	359.57	0.171		357.40	359.25	1.84	3.03	2.22	0.17	359.42	0.167	0.082	0.046	1.72	0.29
	4	24	3.75	357.95	359.68	1.73	0.94	1.30	0.07	359.93	0.000		358.41	359.09	0.68**	0.94	4.00	0.00	359.34	0.000	0.002	n/a	1.50	n/a
	5	18	3.31	358.54	359.24	0.70*	0.80	4.09	0.26	359.50	0.503		358.72	359.42	0.70**	0.81	4.09	0.26	359.68	0.504	0.504	0.180	1.50	0.39
	6	15	2.91	358.86	359.81	0.95	0.69	2.90	0.28	360.09	0.000		8360.25	360.93 i	0.68**	0.69	4.23	0.28	361.21	0.000	0.000	n/a	1.50	n/a
	7	15	2.20	360.58	360.94	0.36*	0.30	7.40	0.23	361.17	0.000	109.50	3364.31	364.90	0.59**	0.57	3.84	0.23	365.13	0.000	0.000	n/a	1.18	n/a
	8	15	2.15	364.41	365.01	0.60*	0.58	3.69	0.21	365.22	0.508	47.144	364.65	365.25	0.60	0.58	3.69	0.21	365.46	0.509	0.509	0.240	1.25	0.26
	9	15	1.78	364.75	365.51	0.76	0.79	2.27	0.08	365.59	0.160	27.000	364.89	365.53	0.64	0.63	2.82	0.12	365.65	0.282	0.221	0.060	1.00	0.12
	10	24	3.40	357.51	359.54	2.00	3.14	1.08	0.02	359.56	0.023	42.392	357.72	359.55	1.83	3.01	1.13	0.02	359.57	0.020	0.021	0.009	1.19	0.02
	11	18	2.59	358.32	359.57	1.25	0.67	1.64	0.23	359.80	0.000	27.000	358.46	359.07	0.61**	0.67	3.84	0.23	359.30	0.000	0.000	n/a	1.50	n/a
	12	15	1.92	359.07	359.44	0.37*	0.31	6.23	0.21	359.65	0.000	118.81	0361.86	362.41	0.55**	0.52	3.68	0.21	362.62	0.000	0.000	n/a	0.69	n/a
	13	15	1.10	363.06	363.39	0.33*	0.25	4.31	0.15	363.54	0.000	118.49	5364.61	365.02	0.41**	0.35	3.11	0.15	365.17	0.000	0.000	n/a	1.00	0.15
	14	15	0.55	360.64	360.93	0.29	0.21	2.48	0.10	361.04	0.000	27.000	360.90	361.19 j	0.29**	0.21	2.56	0.10	361.29	0.000	0.000	n/a	1.00	n/a
	15	15	0.24	358.68	359.81	1.13	0.12	0.21	0.07	359.88	0.000	27.000	359.06	359.25	0.19**	0.12	2.05	0.07	359.31	0.000	0.000	n/a	1.00	0.07
	16	15	0.27	358.68	359.09	0.41	0.13	0.79	0.07	359.16	0.000	27.000	358.88	359.08 j	0.20**	0.13	2.12	0.07	359.15	0.000	0.000	n/a	1.00	n/a
	17	18	3.08	358.33	359.68	1.35	1.67	1.84	0.05	359.73	0.076	78.211	358.73	359.72	0.99	1.24	2.50	0.10	359.82	0.145	0.110	0.086	1.00	0.10
	18	18	4.56	356.95	358.45	1.50*	0.99	2.58	0.10	358.55	0.189	79.656	357.75	358.57 j	0.82**	0.99	4.62	0.33	358.90	0.562	0.375	n/a	1.00	n/a
F																								


Project File: SCM#4.stm Number of lines: 18 Run Date: 12/6/2024







Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan 10-Year SCM#5 Report

Storm Sewer Inventory Report

ine		Aligni	ment			Flow	Data					Physical	Data				Line ID
lo.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	45.553	-33.168	DrGrt	0.00	1.27	0.57	10.0	346.92	0.50	347.15	30	Cir	0.013	1.22	350.00	Pipe - (39)
2	1	163.558	-51.139	Comb	0.00	0.28	0.57	10.0	347.25	3.24	352.55	24	Cir	0.013	1.50	357.04	Pipe - (38)
3	2	215.399	90.101	Comb	0.00	0.04	0.57	10.0	352.65	4.00	361.27	24	Cir	0.013	1.38	366.04	Pipe - (37)
4	3	48.260	50.241	Comb	0.00	0.03	0.57	10.0	361.37	0.99	361.85	24	Cir	0.013	1.49	367.77	Pipe - (36)
5	4	27.000	-52.412	Comb	0.00	1.06	0.57	10.0	362.36	0.52	362.50	24	Cir	0.013	1.17	367.48	Pipe - (35)
6	5	47.057	-47.882	Comb	0.00	0.24	0.57	10.0	362.58	0.53	362.83	24	Cir	0.013	1.04	367.03	Pipe - (34)
7	6	27.000	-39.946	Comb	0.00	0.19	0.57	10.0	362.93	0.52	363.07	18	Cir	0.013	1.50	367.03	Pipe - (33)
8	7	187.898	90.000	Comb	0.00	0.14	0.57	10.0	363.26	3.69	370.19	15	Cir	0.013	1.48	374.04	Pipe - (31)
9	8	27.526	78.789	Comb	0.00	0.14	0.57	10.0	370.29	0.51	370.43	15	Cir	0.013	1.00	374.10	Pipe - (30)
10	3	64.208	-64.883	Comb	0.00	0.07	0.57	10.0	362.27	1.32	363.12	15	Cir	0.013	1.36	368.61	Pipe - (44)
11	10	115.871	-27.298	Comb	0.00	0.11	0.57	10.0	363.77	2.68	366.88	15	Cir	0.013	1.50	372.04	Pipe - (150)
12	11	27.018	90.079	Comb	0.00	0.12	0.57	10.0	367.17	1.07	367.46	15	Cir	0.013	1.00	372.04	Pipe - (28)
13	10	27.000	62.711	Comb	0.00	0.07	0.57	10.0	364.00	0.89	364.24	15	Cir	0.013	1.00	368.57	Pipe - (43)
14	7	24.000	0.003	DrGrt	0.00	1.45	0.57	10.0	363.18	0.88	363.39	18	Cir	0.013	1.00	367.00	Pipe - (45)
15	4	50.977	37.588	Comb	0.00	0.04	0.57	10.0	362.69	0.63	363.01	15	Cir	0.013	0.50	367.99	Pipe - (42)
16	15	66.788	0.000	Comb	0.00	0.06	0.57	10.0	363.11	1.62	364.19	15	Cir	0.013	1.00	369.04	Pipe - (41)
17	2	27.001	0.467	Comb	0.00	0.26	0.57	10.0	353.30	0.52	353.44	15	Cir	0.013	1.00	357.04	Pipe - (40)
roject F	⊥ File: SCN	/l#5.stm	l	1	1	1		1	1	1	1	Number	of lines: 17		1	Date: 1	

Structure Report

Project File: SCM#5.stm

Struct	Structure ID	Junction	Rim		Structure			Line Ou	t		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1	YI 501	DropGrate	350.00	Rect	4.00	4.00	30	Cir	347.15	24	Cir	347.25
2	CB 502	Combination	357.04	Rect	4.00	4.00	24	Cir	352.55	24 15	Cir Cir	352.65 353.30
3	CB 504	Combination	366.04	Rect	4.00	4.00	24	Cir	361.27	24 15	Cir Cir	361.37 362.27
4	CB 505	Combination	367.77	Rect	4.00	4.00	24	Cir	361.85	24 15	Cir Cir	362.36 362.69
5	CB 506	Combination	367.48	Rect	4.00	4.00	24	Cir	362.50	24	Cir	362.58
6	CB 507	Combination	367.03	Rect	4.00	4.00	24	Cir	362.83	18	Cir	362.93
7	CB 508	Combination	367.03	Rect	4.00	4.00	18	Cir	363.07	15 18	Cir Cir	363.26 363.18
8	CB 514	Combination	374.04	Rect	4.00	4.00	15	Cir	370.19	15	Cir	370.29
9	CB 515	Combination	374.10	Rect	4.00	4.00	15	Cir	370.43			
10	CB 511	Combination	368.61	Rect	4.00	4.00	15	Cir	363.12	15 15	Cir Cir	363.77 364.00
11	CB 517	Combination	372.04	Rect	4.00	4.00	15	Cir	366.88	15	Cir	367.17
12	CB 516	Combination	372.04	Rect	4.00	4.00	15	Cir	367.46			
13	CB 510	Combination	368.57	Rect	4.00	4.00	15	Cir	364.24			
14	YI 509	DropGrate	367.00	Rect	4.00	4.00	18	Cir	363.39			
15	CB 512	Combination	367.99	Rect	4.00	4.00	15	Cir	363.01	15	Cir	363.11
16	CB 513	Combination	369.04	Rect	4.00	4.00	15	Cir	364.19			
17	CB 503	Combination	357.04	Rect	4.00	4.00	15	Cir	353.44			

Run Date: 12/6/2024

Number of Structures: 17

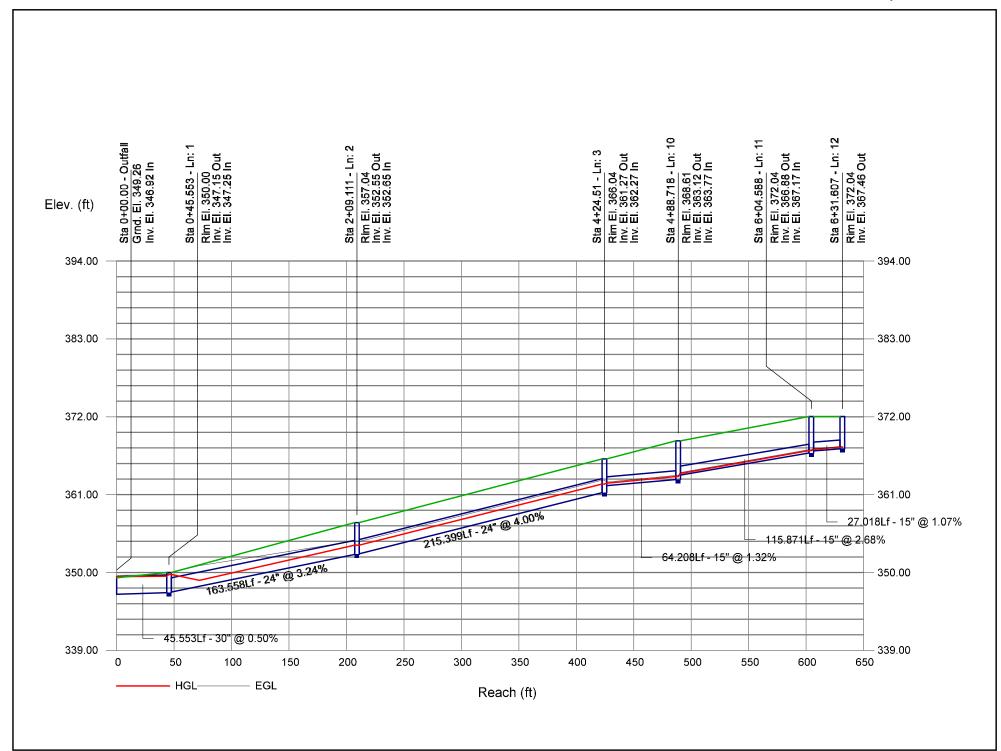
Storm Sewer Summary Report

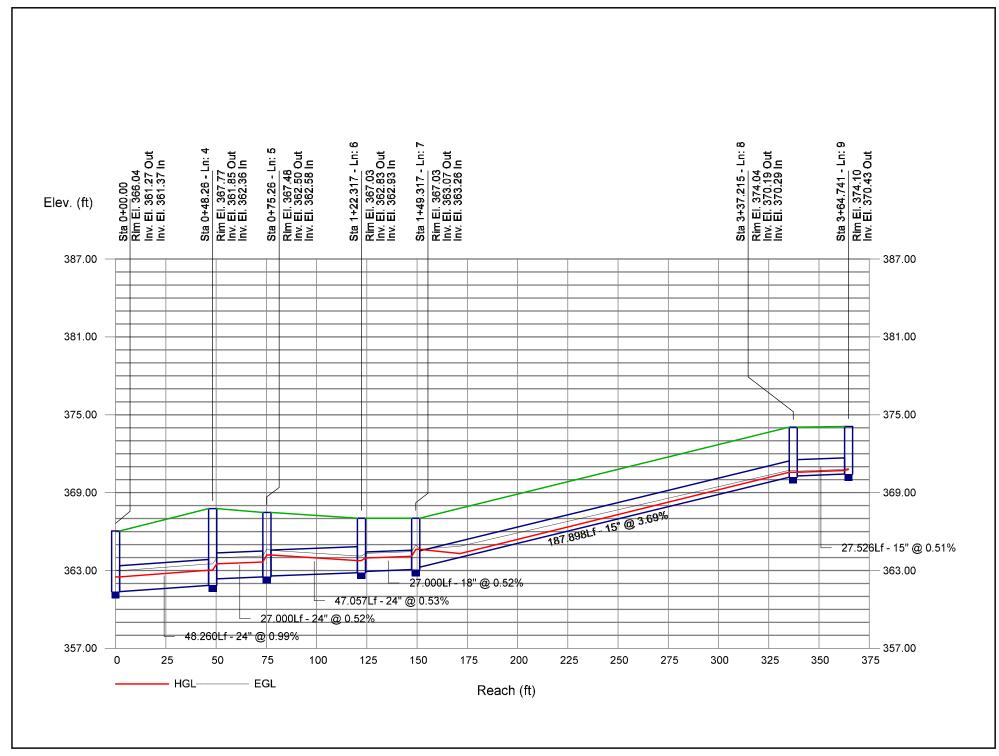
Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
39)	16.98	30	Cir	45.553	346.92	347.15	0.505	349.42	349.48	0.24	349.72	End	DropGrate
38)	13.32	24	Cir	163.558	347.25	352.55	3.240	349.72	353.86	n/a	353.86 j	1	Combination
37)	11.88	24	Cir	215.399	352.65	361.27	4.002	353.86	362.51	n/a	362.51	2	Combination
36)	10.63	24	Cir	48.260	361.37	361.85	0.995	362.51	363.02	0.72	363.02	3	Combination
35)	10.25	24	Cir	27.000	362.36	362.50	0.519	363.51	363.65	0.55	364.20	4	Combination
34)	6.92	24	Cir	47.057	362.58	362.83	0.531	364.20	363.76	0.38	363.76	5	Combination
(33)	6.17	18	Cir	27.000	362.93	363.07	0.519	363.96	364.10	0.53	364.63	6	Combination
31)	0.95	15	Cir	187.898	363.26	370.19	3.688	364.63	370.57	n/a	370.57 j	7	Combination
30)	0.48	15	Cir	27.526	370.29	370.43	0.509	370.57	370.70	0.09	370.79	8	Combination
44)	1.24	15	Cir	64.208	362.27	363.12	1.324	362.62	363.56	n/a	363.56	3	Combination
150)	0.78	15	Cir	115.871	363.77	366.88	2.684	364.00	367.23	n/a	367.23	10	Combination
28)	0.41	15	Cir	27.018	367.17	367.46	1.073	367.38	367.71	0.09	367.71	11	Combination
43)	0.24	15	Cir	27.000	364.00	364.24	0.889	364.17	364.43	0.07	364.43	10	Combination
45)	4.97	18	Cir	24.000	363.18	363.39	0.875	364.63	364.25	n/a	364.25	7	DropGrate
(42)	0.34	15	Cir	50.977	362.69	363.01	0.628	363.02	363.23	n/a	363.23 j	4	Combination
41)	0.21	15	Cir	66.788	363.11	364.19	1.617	363.25	364.37	0.06	364.37	15	Combination
40)	0.89	15	Cir	27.001	353.30	353.44	0.519	353.86	353.87	0.09	353.96	2	Combination

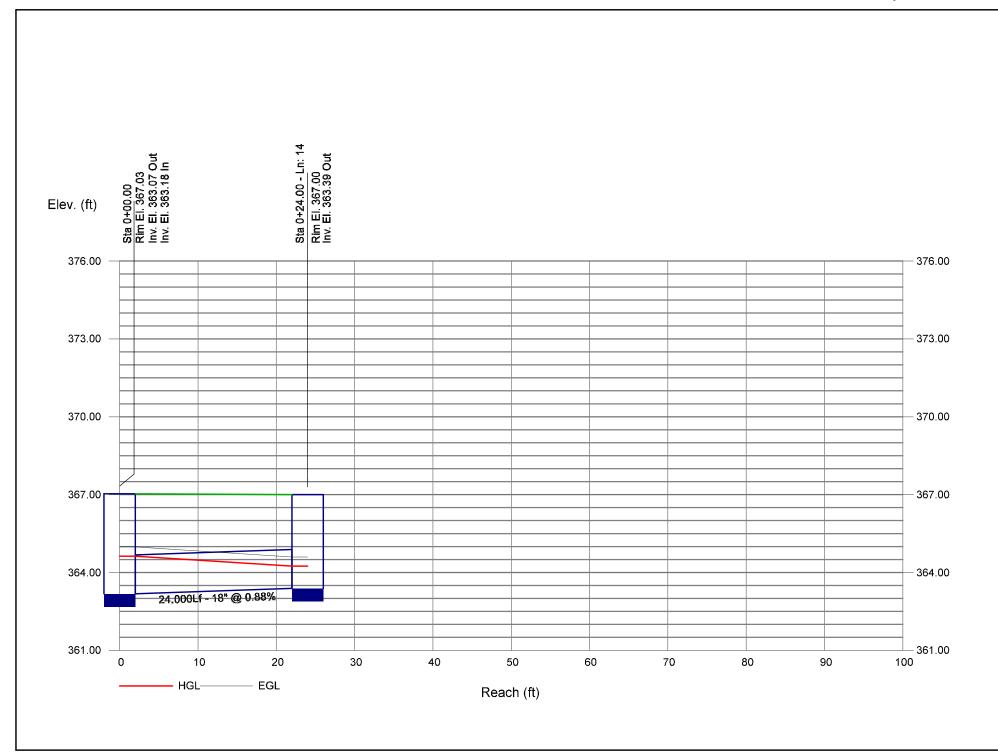
Project File: SCM#5.stm Run Date: 12/6/2024

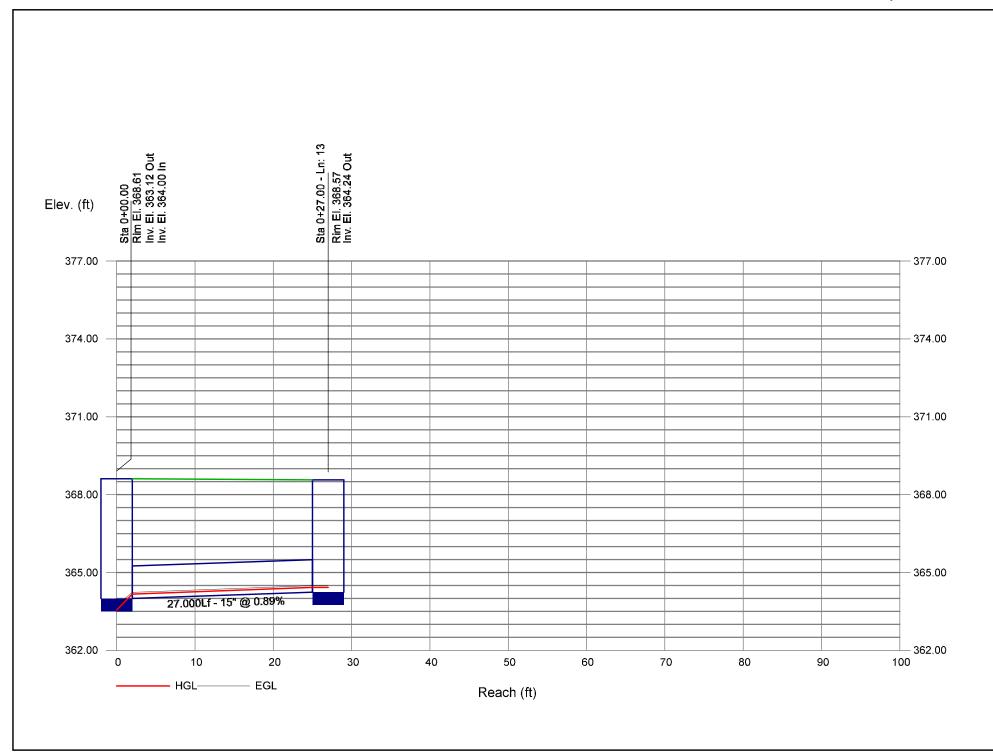
NOTES: Return period = 10 Yrs.; j - Line contains hyd. jump.

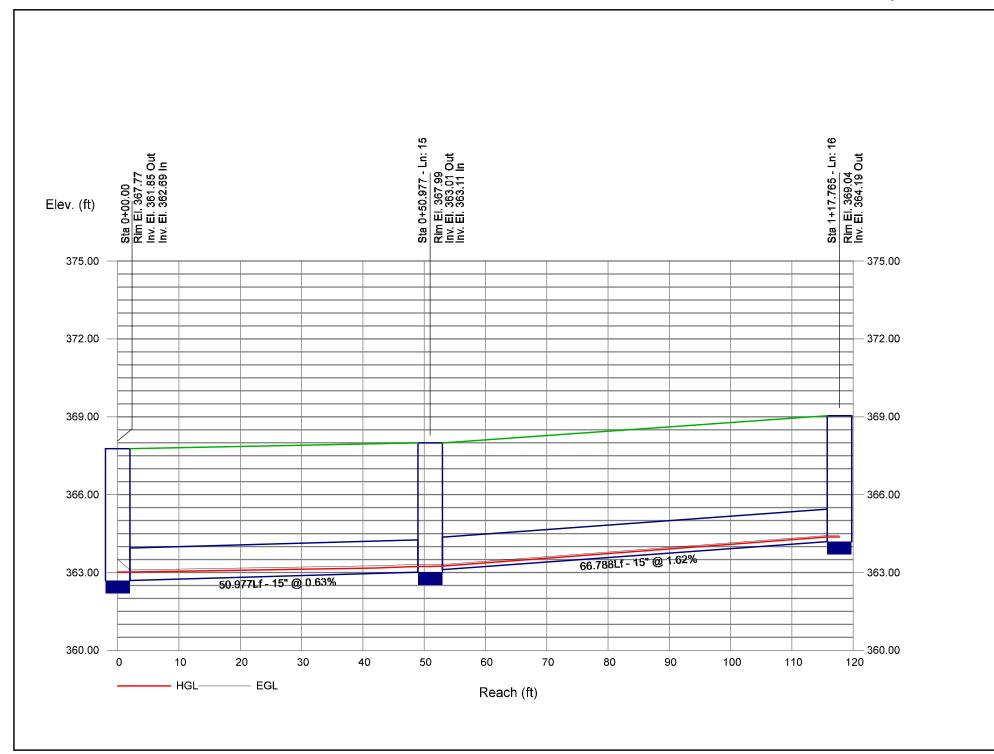
Inlet Report

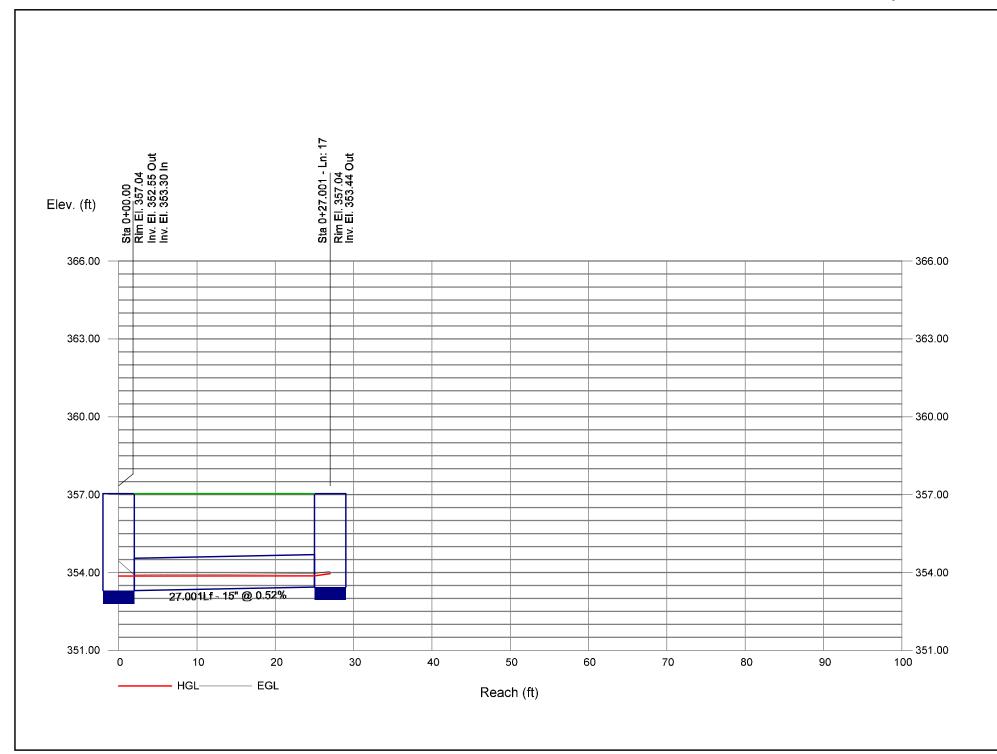

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb Ir	nlet	Gra	ate Inlet				G	utter					Inlet		Вур
No		CIA (cfs)	carry (cfs)	capt (cfs)	Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n		Spread (ft)		Spread (ft)	Depr (in)	Line No
1	YI 501	4.35	0.00	4.35	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	4.00	0.020	0.020	0.013	0.32	36.02	0.32	36.02	0.0	Off
2	CB 502	0.96	0.00	0.96	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.11	3.39	0.27	3.39	2.0	Off
3	CB 504	0.14	0.00	0.14	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.047	2.00	0.040	0.020	0.013	0.06	1.54	0.17	0.00	2.0	2
4	CB 505	0.10	0.00	0.10	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.07	1.84	0.17	0.00	2.0	3
5	CB 506	3.63	0.00	2.05	1.58	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.25	10.51	0.36	7.50	2.0	6
6	CB 507	0.82	1.60	2.42	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.17	6.66	0.34	6.66	2.0	Off
7	CB 508	0.65	0.01	0.66	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.08	2.07	0.25	2.07	2.0	Off
8	CB 514	0.48	0.00	0.47	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.039	2.00	0.040	0.020	0.013	0.10	3.06	0.19	0.64	2.0	7
9	CB 515	0.48	0.00	0.47	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.039	2.00	0.040	0.020	0.013	0.10	3.06	0.19	0.64	2.0	6
10	CB 511	0.24	0.01	0.25	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.040	2.00	0.040	0.020	0.013	0.08	1.97	0.17	0.00	2.0	17
11	CB 517	0.38	0.00	0.37	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.030	2.00	0.040	0.020	0.013	0.10	2.87	0.19	0.51	2.0	10
12	CB 516	0.41	0.00	0.40	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.030	2.00	0.040	0.020	0.013	0.10	3.02	0.19	0.60	2.0	13
13	CB 510	0.24	0.01	0.25	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.040	2.00	0.040	0.020	0.013	0.08	1.98	0.17	0.00	2.0	10
14	YI 509	4.97	0.00	4.97	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	4.00	0.020	0.020	0.013	0.35	38.98	0.35	38.98	0.0	Off
15	CB 512	0.14	0.00	0.14	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.020	2.00	0.040	0.020	0.013	0.07	1.80	0.17	0.00	2.0	4
16	CB 513	0.21	0.00	0.21	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.020	2.00	0.040	0.020	0.013	0.08	2.20	0.17	0.00	2.0	15
17	CB 503	0.89	0.00	0.89	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.10	3.10	0.27	3.10	2.0	Off
													Ь.,								<u> </u>	


Project File: SCM#5.stm Number of lines: 17 Run Date: 12/6/2024


NOTES: Inlet N-Values = 0.016; Intensity = 74.09 / (Inlet time + 12.50) ^ 0.81; Return period = 10 Yrs.; * Indicates Known Q added. All curb inlets are throat.


Line	Size	Q			D	ownstre	am				Len				Upstr	eam				Chec	k	JL	Minor
	(1-1)	(252)	Invert	HGL elev	Depth		Vel		EGL elev	Sf		Invert	HGL elev	Depth	Area	Vel	Vel head	EGL elev	Sf	Ave Sf	Enrgy	coeff	loss
	(in)	(cfs)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(%)	(ft)	(K)	(ft)
1	30	16.98	346.92	349.42	2.50	4.91	3.46	0.19	349.61	0.171	45.553	347.15	349.48	2.33	4.76	3.56	0.20	349.68	0.148	0.160	0.073	1.22	0.24
2	24	13.32	347.25	349.72	2.00	2.19	4.24	0.28	350.00	0.347	163.55	8352.55	353.86 j	1.31**	2.19	6.09	0.58	354.44	0.590	0.468	n/a	1.50	n/a
3	24	11.88	352.65	353.86	1.21	1.99	5.96	0.53	354.39	0.000	215.39	9361.27	362.51	1.24**	2.04	5.82	0.53	363.03	0.000	0.000	n/a	1.38	n/a
4	24	10.63	361.37	362.51	1.14	1.84	5.77	0.48	362.99	0.000	48.260	361.85	363.02	1.17**	1.90	5.58	0.48	363.50	0.000	0.000	n/a	1.49	0.72
5	24	10.25	362.36	363.51	1.15*	1.86	5.48	0.47	363.98	0.518	27.000	362.50	363.65	1.15**	1.87	5.48	0.47	364.12	0.519	0.519	0.140	1.17	0.55
6	24	6.92	362.58	364.20	1.62	1.44	2.54	0.36	364.56	0.000	47.057	362.83	363.76	0.93**	1.44	4.82	0.36	364.12	0.000	0.000	n/a	1.04	0.38
7	18	6.17	362.93	363.96	1.03*	1.29	4.77	0.35	364.31	0.518	27.000	363.07	364.10	1.03	1.29	4.77	0.35	364.45	0.519	0.518	0.140	1.50	0.53
8	15	0.95	363.26	364.63	1.25	0.32	0.78	0.01	364.64	0.022	187.89	8370.19	370.57 j	0.38**	0.32	2.99	0.14	370.71	0.523	0.272	n/a	1.48	0.21
9	15	0.48	370.29	370.57	0.28	0.19	2.30	0.08	370.66	0.436		370.43	370.70	0.27**	0.20	2.44	0.09	370.79	0.513	0.474	0.131	1.00	0.09
10	15	1.24	362.27	362.62	0.35*	0.28	4.49	0.16	362.78	0.000		363.12	363.56	0.44**	0.38	3.23	0.16	363.72	0.000	0.000	n/a	1.36	n/a
11	15	0.78	363.77	364.00	0.23*	0.16	5.04	0.12	364.12	0.000		1366.88	367.23	0.35**	0.28	2.83	0.12	367.35	0.000	0.000	n/a	1.50	n/a
12	15	0.41	367.17	367.38	0.21*	0.14	3.02	0.09	367.47	0.000		367.46	367.71	0.25**	0.17	2.37	0.09	367.80	0.000	0.000	n/a	1.00	0.09
13	15	0.24	364.00	364.17	0.17*	0.10	2.40	0.07	364.24	0.000		364.24	364.43	0.19**	0.12	2.05	0.07	364.49	0.000	0.000	n/a	1.00	0.07
14	18 15	0.34	363.18 362.69	364.63 363.02	0.33	0.15	1.32	0.35	364.98 363.10	0.000		363.39 363.01	364.25 363.23 j	0.86**	0.15	4.76 2.25	0.35	364.60 363.31	0.000	0.000	n/a n/a	1.00 0.50	n/a n/a
16	15	0.34	363.11	363.02	0.33	0.13	2.83	0.08	363.10	0.000		364.19	364.37	0.22	0.13	1.97	0.06	364.43	0.000	0.000	n/a	1.00	0.06
17	15	0.89	353.30	353.86	0.56	0.54	1.66	0.04	353.91	0.110		353.44	353.87	0.43	0.38	2.37	0.09	353.96	0.291	0.200	0.054	1.00	0.09
''		0.00	000.00	000.00	0.00	0.01	1.00	0.01	000.01	0.110	27.001	000.11	000.07	0.10	0.00	2.07	0.00	000.00	0.201	0.200	0.001	1.00	0.00


Project File: SCM#5.stm Number of lines: 17 Run Date: 12/6/2024



Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan 10-Year Bypass Report Outfall 1 Outfall 2 Project File: Bypass.stm Number of lines: 3 Date: 12/5/2024

Line		Align	ment			Flow	Data					Physical	Data				Line ID
No.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Q	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	79.189	3.627	Hdwl	0.00	1.58	0.57	10.0	366.06	4.36	369.51	18	Cir	0.013	1.00	371.30	Pipe - (27)
2	End	23.999	80.505	Comb	0.00	0.08	0.57	10.0	356.16	0.50	356.28	15	Cir	0.013	0.71	360.04	Pipe - (26)
3	2	27.005	-24.771	Comb	0.00	0.09	0.57	10.0	356.41	0.52	356.55	15	Cir	0.013	1.00	360.04	Pipe - (25)
Projec	t File: Byp	ass.stm										Number	of lines: 3			Date: 1	2/5/2024

Structure Report

Struct	Structure ID	Junction	Rim		Structure			Line Out			Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1	FES INLET 601	OpenHeadwall	371.30	n/a	n/a	n/a	18	Cir	369.51			
2	CB 421	Combination	360.04	Rect	4.00	4.00	15	Cir	356.28	15	Cir	356.41
3	CB 422	Combination	360.04	Rect	4.00	4.00	15	Cir	356.55			
Project I	rile: Bypass.stm		1	1	1	1	N	lumber of Structu	ıres: 3	Run I	Date: 12/5/202	4

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	Pipe - (27)	5.42	18	Cir	79.189	366.06	369.51	4.357	367.56	370.41	n/a	370.41 j	End	OpenHeadwall
2	Pipe - (26)	0.55	15	Cir	23.999	356.16	356.28	0.500	357.41	357.41	0.00	357.41	End	Combination
3	Pipe - (25)	0.31	15	Cir	27.005	356.41	356.55	0.518	357.41	357.42	0.00	357.42	2	Combination

Project File: Bypass.stm

NOTES: Return period = 10 Yrs.; j - Line contains hyd. jump.

Number of lines: 3

Run Date: 12/5/2024

Inlet Report

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb li	nlet	Gra	ite Inlet				G	utter					Inlet		Вур
No		CIA (cfs)			Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	Line No
1	FES INLET 601	5.42	0.00	5.42	0.00	Hdwl	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.040	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
2	CB 421	0.27	0.00	0.27	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.029	2.00	0.040	0.020	0.013	0.09	2.36	0.17	0.16	2.0	Off
3	CB 422	0.31	0.00	0.31	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.029	2.00	0.040	0.020	0.013	0.09	2.56	0.18	0.28	2.0	Off

Project File: Bypass.stm Number of lines: 3 Run Date: 12/5/2024

NOTES: Inlet N-Values = 0.016; Intensity = 74.09 / (Inlet time + 12.50) ^ 0.81; Return period = 10 Yrs.; * Indicates Known Q added. All curb inlets are throat.

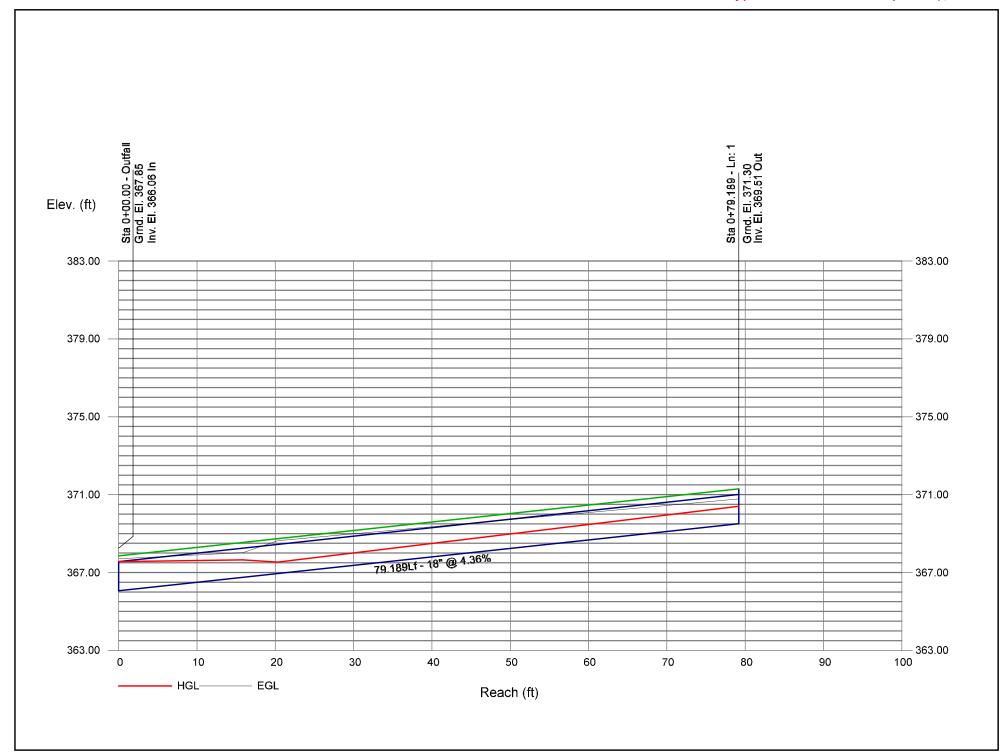
Hydraulic Grade Line Computations

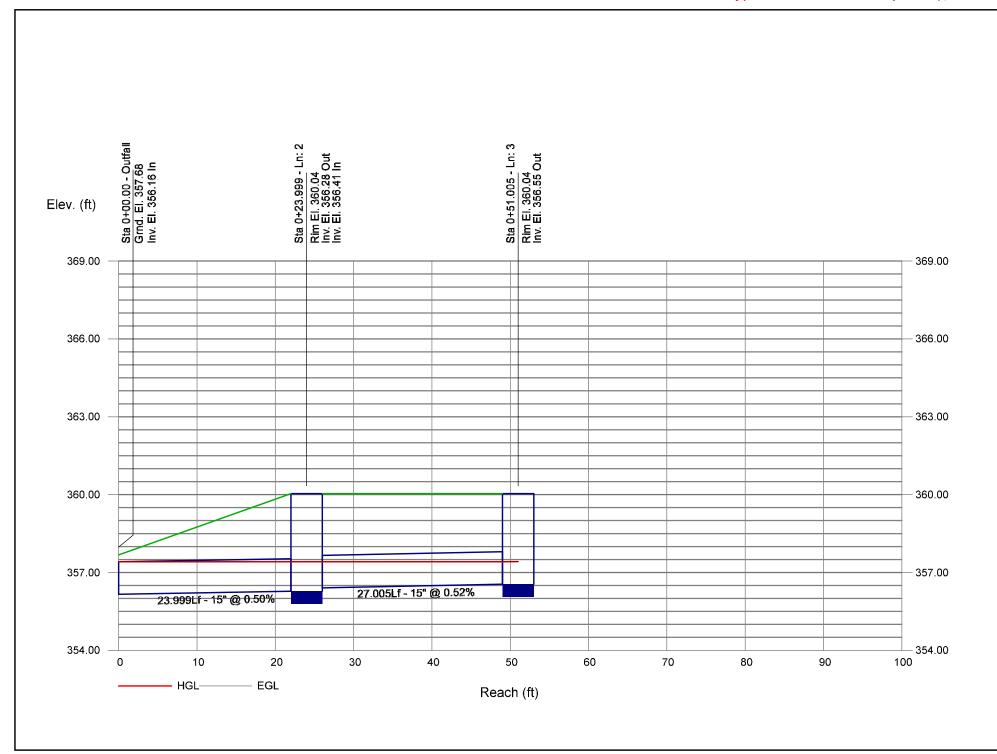
Line	Size	Q			D	ownstre	eam				Len				Upst	ream				Chec	k	JL	Minor
(1)	(in) (2)	(cfs) (3)	Invert elev (ft) (4)	HGL elev (ft) (5)	Depth (ft) (6)	Area (sqft) (7)	Vel (ft/s) (8)	Vel head (ft) (9)	EGL elev (ft) (10)	Sf (%) (11)		Invert elev (ft) (13)	HGL elev (ft) (14)	Depth (ft) (15)	Area (sqft) (16)	(ft/s) (17)	Vel head (ft) (18)	EGL elev (ft) (19)	Sf (%) (20)	Ave Sf (%) (21)	Enrgy loss (ft) (22)	(K) (23)	(ft) (24)
1	18	5.42	366.06	367.56	1.50	1.10	3.06	0.15	367.71	0.266	79.189	369.51	370.41 j	0.90**	1.10	4.92	0.38	370.78	0.597	0.431	n/a	1.00	n/a
2	15	0.55	356.16	357.41	1.25*	1.23	0.45	0.00	357.41	0.007	23.999	356.28	357.41	1.13	1.17	0.47	0.00	357.41	0.006	0.007	0.002	0.71	0.00
3	15	0.31	356.41	357.41	1.00	1.06	0.29	0.00	357.42	0.002	27.005	356.55	357.42	0.87	0.91	0.34	0.00	357.42	0.003	0.003	0.001	1.00	0.00

Project File: Bypass.stm

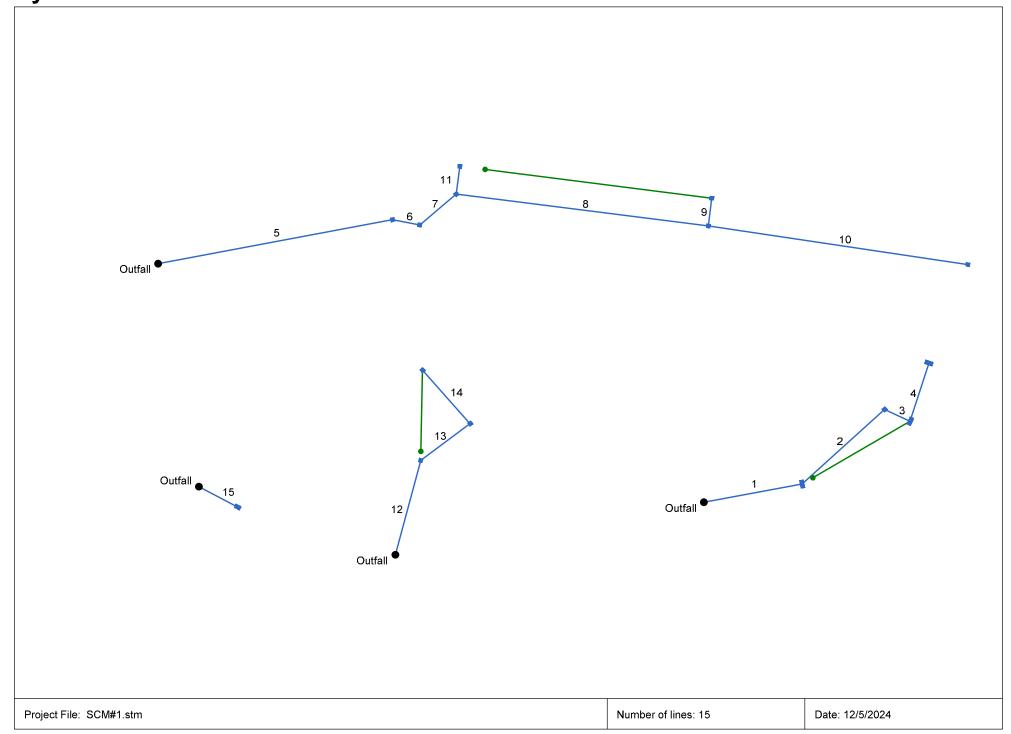
Number of lines: 3

Run Date: 12/5/2024


Notes: * depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box


Hydraflow HGL Computation Procedure

General Procedure:


Hydraflow computes the HGL using the Bernoulli energy equation. Manning's equation is used to determine energy losses due to pipe friction. In a standard step, iterative procedure, Hydraflow assumes upstream HGLs until the energy equation balances. If the energy equation cannot balance, supercritical flow exists and critical depth is temporarily assumed at the upstream end. A supercritical flow Profile is then computed using the same procedure in a downstream direction using momentum principles.

- Col. 1 The line number being computed. Calculations begin at Line 1 and proceed upstream.
- Col. 2 The line size. In the case of non-circular pipes, the line rise is printed above the span.
- Col. 3 Total flow rate in the line.
- Col. 4 The elevation of the downstream invert.
- Col. 5 Elevation of the hydraulic grade line at the downstream end. This is computed as the upstream HGL + Minor loss of this line's downstream line.
- Col. 6 The downstream depth of flow inside the pipe (HGL Invert elevation) but not greater than the line size.
- Col. 7 Cross-sectional area of the flow at the downstream end.
- Col. 8 The velocity of the flow at the downstream end, (Col. 3 / Col. 7).
- Col. 9 Velocity head (Velocity squared / 2g).
- Col. 10 The elevation of the energy grade line at the downstream end, HGL + Velocity head, (Col. 5 + Col. 9).
- Col. 11 The friction slope at the downstream end (the S or Slope term in Manning's equation).
- Col. 12 The line length.
- Col. 13 The elevation of the upstream invert.
- Col. 14 Elevation of the hydraulic grade line at the upstream end.
- Col. 15 The upstream depth of flow inside the pipe (HGL Invert elevation) but not greater than the line size.
- Col. 16 Cross-sectional area of the flow at the upstream end.
- Col. 17 The velocity of the flow at the upstream end, (Col. 3 / Col. 16).
- Col. 18 Velocity head (Velocity squared / 2g).
- Col. 19 The elevation of the energy grade line at the upstream end, HGL + Velocity head, (Col. 14 + Col. 18).
- Col. 20 The friction slope at the upstream end (the S or Slope term in Manning's equation).
- Col. 21 The average of the downstream and upstream friction slopes.
- Col. 22 Energy loss. Average Sf/100 x Line Length (Col. 21/100 x Col. 12). Equals (EGL upstream EGL downstream) +/- tolerance.
- Col. 23 The junction loss coefficient (K).
- Col. 24 Minor loss. (Col. 23 x Col. 18). Is added to upstream HGL and used as the starting HGL for the next upstream line(s).

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan 25-Year SCM#1 Report

_ine		Alignr	nent			Flow	/ Data					Physical	Data				Line ID
No.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	96.027	-10.617	Comb	0.00	0.59	0.57	10.0	380.50	0.58	381.06	18	Cir	0.013	0.87	386.00	Pipe - (97)
2	1	107.000	-31.568	Comb	0.00	0.08	0.57	10.0	381.63	0.77	382.45	15	Cir	0.013	1.40	387.03	Pipe - (95)
3	2	26.999	67.120	Comb	0.00	0.56	0.57	10.0	382.55	0.67	382.73	15	Cir	0.013	1.50	387.04	Pipe - (94)
4	3	59.003	-96.968	Comb	0.00	0.46	0.57	10.0	382.83	0.75	383.27	15	Cir	0.013	1.00	387.89	Pipe - (93)
5	End	229.120	-10.656	Comb	0.00	0.07	0.57	10.0	363.00	2.20	368.04	18	Cir	0.013	0.63	373.98	Pipe - (86)
6	5	27.000	21.423	Comb	0.00	0.20	0.57	10.0	368.14	0.52	368.28	18	Cir	0.013	1.22	373.87	Pipe - (85)
7	6	45.912	-51.157	Comb	0.00	0.29	0.57	10.0	368.38	3.48	369.98	18	Cir	0.013	1.62	375.04	Pipe - (84)
8	7	244.371	47.632	Comb	0.00	0.13	0.57	10.0	370.08	2.96	377.31	15	Cir	0.013	1.50	382.57	Pipe - (83)
9	8	27.044	-90.017	Comb	0.00	0.74	0.57	10.0	378.23	0.63	378.40	15	Cir	0.013	1.00	382.57	Pipe - (88)
10	8	252.428	1.235	Comb	0.00	0.11	0.57	10.0	377.42	2.97	384.92	15	Cir	0.013	1.00	390.04	Pipe - (82)
11	7	27.000	-42.459	Comb	0.00	0.15	0.57	10.0	370.18	0.52	370.32	15	Cir	0.013	1.00	375.04	Pipe - (87)
12	End	94.321	-74.896	Comb	0.00	0.38	0.57	10.0	368.50	0.56	369.03	15	Cir	0.013	1.00	374.00	Pipe - (92)
13	12	59.044	38.083	Comb	0.00	0.30	0.57	10.0	369.13	1.00	369.72	15	Cir	0.013	1.50	374.04	Pipe - (91)
14	13	68.947	-94.675	Comb	0.00	0.05	0.57	10.0	369.82	1.00	370.51	15	Cir	0.013	1.00	375.01	Pipe - (90)
15	End	42.000	27.855	DrGrt	0.00	2.88	0.57	10.0	363.50	0.50	363.71	24	Cir	0.013	1.00	366.50	Pipe - (89)
	t File: SCN	/#1 etm										Number	of lines: 15			Data: 1	2/5/2024

Structure Report

Project File: SCM#1.stm

Struct	Structure ID	Junction	Rim		Structure			Line Out			Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1	CB 111	Combination	386.00	Rect	4.00	8.00	18	Cir	381.06	15	Cir	381.63
2	CB 114	Combination	387.03	Rect	4.00	4.00	15	Cir	382.45	15	Cir	382.55
3	CB 115	Combination	387.04	Rect	4.00	8.00	15	Cir	382.73	15	Cir	382.83
4	CB 116	Combination	387.89	Rect	4.00	8.00	15	Cir	383.27			
5	CB 101	Combination	373.98	Rect	4.00	4.00	18	Cir	368.04	18	Cir	368.14
6	CB 102	Combination	373.87	Rect	4.00	4.00	18	Cir	368.28	18	Cir	368.38
7	CB 103	Combination	375.04	Rect	4.00	4.00	18	Cir	369.98	15 15	Cir Cir	370.08 370.18
8	CB 105	Combination	382.57	Rect	4.00	4.00	15	Cir	377.31	15 15	Cir Cir	378.23 377.42
9	CB 106	Combination	382.57	Rect	4.00	4.00	15	Cir	378.40			
10	CB 107	Combination	390.04	Rect	4.00	4.00	15	Cir	384.92			
11	CB 104	Combination	375.04	Rect	4.00	4.00	15	Cir	370.32			
12	CB 121	Combination	374.00	Rect	4.00	4.00	15	Cir	369.03	15	Cir	369.13
13	CB 122	Combination	374.04	Rect	4.00	4.00	15	Cir	369.72	15	Cir	369.82
14	CB 123	Combination	375.01	Rect	4.00	4.00	15	Cir	370.51			
15	DI 126	DropGrate	366.50	Rect	6.00	4.00	24	Cir	363.71			

Number of Structures: 15

Run Date: 12/5/2024

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	Pipe - (97)	6.22	18	Cir	96.027	380.50	381.06	0.583	382.00	382.28	0.22	382.50	End	Combination
2	Pipe - (95)	4.10	15	Cir	107.000	381.63	382.45	0.766	382.50	383.27	n/a	383.27 j	1	Combination
3	Pipe - (94)	3.82	15	Cir	26.999	382.55	382.73	0.667	383.34	383.52	0.51	383.52	2	Combination
4	Pipe - (93)	1.74	15	Cir	59.003	382.83	383.27	0.746	383.52	383.79	n/a	383.79 j	3	Combination
5	Pipe - (86)	5.63	18	Cir	229.120	363.00	368.04	2.200	364.50	368.95	n/a	368.95 j	End	Combination
6	Pipe - (85)	5.41	18	Cir	27.000	368.14	368.28	0.518	369.08	369.22	0.41	369.63	5	Combination
7	Pipe - (84)	4.77	18	Cir	45.912	368.38	369.98	3.485	369.63	370.82	n/a	370.82 j	6	Combination
8	Pipe - (83)	3.38	15	Cir	244.371	370.08	377.31	2.959	370.82	378.05	0.46	378.05	7	Combination
9	Pipe - (88)	2.80	15	Cir	27.044	378.23	378.40	0.629	378.89	379.07	0.27	379.07	8	Combination
10	Pipe - (82)	0.42	15	Cir	252.428	377.42	384.92	2.971	378.05	385.17	n/a	385.17 j	8	Combination
11	Pipe - (87)	0.57	15	Cir	27.000	370.18	370.32	0.519	370.82	370.82	0.02	370.85	7	Combination
12	Pipe - (92)	2.64	15	Cir	94.321	368.50	369.03	0.562	369.75	369.88	0.14	370.02	End	Combination
13	Pipe - (91)	1.28	15	Cir	59.044	369.13	369.72	0.999	370.02	370.17	n/a	370.17 j	12	Combination
14	Pipe - (90)	0.19	15	Cir	68.947	369.82	370.51	1.001	370.17	370.68	n/a	370.68 j	13	Combination
15	Pipe - (89)	10.90	24	Cir	42.000	363.50	363.71	0.500	365.50	365.58	0.20	365.78	End	DropGrate

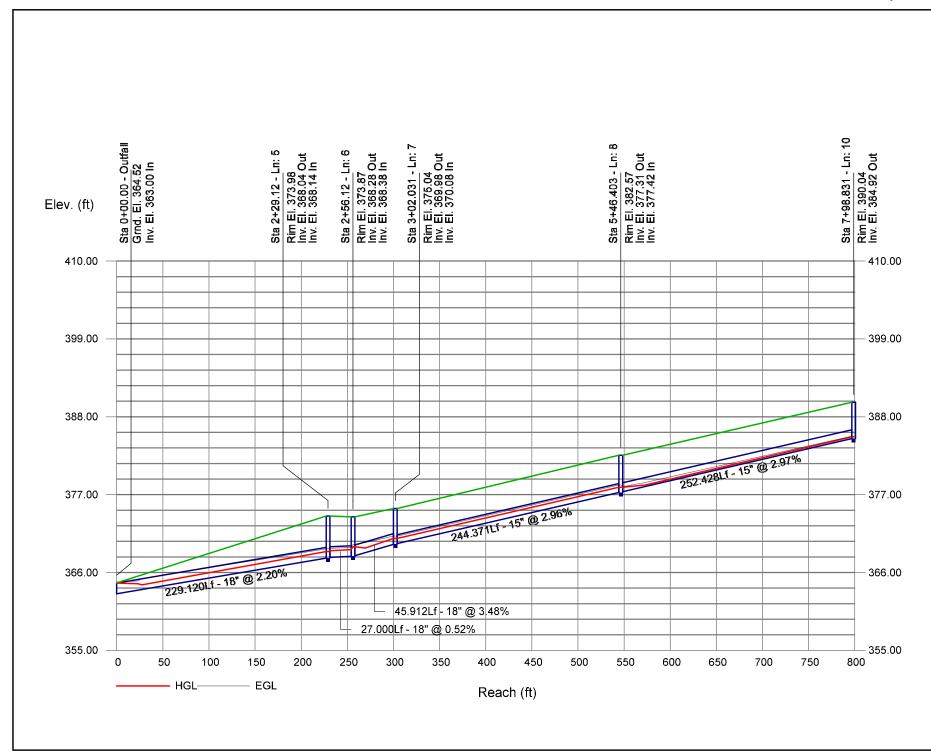
Project File: SCM#1.stm Run Date: 12/5/2024

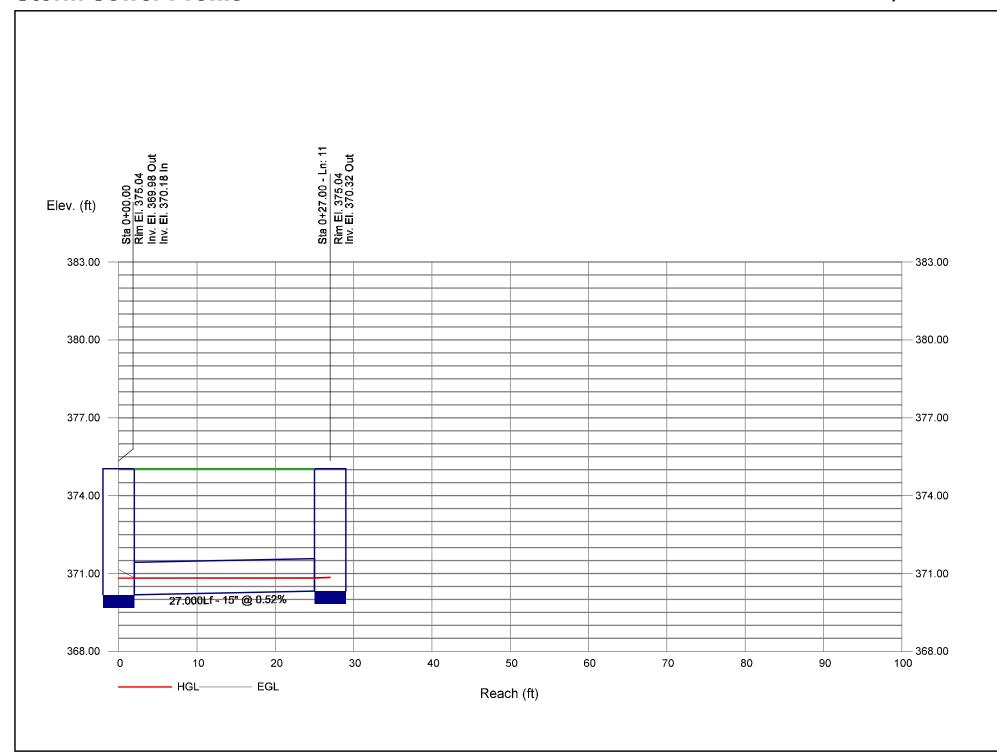
NOTES: Return period = 25 Yrs.; j - Line contains hyd. jump.

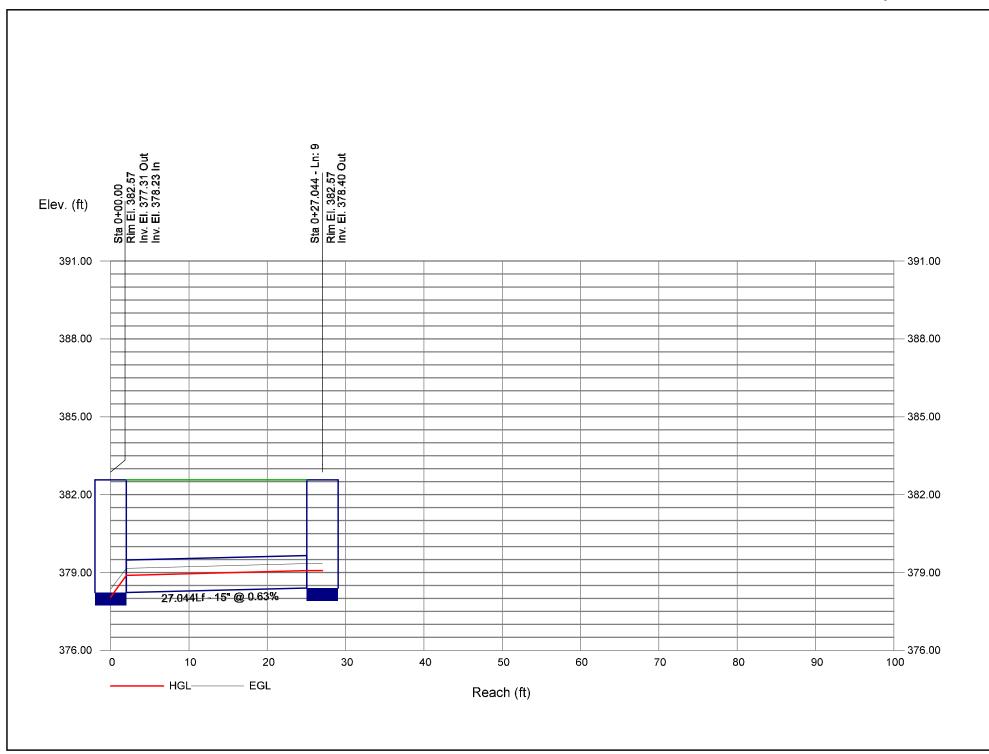
Inlet Report

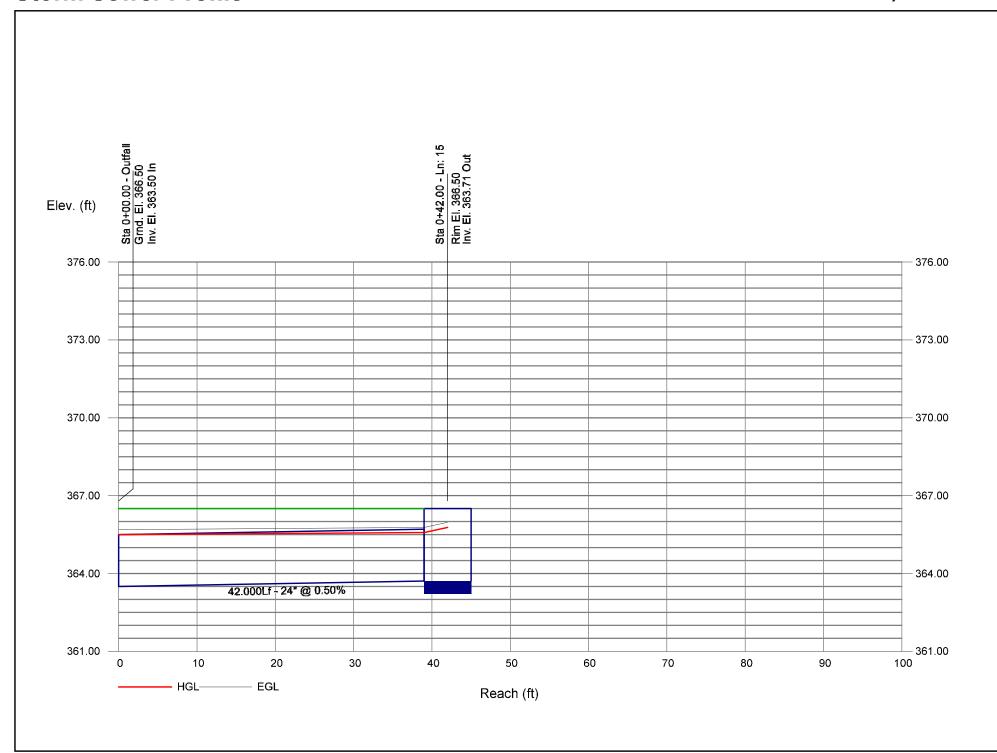
Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb li	nlet	Gra	ite Inlet				G	utter					Inlet		Вур
No		CIA (cfs)	carry (cfs)	capt (cfs)	Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)		Sx (ft/ft)	n		Spread (ft)		Spread (ft)	Depr (in)	Line No
1	CB 111	2.23	1.03	3.26	0.00	Comb	6.0	3.00	7.50	3.00	5.00	Sag	2.00	0.040	0.020	0.013	0.23	9.65	0.40	9.65	2.0	Off
2	CB 114	0.30	0.00	0.29	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.11	3.47	0.20	0.81	2.0	1
3	CB 115	2.12	0.54	1.64	1.02	Comb	6.0	1.50	0.00	3.00	5.00	0.010	2.00	0.040	0.020	0.013	0.23	9.28	0.33	6.21	2.0	1
4	CB 116	1.74	0.00	1.20	0.54	Comb	6.0	1.50	0.00	3.00	5.00	0.010	2.00	0.040	0.020	0.013	0.20	7.80	0.30	4.65	2.0	3
5	CB 101	0.26	0.00	0.26	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.025	2.00	0.040	0.020	0.013	0.09	2.43	0.17	0.19	2.0	Off
6	CB 102	0.76	0.19	0.94	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.11	3.33	0.27	3.33	2.0	Off
7	CB 103	1.10	0.02	0.93	0.19	Comb	6.0	1.50	0.00	3.00	2.50	0.030	2.00	0.040	0.020	0.013	0.14	5.07	0.24	1.88	2.0	6
8	CB 105	0.49	0.01	0.48	0.02	Comb	6.0	1.50	0.00	3.00	2.50	0.030	2.00	0.040	0.020	0.013	0.11	3.39	0.20	0.82	2.0	7
9	CB 106	2.80	0.00	1.84	0.96	Comb	6.0	1.50	0.00	3.00	2.50	0.030	2.00	0.040	0.020	0.013	0.19	7.57	0.30	4.73	2.0	11
10	CB 107	0.42	0.00	0.41	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.030	2.00	0.040	0.020	0.013	0.10	3.04	0.19	0.62	2.0	8
11	CB 104	0.57	0.96	1.18	0.35	Comb	6.0	1.50	0.00	3.00	2.50	0.030	2.00	0.040	0.020	0.013	0.16	5.84	0.26	2.73	2.0	Off
12	CB 121	1.44	0.26	1.70	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.13	4.40	0.29	4.40	2.0	Off
13	CB 122	1.14	0.00	0.87	0.26	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.17	6.52	0.27	3.21	2.0	12
14	CB 123	0.19	0.00	0.19	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.09	2.63	0.18	0.32	2.0	12
15	DI 126	10.90	0.00	10.90	0.00	DrGrt	0.0	0.00	9.00	3.00	5.00	Sag	6.00	0.020	0.020	0.013	0.37	43.19	0.37	43.19	0.0	Off

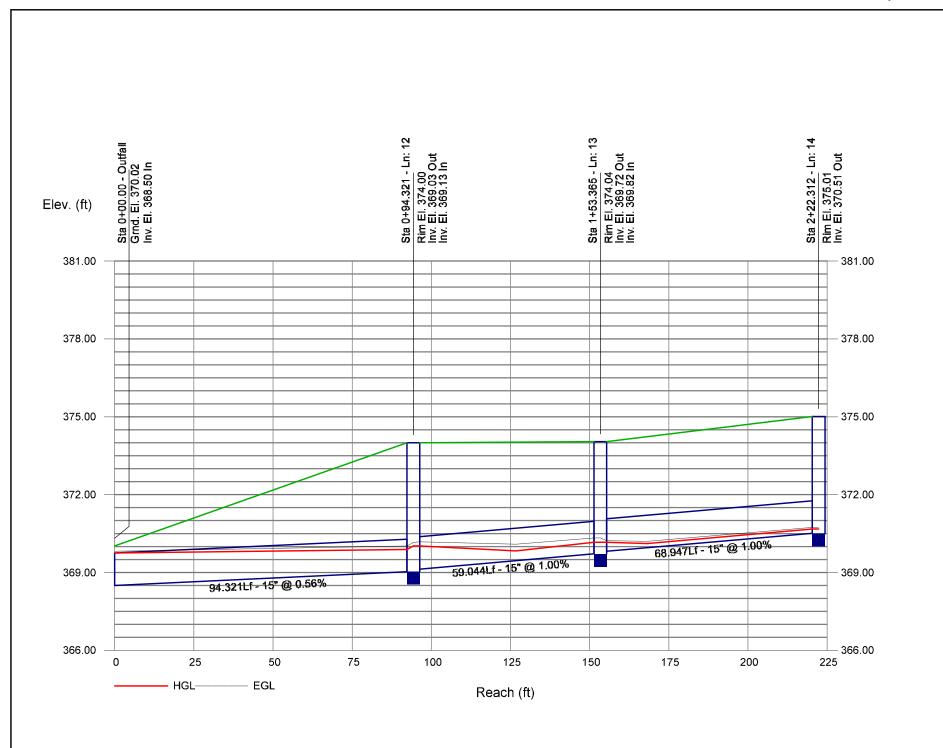
Project File: SCM#1.stm Number of lines: 15 Run Date: 12/5/2024

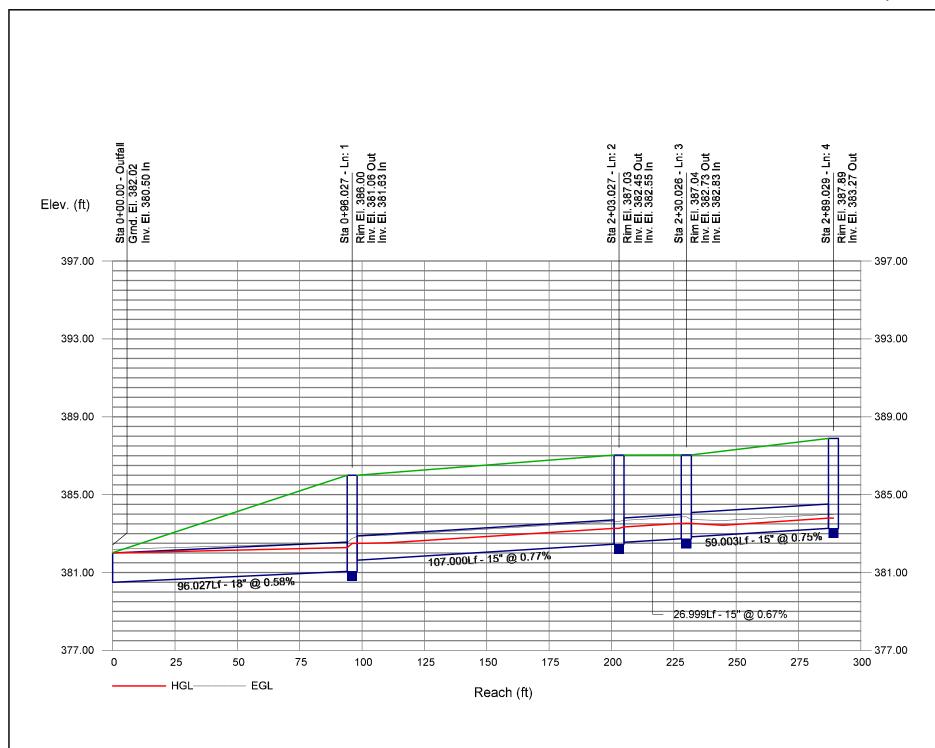

NOTES: Inlet N-Values = 0.016; Intensity = 62.86 / (Inlet time + 11.00) ^ 0.74; Return period = 25 Yrs.; * Indicates Known Q added.All curb inlets are throat.


Hydraulic Grade Line Computations


Line	Size	Q			D	ownstre	eam				Len				Upst	ream				Chec	k	JL	Minor
(1)	(in) (2)	(cfs) (3)	Invert elev (ft) (4)	HGL elev (ft)	Depth (ft) (6)	Area (sqft) (7)	Vel (ft/s) (8)	Vel head (ft) (9)	EGL elev (ft) (10)	Sf (%) (11)	(ft) (12)	Invert elev (ft) (13)	HGL elev (ft) (14)	Depth (ft) (15)	Area (sqft) (16)	Vel (ft/s) (17)	Vel head (ft) (18)	EGL elev (ft) (19)	Sf (%) (20)	Ave Sf (%) (21)	Enrgy loss (ft) (22)	(K) (23)	(ft) (24)
1	18	6.22	380.50	382.00	1.50	1.77	3.52	0.19	382.19	0.351	96.027	381.06	382.28	1.22	1.54	4.05	0.25	382.53	0.357	0.354	0.340	0.87	0.22
2	15	4.10	381.63	382.50	0.87	0.85	4.50	0.36	382.86	0.000	107.00	0382.45	383.27 j	0.82**	0.85	4.81	0.36	383.63	0.000	0.000	n/a	1.40	0.50
3	15	3.82	382.55	383.34	0.79*	0.82	4.68	0.34	383.68	0.000	26.999	382.73	383.52	0.79**	0.82	4.67	0.34	383.86	0.000	0.000	n/a	1.50	0.51
4	15	1.74	382.83	383.52	0.69	0.49	2.51	0.20	383.72	0.000	59.003	383.27	383.79 j	0.52**	0.49	3.57	0.20	383.99	0.000	0.000	n/a	1.00	n/a
5	18	5.63	363.00	364.50	1.50*	1.13	3.18	0.16	364.66	0.287	229.12	0368.04	368.95 j	0.91**	1.13	4.99	0.39	369.34	0.607	0.447	n/a	0.63	n/a
6	18	5.41	368.14	369.08	0.94*	1.16	4.65	0.34	369.41	0.518	27.000	368.28	369.22	0.94	1.16	4.65	0.34	369.55	0.517	0.518	0.140	1.22	0.41
7	18	4.77	368.38	369.63	1.25	1.02	3.03	0.34	369.97	0.000	45.912	369.98	370.82 j	0.84**	1.02	4.69	0.34	371.16	0.000	0.000	n/a	1.62	0.55
8	15	3.38	370.08	370.82	0.74	0.76	4.48	0.31	371.13	0.000	244.37	1377.31	378.05	0.74**	0.76	4.46	0.31	378.36	0.000	0.000	n/a	1.50	0.46
9	15	2.80	378.23	378.89	0.66*	0.66	4.26	0.27	379.16	0.000	27.044	378.40	379.07	0.67**	0.67	4.17	0.27	379.34	0.000	0.000	n/a	1.00	0.27
10	15	0.42	377.42	378.05	0.63	0.18	0.67	0.09	378.14	0.000	252.42	8384.92	385.17 j	0.25**	0.18	2.38	0.09	385.26	0.000	0.000	n/a	1.00	0.09
11	15	0.57	370.18	370.82	0.64	0.63	0.90	0.01	370.83	0.029	27.000	370.32	370.82	0.50	0.46	1.23	0.02	370.85	0.067	0.048	0.013	1.00	0.02
12	15	2.64	368.50	369.75	1.25*	1.23	2.15	0.07	369.82	0.167	94.321	369.03	369.88	0.85	0.89	2.95	0.14	370.02	0.254	0.211	0.199	1.00	0.14
13	15	1.28	369.13	370.02	0.89	0.39	1.37	0.17	370.19	0.000		369.72	370.17 j		0.39	3.26	0.17	370.33	0.000	0.000	n/a	1.50	n/a
14	15	0.19	369.82	370.17	0.35	0.10	0.68	0.06	370.22	0.000		370.51	370.68 j		0.10	1.93	0.06	370.74	0.000	0.000	n/a	1.00	n/a
15	24	10.90	363.50	365.50	2.00*	3.14	3.47	0.19	365.69	0.232	42.000	363.71	365.58	1.87	3.05	3.57	0.20	365.78	0.201	0.216	0.091	1.00	0.20


Project File: SCM#1.stm Number of lines: 15 Run Date: 12/5/2024


Notes: * depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box



Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan 25-Year SCM#2 Report Outfall

Number of lines: 1

Project File: SCM#2.stm

Date: 12/5/2024

_ine		Align	ment			Flow	/ Data					Physica	ıl Data				Line ID
No.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	No.	(ft) 64.790	128.444		(cfs)	0.82	(C) 0.57	10.0	(ft) 361.50	1.16	362.25	(in) 18	Cir	(n) 0.013	1.00	366.00	Pipe - (164)

Structure Report

Struct	Structure ID	Junction	Rim		Structure				Line Out			Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)		Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1	YI 204	DropGrate	366.00	Rect	4.00	4.00	18		Cir	362.25			
Project I	File: SCM#2.stm							Numk	ber of Structur	es: 1	Rui	n Date: 12/5/202	4

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	Pipe - (164)	3.10	18	Cir	64.790	361.50	362.25	1.158	363.00	363.00	0.19	363.19	End	DropGrate
Project	Project File: SCM#2.stm Number of line												Date: 12/5	/2024

NOTES: Return period = 25 Yrs.

Page 1

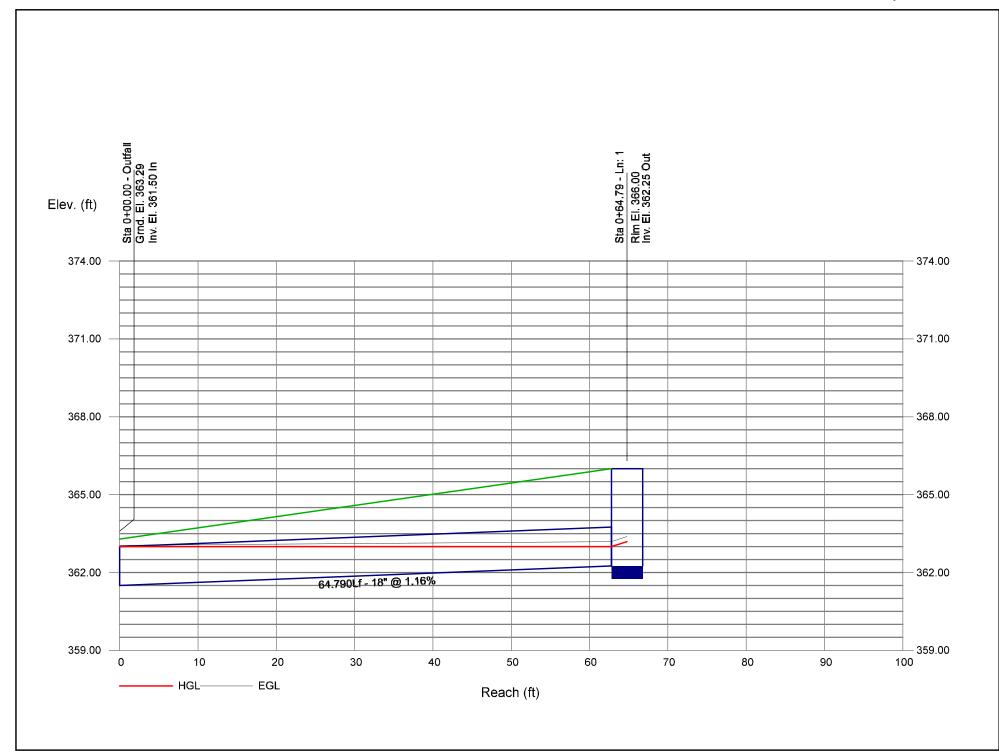
Inlet Report

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb I	nlet	Gra	ate Inlet				G	utter					Inlet		Вур
No		CIA (cfs)	carry (cfs)		Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	Line No
1	YI 204	3.10	0.00	3.10		DrGrt		0.00	3.00	3.00	3.00		6.00		0.020				0.19		0.0	Off

Project File: SCM#2.stm Number of lines: 1 Run Date: 12/5/2024

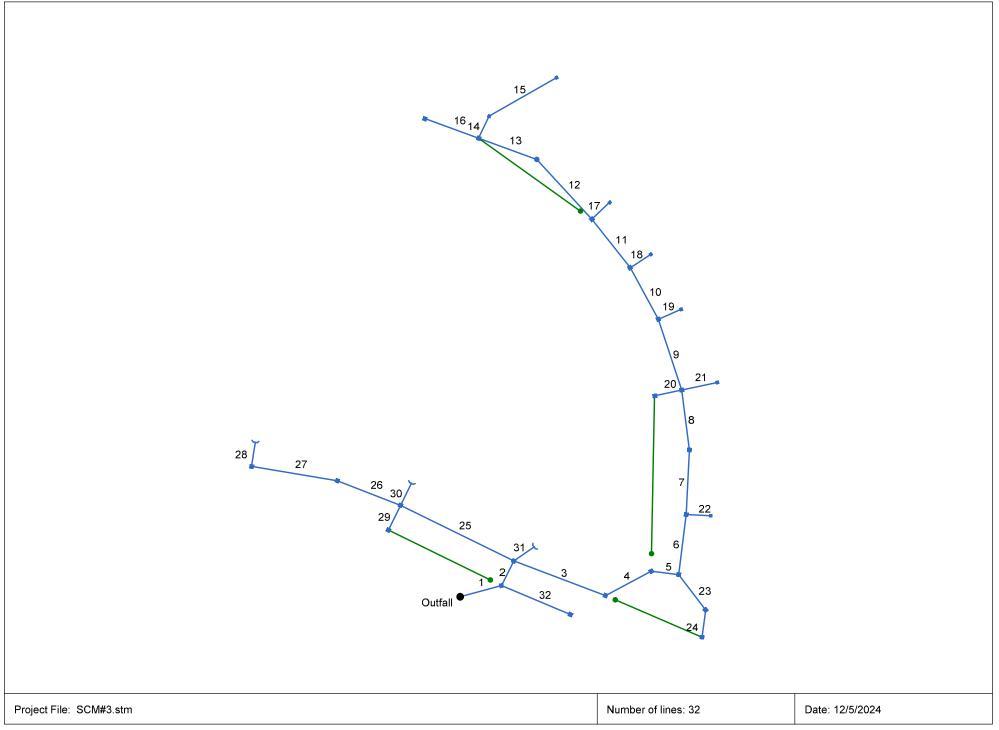
NOTES: Inlet N-Values = 0.016; Intensity = 62.86 / (Inlet time + 11.00) ^ 0.74; Return period = 25 Yrs.; * Indicates Known Q added.All curb inlets are throat.

Hydraulic Grade Line Computations


Line	Size	Q			D	ownstre	eam				Len				Upst	ream				Chec	k	JL	Minor
(1)	(in) (2)	(cfs) (3)	Invert elev (ft) (4)	HGL elev (ft) (5)	Depth (ft) (6)	Area (sqft) (7)	Vel (ft/s) (8)	Vel head (ft) (9)	EGL elev (ft) (10)	Sf (%) (11)	(ft) (12)	Invert elev (ft) (13)	HGL elev (ft) (14)	Depth (ft) (15)	Area (sqft) (16)	Vel (ft/s) (17)	Vel head (ft) (18)	EGL elev (ft) (19)	Sf (%) (20)	∣Sf	Enrgy loss (ft) (22)	(K) (23)	(ft) (24)
1	18	3.10	361.50	363.00	1.50	1.77	1.76	0.05	363.05	0.087	64.790	362.25	363.00	0.75	0.88	3.52	0.19	363.19	0.352	0.220	0.142	1.00	0.19

; c = cir e = ellip b = box

Project File: SCM#2.stm


Run Date: 12/5/2024

Number of lines: 1

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

25-Year SCM#3 Report

ine		Align	ment			Flow	/ Data					Physical	l Data				Line ID
о.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	42.067	-15.170	Comb	0.00	0.12	0.57	10.0	361.00	0.50	361.21	36	Cir	0.013	1.18	365.97	Pipe - (51)
2	1	27.000	-48.608	Comb	0.00	0.13	0.57	10.0	361.31	0.48	361.44	36	Cir	0.013	1.50	366.04	Pipe - (50)
3	2	95.970	84.571	Comb	0.00	0.05	0.57	10.0	361.65	0.69	362.31	30	Cir	0.013	1.19	366.98	Pipe - (49) (1)
4	3	50.862	-48.939	Comb	0.00	0.10	0.57	10.0	362.56	0.49	362.81	24	Cir	0.013	0.95	367.04	Pipe - (68)
5	4	27.000	35.381	Comb	0.00	0.08	0.57	10.0	362.91	0.52	363.05	24	Cir	0.013	1.70	367.09	Pipe - (67)
6	5	59.521	-90.000	Comb	0.00	0.05	0.57	10.0	363.34	2.91	365.07	24	Cir	0.013	1.50	370.04	Pipe - (66)
7	6	63.410	-4.578	Comb	0.00	0.06	0.57	10.0	365.15	3.00	367.05	24	Cir	0.013	0.50	373.03	Pipe - (65)
8	7	59.348	-9.943	Comb	0.00	0.07	0.57	10.0	367.15	3.00	368.93	18	Cir	0.013	2.24	374.74	Pipe - (64)
9	8	73.131	-10.753	Comb	0.00	0.05	0.57	10.0	369.43	1.00	370.16	18	Cir	0.013	1.49	375.97	Pipe - (63)
10	9	57.694	-10.618	Comb	0.00	0.05	0.57	10.0	370.26	1.01	370.84	18	Cir	0.013	1.50	376.00	Pipe - (62)
11	10	60.773	-9.612	Comb	0.00	0.29	0.57	10.0	370.94	1.00	371.55	18	Cir	0.013	1.50	377.14	Pipe - (61)
12	11	79.646	-4.271	мн	0.00	0.00	0.57	10.0	373.45	0.50	373.85	15	Cir	0.013	0.52	378.03	Pipe - (60) (1)
13	12	60.480	-27.352	Comb	0.00	0.44	0.57	10.0	373.95	0.50	374.25	15	Cir	0.013	1.50	378.04	Pipe - (60)
14	13	24.001	94.878	DrGrt	0.00	0.24	0.57	10.0	374.75	5.67	376.11	15	Cir	0.013	0.94	382.30	Pipe - (75)
15	14	76.039	35.232	DrGrt	0.00	0.27	0.57	10.0	377.70	2.37	379.50	15	Cir	0.013	1.00	385.27	Pipe - (76)
16	13	55.875	-0.060	Comb	0.00	0.16	0.57	10.0	374.45	1.00	375.01	15	Cir	0.013	1.00	378.78	Pipe - (59)
17	11	24.000	85.069	DrGrt	0.00	0.48	0.57	10.0	373.26	1.00	373.50	15	Cir	0.013	1.00	378.58	Pipe - (78)
18	10	24.000	85.319	DrGrt	0.00	0.31	0.57	10.0	371.60	1.00	371.84	15	Cir	0.013	1.00	376.93	Pipe - (74)
19	9	24.000	84.063	DrGrt	0.00	0.26	0.57	10.0	371.20	5.00	372.40	15	Cir	0.013	1.00	377.58	Pipe - (73)
20	8	27.000	-94.816	Comb	0.00	0.24	0.57	10.0	369.94	0.67	370.12	15	Cir	0.013	1.00	374.73	Pipe - (71)
21	8	35.500	85.182	DrGrt	0.00	0.28	0.57	10.0	369.94	2.99	371.00	15	Cir	0.013	1.00	378.00	Pipe - (72)
22	6	24.000	85.596	DrGrt	0.00	0.54	0.57	10.0	365.80	1.00	366.04	15	Cir	0.013	1.00	372.06	Pipe - (70)
23	5	43.537	45.555	Comb	0.00	0.12	0.57	10.0	363.55	1.01	363.99	24	Cir	0.013	1.12	368.91	Pipe - (56) (1)
^o roject	File: SCN	∕l#3.stm										Number	of lines: 32			Date: 1	2/5/2024

ine		Align		Flow	/ Data					Physica	I Data				Line ID		
lo.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
24	23	27.000	44.445	Comb	0.00	0.39	0.57	10.0	364.58	1.15	364.89	15	Cir	0.013	1.00	368.93	Pipe - (56)
25	2	123.519	-90.000	Comb	0.00	0.04	0.57	10.0	361.54	0.50	362.16	24	Cir	0.013	2.25	367.00	Pipe - (49)
26	25	66.365	-4.879	Comb	0.00	0.05	0.57	10.0	362.67	0.50	363.00	24	Cir	0.013	0.50	367.90	Pipe - (48)
27	26	85.141	-11.831	Comb	0.00	0.26	0.57	10.0	363.20	0.51	363.63	18	Cir	0.013	1.50	368.63	Pipe - (47)
28	27	24.000	89.190	Hdwl	0.00	0.93	0.57	10.0	363.73	0.50	363.85	18	Cir	0.013	1.00	367.00	Pipe - (46)
29	25	27.000	-90.000	Comb	0.00	0.17	0.57	10.0	363.20	0.52	363.34	15	Cir	0.013	1.00	367.03	Pipe - (54)
30	25	24.000	90.193	Hdwl	0.00	1.80	0.57	10.0	362.42	0.50	362.54	24	Cir	0.013	1.00	363.96	Pipe - (53)
31	2	24.000	29.044	Hdwl	0.00	0.70	0.57	10.0	361.94	1.04	362.19	18	Cir	0.013	1.00	363.71	Pipe - (55)
32	1	73.029	38.107	Comb	0.00	0.07	0.57	10.0	362.30	0.48	362.65	24	Cir	0.013	1.00	366.75	Pipe - (58)
 Project	File: SCI	 √l#3.stm										Number	of lines: 32			Date: 1	2/5/2024

Structure Report

Struct	Structure ID	Junction	Rim		Structure			Line Ou	t	Line In			
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)	
1	CB 301	Combination	365.97	Rect	4.00	4.00	36	Cir	361.21	36 24	Cir Cir	361.31 362.30	
2	CB 302	Combination	366.04	Rect	4.00	4.00	36	Cir	361.44	30 24 18	Cir Cir Cir	361.65 361.54 361.94	
3	CB 304	Combination	366.98	Rect	4.00	4.00	30	Cir	362.31	24	Cir	362.56	
4	CB 307	Combination	367.04	Rect	4.00	4.00	24	Cir	362.81	24	Cir	362.91	
5	CB 308	Combination	367.09	Rect	4.00	4.00	24	Cir	363.05	24 24	Cir Cir	363.34 363.55	
6	CB 309	Combination	370.04	Rect	4.00	4.00	24	Cir	365.07	24 15	Cir Cir	365.15 365.80	
7	CB 311	Combination	373.03	Rect	4.00	4.00	24	Cir	367.05	18	Cir	367.15	
8	CB 312	Combination	374.74	Rect	4.00	4.00	18	Cir	368.93	18 15 15	Cir Cir Cir	369.43 369.94 369.94	
9	CB 315	Combination	375.97	Rect	4.00	4.00	18	Cir	370.16	18 15	Cir Cir	370.26 371.20	
10	CB 317	Combination	376.00	Rect	4.00	4.00	18	Cir	370.84	18 15	Cir Cir	370.94 371.60	
11	CB 319	Combination	377.14	Rect	4.00	4.00	18	Cir	371.55	15 15	Cir Cir	373.45 373.26	
12	JB 176	Manhole	378.03	Cir	4.00	4.00	15	Cir	373.85	15	Cir	373.95	
13	CB 323	Combination	378.04	Rect	4.00	4.00	15	Cir	374.25	15 15	Cir Cir	374.75 374.45	
14	YI 324	DropGrate	382.30	Rect	3.00	3.00	15	Cir	376.11	15	Cir	377.70	
15	YI 322	DropGrate	385.27	Rect	3.00	3.00	15	Cir	379.50				
16	CB 325	Combination	378.78	Rect	4.00	4.00	15	Cir	375.01				
17	YI 320	DropGrate	378.58	Rect	3.00	3.00	15	Cir	373.50				
Project I	File: SCM#3.stm						 	umber of Struct	ures: 32	Run	Date: 12/5/202	24	

Structure Report

Project File: SCM#3.stm

Struct	Structure ID	Junction	Rim		Structure			Line Ou	t		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
18	YI 318	DropGrate	376.93	Rect	3.00	3.00	15	Cir	371.84			
19	YI 316	DropGrate	377.58	Rect	3.00	3.00	15	Cir	372.40			
20	CB 313	Combination	374.73	Rect	4.00	4.00	15	Cir	370.12			
21	YI 314	DropGrate	378.00	Rect	3.00	3.00	15	Cir	371.00			
22	YI 310	DropGrate	372.06	Rect	3.00	3.00	15	Cir	366.04			
23	CB 306	Combination	368.91	Rect	4.00	4.00	24	Cir	363.99	15	Cir	364.58
24	CB 305	Combination	368.93	Rect	4.00	4.00	15	Cir	364.89			
25	CB 330	Combination	367.00	Rect	4.00	4.00	24	Cir	362.16	24 15 24	Cir Cir Cir	362.67 363.20 362.42
26	CB 333	Combination	367.90	Rect	4.00	4.00	24	Cir	363.00	18	Cir	363.20
27	CB 334	Combination	368.63	Rect	4.00	4.00	18	Cir	363.63	18	Cir	363.73
28	FES INLET 335	OpenHeadwall	367.00	n/a	n/a	n/a	18	Cir	363.85			
29	CB 332	Combination	367.03	Rect	4.00	4.00	15	Cir	363.34			
30	FES INLET 331	OpenHeadwall	363.96	n/a	n/a	n/a	24	Cir	362.54			
31	FES INLET 302 A	OpenHeadwall	363.71	n/a	n/a	n/a	18	Cir	362.19			
32	CB 303	Combination	366.75	Rect	4.00	4.00	24	Cir	362.65			

Number of Structures: 32

Storm Sewers v2023.00

Run Date: 12/5/2024

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	Pipe - (51)	23.21	36	Cir	42.067	361.00	361.21	0.499	364.00	364.04	0.21	364.25	End	Combination
2	Pipe - (50)	29.76	36	Cir	27.000	361.31	361.44	0.481	364.25	363.21	1.10	363.21	1	Combination
3	Pipe - (49) (1)	15.80	30	Cir	95.970	361.65	362.31	0.688	363.21	363.65	n/a	363.65 j	2	Combination
4	Pipe - (68)	15.70	24	Cir	50.862	362.56	362.81	0.492	364.18	364.43	0.49	364.92	3	Combination
5	Pipe - (67)	15.40	24	Cir	27.000	362.91	363.05	0.518	364.92	365.04	0.64	365.68	4	Combination
6	Pipe - (66)	13.40	24	Cir	59.521	363.34	365.07	2.907	365.68	366.39	n/a	366.39 j	5	Combination
7	Pipe - (65)	11.39	24	Cir	63.410	365.15	367.05	2.996	366.39	368.26	n/a	368.26 j	6	Combination
8	Pipe - (64)	11.22	18	Cir	59.348	367.15	368.93	2.999	368.26	370.21	n/a	370.21	7	Combination
9	Pipe - (63)	9.17	18	Cir	73.131	369.43	370.16	0.998	370.52	371.33	0.89	371.33	8	Combination
10	Pipe - (62)	8.10	18	Cir	57.694	370.26	370.84	1.005	371.33	371.94	n/a	371.94	9	Combination
11	Pipe - (61)	6.84	18	Cir	60.773	370.94	371.55	1.004	371.94	372.56	n/a	372.56	10	Combination
12	Pipe - (60) (1)	4.08	15	Cir	79.646	373.45	373.85	0.500	374.37	374.77	0.14	374.91	11	Manhole
13	Pipe - (60)	4.11	15	Cir	60.480	373.95	374.25	0.496	374.91	375.18	0.41	375.59	12	Combination
14	Pipe - (75)	1.91	15	Cir	24.001	374.75	376.11	5.666	375.59	376.66	n/a	376.66 j	13	DropGrate
15	Pipe - (76)	1.02	15	Cir	76.039	377.70	379.50	2.367	377.97	379.90	n/a	379.90	14	DropGrate
16	Pipe - (59)	0.61	15	Cir	55.875	374.45	375.01	1.002	375.59	375.31	0.11	375.31	13	Combination
17	Pipe - (78)	1.82	15	Cir	24.000	373.26	373.50	1.000	373.71	374.04	0.20	374.04	11	DropGrate
18	Pipe - (74)	1.17	15	Cir	24.000	371.60	371.84	1.000	371.96	372.27	0.16	372.27	10	DropGrate
19	Pipe - (73)	0.98	15	Cir	24.000	371.20	372.40	5.000	371.42	372.79	n/a	372.79	9	DropGrate
20	Pipe - (71)	0.91	15	Cir	27.000	369.94	370.12	0.667	370.29	370.49	n/a	370.49	8	Combination
21	Pipe - (72)	1.06	15	Cir	35.500	369.94	371.00	2.986	370.21	371.40	0.15	371.40	8	DropGrate
22	Pipe - (70)	2.04	15	Cir	24.000	365.80	366.04	1.000	366.39	366.61	n/a	366.61 j	6	DropGrate
23	Pipe - (56) (1)	1.92	24	Cir	43.537	363.55	363.99	1.011	365.68	365.68	0.01	365.69	5	Combination
24	Pipe - (56)	1.48	15	Cir	27.000	364.58	364.89	1.148	365.69	365.37	n/a	365.37	23	Combination

Number of lines: 32

NOTES: Return period = 25 Yrs.; j - Line contains hyd. jump.

Project File: SCM#3.stm

Run Date: 12/5/2024

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
25	Pipe - (49)	11.93	24	Cir	123.519	361.54	362.16	0.502	363.21	363.49	1.02	364.51	2	Combination
26	Pipe - (48)	4.61	24	Cir	66.365	362.67	363.00	0.497	364.51	363.75	0.14	363.75	25	Combination
27	Pipe - (47)	4.48	18	Cir	85.141	363.20	363.63	0.505	364.04	364.47	0.45	364.92	26	Combination
28	Pipe - (46)	3.52	18	Cir	24.000	363.73	363.85	0.500	364.92	364.94	0.10	365.04	27	OpenHeadwall
29	Pipe - (54)	0.64	15	Cir	27.000	363.20	363.34	0.518	364.51	364.51	0.00	364.51	25	Combination
30	Pipe - (53)	6.81	24	Cir	24.000	362.42	362.54	0.500	364.51	364.53	0.07	364.60	25	OpenHeadwall
31	Pipe - (55)	2.65	18	Cir	24.000	361.94	362.19	1.042	363.21	362.81	n/a	362.81	2	OpenHeadwall
32	Pipe - (58)	0.26	24	Cir	73.029	362.30	362.65	0.479	364.25	364.25	0.00	364.25	1	Combination

Number of lines: 32

NOTES: Return period = 25 Yrs. ; j - Line contains hyd. jump.

Project File: SCM#3.stm

Run Date: 12/5/2024

Inlet Report

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb I	nlet	Gra	ate Inlet				G	utter					Inlet		Вур
No		CIA (cfs)	carry (cfs)	capt (cfs)	Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	Line No
1	CB 301	0.45	0.09	0.55	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.06	1.82	0.23	1.82	2.0	Off
2	CB 302	0.49	0.05	0.54	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.06	1.81	0.22	1.81	2.0	Off
3	CB 304	0.19	0.33	0.47	0.05	Comb	6.0	1.50	0.00	3.00	2.50	0.014	2.00	0.040	0.020	0.013	0.12	4.20	0.22	1.28	2.0	2
4	CB 307	0.38	0.18	0.55	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.06	1.84	0.23	1.84	2.0	Off
5	CB 308	0.30	0.01	0.32	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.00	1.36	0.17	1.36	2.0	Off
6	CB 309	0.19	0.00	0.19	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.050	2.00	0.040	0.020	0.013	0.07	1.72	0.17	0.00	2.0	5
7	CB 311	0.23	0.01	0.23	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.040	2.00	0.040	0.020	0.013	0.08	1.94	0.17	0.00	2.0	6
8	CB 312	0.26	0.01	0.27	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.11	3.28	0.19	0.69	2.0	7
9	CB 315	0.19	0.09	0.27	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.11	3.32	0.20	0.72	2.0	8
10	CB 317	0.19	0.46	0.56	0.09	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.14	5.10	0.24	1.76	2.0	9
11	CB 319	1.10	0.49	1.12	0.46	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.19	7.51	0.29	4.33	2.0	10
12	JB 176	0.00	0.00	0.00	0.00	мн	0.0	2.00	0.00	2.00	0.00	0.000	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
13	CB 323	1.66	0.09	1.26	0.49	Comb	6.0	1.50	0.00	3.00	2.50	0.020	2.00	0.040	0.020	0.013	0.18	6.77	0.28	3.73	2.0	11
14	YI 324	0.91	0.00	0.91	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	3.00	0.020	0.020	0.013	0.11	14.26	0.11	14.26	0.0	Off
15	YI 322	1.02	0.00	1.02	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	3.00	0.020	0.020	0.013	0.12	15.18	0.12	15.18	0.0	Off
16	CB 325	0.61	0.00	0.52	0.09	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.040	0.020	0.013	0.16	5.76	0.25	2.00	2.0	13
17	YI 320	1.82	0.00	1.82	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	3.00	0.020	0.020	0.013	0.18	20.87	0.18	20.87	0.0	Off
18	YI 318	1.17	0.00	1.17	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	3.00	0.020	0.020	0.013	0.13	16.35	0.13	16.35	0.0	Off
19	YI 316	0.98	0.00	0.98	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	3.00	0.020	0.020	0.013	0.12	14.88	0.12	14.88	0.0	Off
20	CB 313	0.91	0.00	0.73	0.18	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.16	5.91	0.26	2.51	2.0	4
21	YI 314	1.06	0.00	1.06	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	3.00	0.020	0.020	0.013	0.12	15.48	0.12	15.48	0.0	Off
22	YI 310	2.04	0.00	2.04	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	3.00	0.020	0.020	0.013	0.19	22.34	0.19	22.34	0.0	Off
23	CB 306	0.45	0.00	0.44	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.029	2.00	0.040	0.020	0.013	0.10	3.23	0.20	0.73	2.0	5

Project File: SCM#3.stm Number of lines: 32 Run Date: 12/5/2024

NOTES: Inlet N-Values = 0.016; Intensity = 62.86 / (Inlet time + 11.00) ^ 0.74; Return period = 25 Yrs.; * Indicates Known Q added.All curb inlets are throat.

Inlet Report

Line	Inlet ID	Q =	Q	Q	Q Byp	Junc	Curb Ir	nlet	Gra	ate Inlet				G	utter					Inlet		Вур
No		CIA (cfs)			(cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)		Spread (ft)	Depr (in)	Line No
24	CB 305	1.48	0.00	1.15	0.33	Comb	6.0	1.50	0.00	3.00	2.50	0.029	2.00	0.040	0.020	0.013	0.16	5.79	0.26	2.66	2.0	3
25	CB 330	0.15	0.03	0.18	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.09	2.52	0.18	0.23	2.0	2
26	CB 333	0.19	0.20	0.37	0.03	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.12	3.99	0.21	1.10	2.0	25
27	CB 334	0.98	0.00	0.78	0.20	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.16	6.12	0.26	2.76	2.0	26
28	FES INLET 335	3.52	0.00	3.52	0.00	Hdwl	0.0	0.00	0.00	0.00	0.00	Sag	3.00	0.020	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
29	CB 332	0.64	0.00	0.56	0.09	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.14	5.06	0.24	1.74	2.0	1
30	FES INLET 331	6.81	0.00	6.81	0.00	Hdwl	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.0	Off
31	FES INLET 302 A	2.65	0.00	2.65	0.00	Hdwl	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.0	Off
32	CB 303	0.26	0.00	0.26	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.014	2.00	0.040	0.020	0.013	0.10	2.92	0.19	0.51	2.0	1

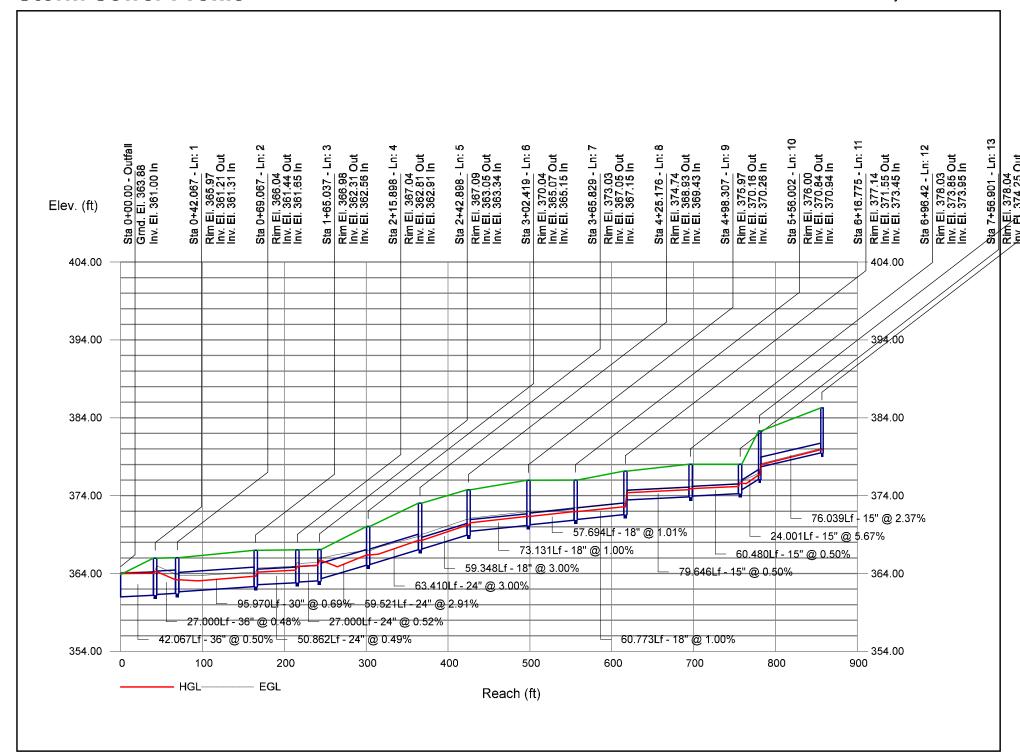
Project File: SCM#3.stm Number of lines: 32 Run Date: 12/5/2024

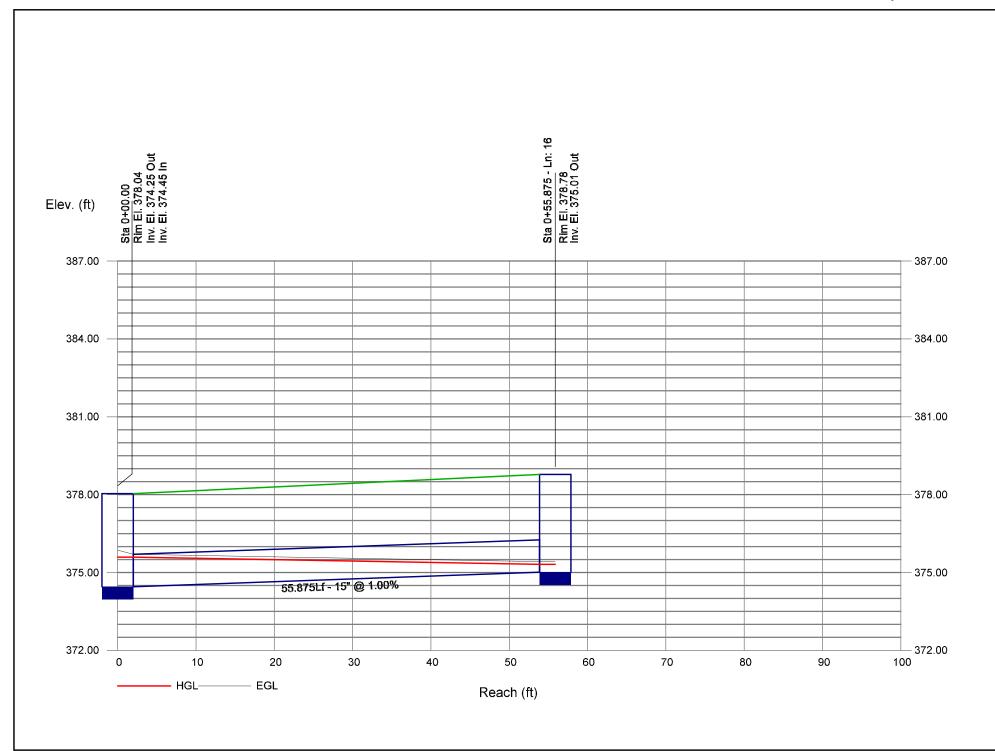
NOTES: Inlet N-Values = 0.016; Intensity = 62.86 / (Inlet time + 11.00) ^ 0.74; Return period = 25 Yrs.; * Indicates Known Q added.All curb inlets are throat.

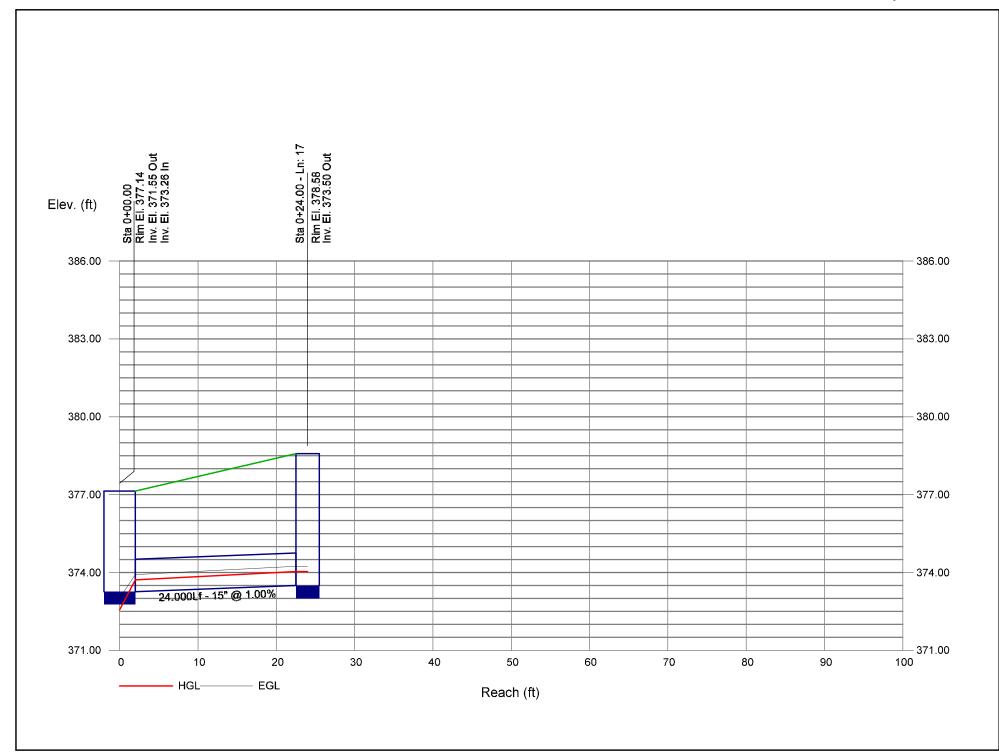
Hydraulic Grade Line Computations

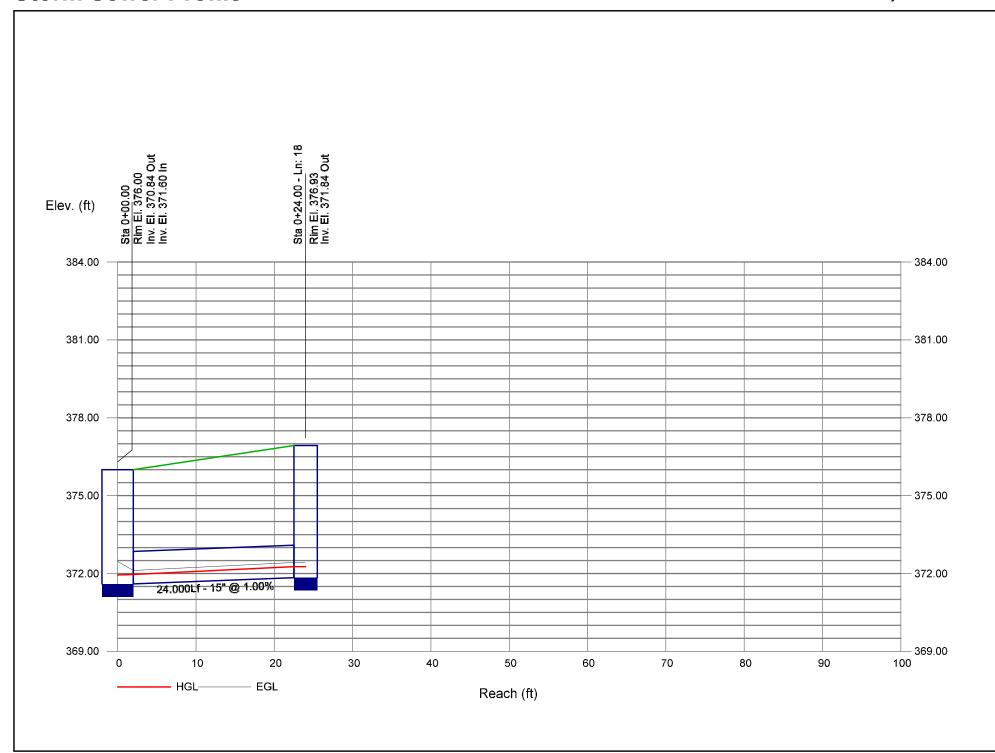
L	ine	Size	Q			D	ownstre	am				Len				Upstr	eam				Chec	k	JL	Minor
	(1)	(in) (2)	(cfs) (3)	Invert elev (ft) (4)	HGL elev (ft) (5)	Depth (ft) (6)	Area (sqft) (7)	VeI (ft/s) (8)	Vel head (ft) (9)	EGL elev (ft) (10)	Sf (%) (11)	(ft) (12)	Invert elev (ft) (13)	HGL elev (ft) (14)	Depth (ft) (15)	Area (sqft) (16)	Vel (ft/s) (17)	Vel head (ft) (18)	EGL elev (ft) (19)	Sf (%) (20)	Ave Sf (%) (21)	Enrgy loss (ft) (22)	(K) (23)	(ft) (24)
	1	36	23.21	361.00	364.00	3.00	7.07	3.28	0.17	364.17	0.121	42.067	361.21	364.04	2.83	6.91	3.36	0.18	364.21	0.105	0.113	0.048	1.18	0.21
	2	36	29.76	361.31	364.25	2.94	4.33	4.23	0.74	364.98	0.180	27.000	361.44	363.21	1.77**	4.33	6.88	0.74	363.94	0.171	0.176	n/a	1.50	1.10
	3	30	15.80	361.65	363.21	1.56	2.68	4.92	0.54	363.75	0.136	95.970	362.31	363.65 j	1.34**	2.68	5.89	0.54	364.19	0.136	0.136	n/a	1.19	n/a
	4	24	15.70	362.56	364.18	1.62*	2.73	5.75	0.51	364.70	0.491	50.862	362.81	364.43	1.62	2.73	5.75	0.51	364.95	0.491	0.491	0.250	0.95	0.49
	5	24	15.40	362.91	364.92	2.00	3.14	4.90	0.37	365.29	0.464	27.000	363.05	365.04	1.99	3.14	4.90	0.37	365.42	0.441	0.452	0.122	1.70	0.64
	6	24	13.40	363.34	365.68	2.00	2.19	4.27	0.28	365.96	0.351	59.521	365.07	366.39 j		2.19	6.11	0.58	366.97	0.592	0.472	n/a	1.50	0.87
	7	24	11.39	365.15	366.39	1.24	1.99	5.58	0.51	366.90	0.239	63.410	367.05	368.26 j	1.21**	1.99	5.73	0.51	368.77	0.541	0.390	n/a	0.50	n/a
	8	18	11.22	367.15	368.26	1.11	1.40	8.01	0.76	369.02	0.000		368.93	370.21	1.28**	1.61	6.99	0.76	370.97	0.000	0.000	n/a	2.24	n/a
	9	18	9.17	369.43	370.52	1.09*	1.37	6.69	0.60	371.11	0.000		370.16	371.33	1.17**	1.48	6.20	0.60	371.93	0.000	0.000	n/a	1.49	0.89
	10	18	8.10	370.26	371.33	1.07	1.35	6.00	0.53	371.86	0.000		370.84	371.94	1.10**	1.39	5.82	0.53	372.47	0.000	0.000	n/a	1.50	n/a
	11	18	6.84	370.94	371.94	1.00	1.25	5.46	0.45	372.39	0.000		371.55	372.56	1.01**	1.27	5.40	0.45	373.01	0.000	0.000	n/a	1.50	n/a
	12	15	4.08	373.45	374.37	0.92*	0.97	4.21	0.28	374.65	0.500		373.85	374.77	0.92	0.97	4.21	0.28	375.04	0.502	0.501	0.399	0.52	0.14
	13	15	4.11	373.95	374.91	0.96	1.01	4.06	0.26	375.17	0.461		374.25	375.18	0.93	0.98	4.18	0.27	375.46	0.492	0.476	0.288	1.50	0.41
	14	15 15	1.91	374.75 377.70	375.59	0.84	0.52	2.17 5.21	0.21	375.80 378.12	0.000		376.11 379.50	376.66 j 379.90	0.55**	0.52	3.68	0.21	376.87	0.000	0.000	n/a n/a	0.94 1.00	0.20
	15 16	15	0.61	374.45	375.59	0.27*	0.20	0.51	0.14	375.70	0.000		379.50	379.90	0.30**	0.34	2.63	0.14	375.42	0.000	0.000	n/a n/a	1.00	n/a 0.11
	17	15	1.82	373.26	373.71	0.45*	0.40	4.52	0.11	373.92	0.000		373.50	374.04	0.54**	0.50	3.62	0.11	374.24	0.000	0.000	n/a	1.00	0.20
	18	15	1.17	371.60	371.96	0.36*	0.40	4.00	0.16	372.12	0.000		371.84	372.27	0.43**	0.37	3.17	0.16	372.42	0.000	0.000	n/a	1.00	0.16
	19	15	0.98	371.20	371.42	0.30	0.29	6.72	0.10	371.56	0.000		372.40	372.79	0.43	0.37	3.01	0.10	372.93	0.000	0.000	n/a	1.00	n/a
	20	15	0.91	369.94	370.29	0.35*	0.13	3.21	0.14	370.43	0.000		370.12	370.49	0.37**	0.33	2.95	0.14	370.63	0.000	0.000	n/a	1.00	n/a
	21	15	1.06	369.94	370.21	0.27	0.19	5.45	0.15	370.36	0.000		371.00	371.40	0.40**	0.34	3.08	0.15	371.55	0.000	0.000	n/a	1.00	0.15
H			<u> </u>																	1				

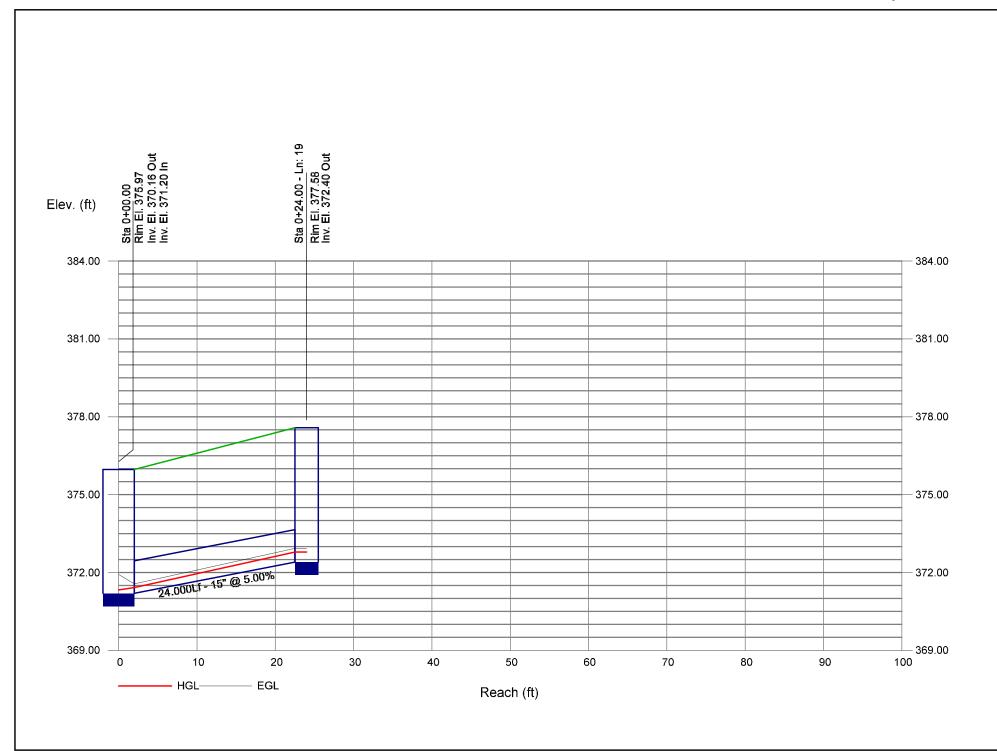
Project File: SCM#3.stm Number of lines: 32 Run Date: 12/5/2024

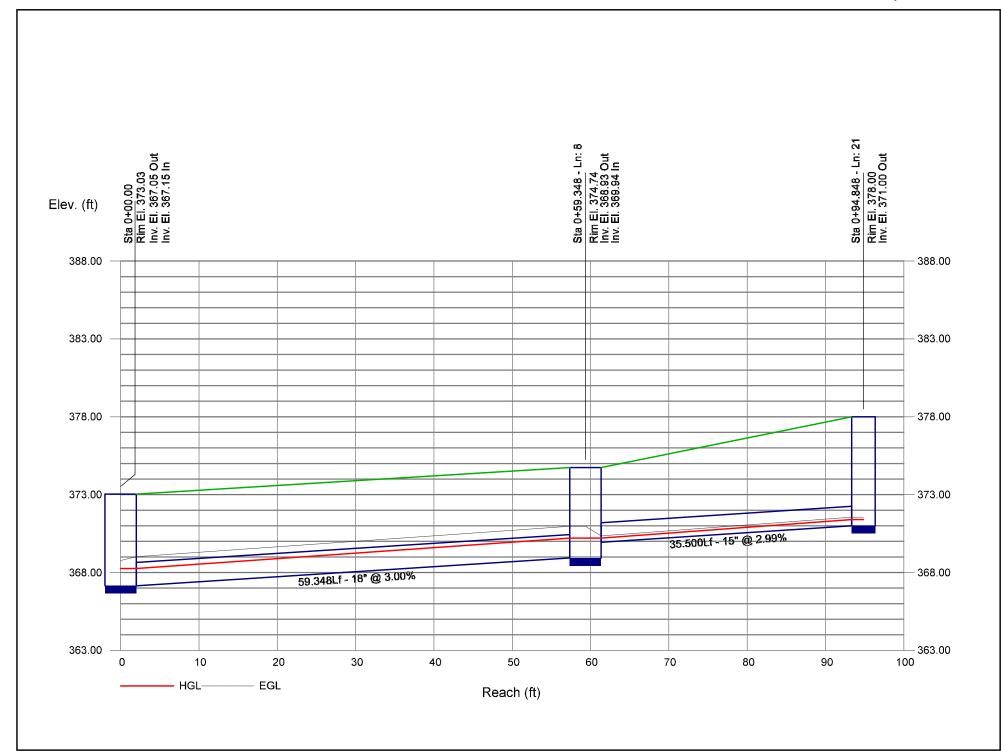

Notes: * depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

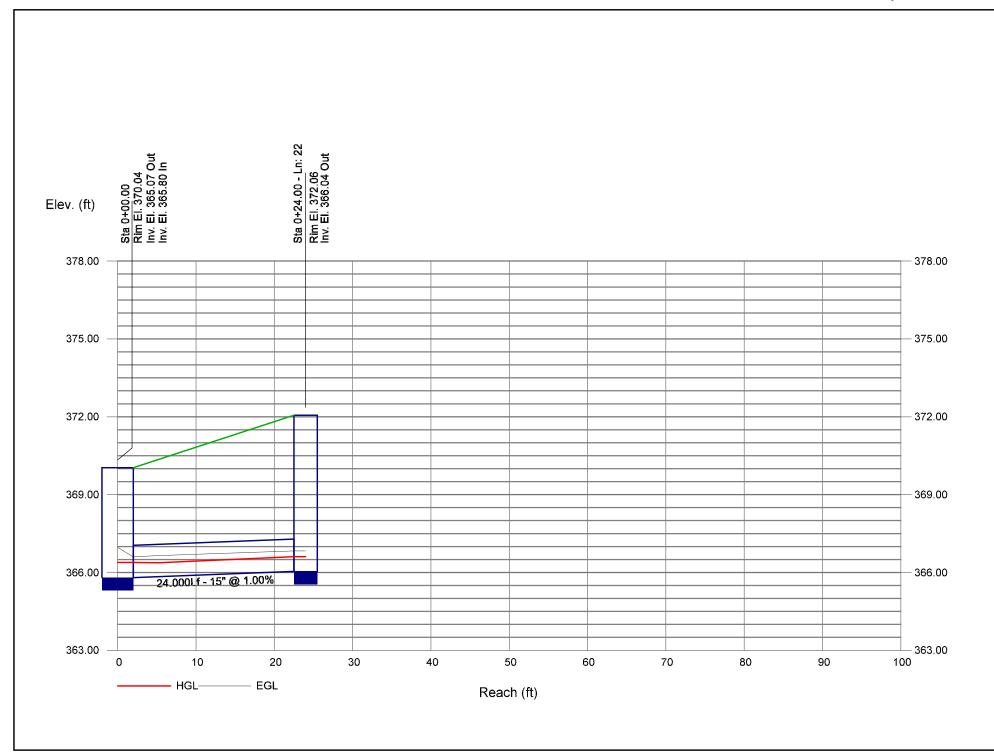

Hydraulic Grade Line Computations

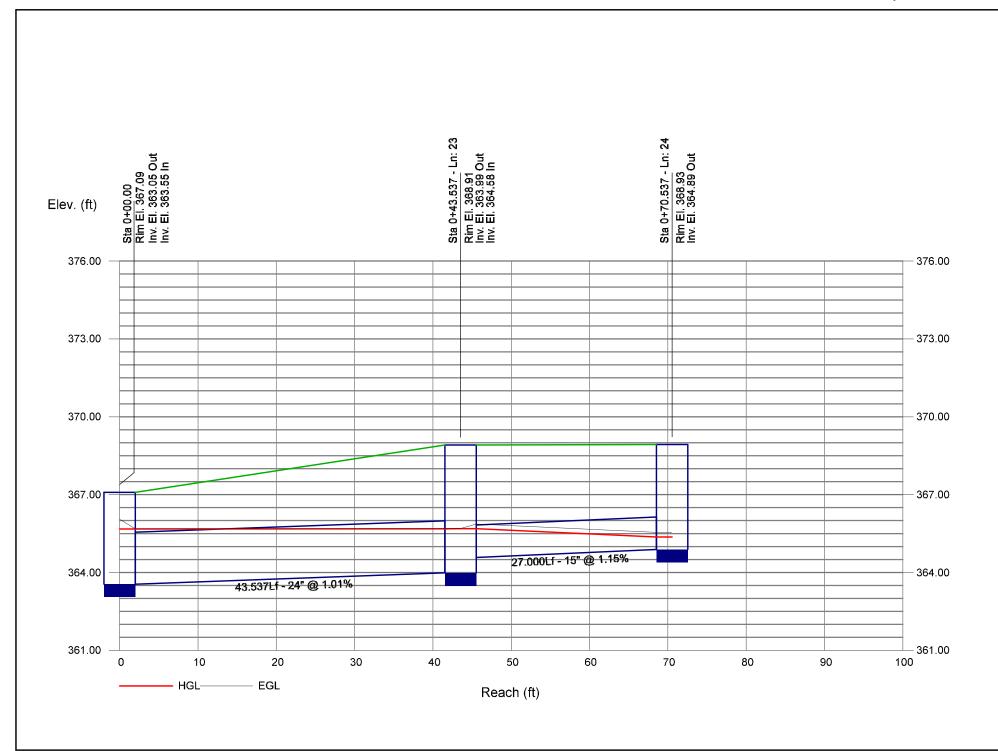

Line	Size	Q			D	ownstre	eam				Len				Upst	ream				Chec	k	JL	Minor
(1)	(in) (2)	(cfs) (3)	Invert elev (ft) (4)	HGL elev (ft) (5)	Depth (ft) (6)	Area (sqft) (7)	Vel (ft/s) (8)	Vel head (ft) (9)	EGL elev (ft) (10)	Sf (%) (11)	(ft) (12)	Invert elev (ft) (13)	HGL elev (ft) (14)	Depth (ft) (15)	Area (sqft) (16)	Vel (ft/s) (17)	Vel head (ft) (18)	EGL elev (ft) (19)	Sf (%) (20)	Ave Sf (%) (21)	Enrgy loss (ft) (22)	(K) (23)	(ft) (24)
22	15	2.04	365.80	366.39	0.59	0.54	3.61	0.22	366.61	0.100	24.000	366.04	366.61 j	0.57**	0.54	3.76	0.22	366.83	0.087	0.093	n/a	1.00	n/a
23	24	1.92	363.55	365.68	2.00	3.14	0.61	0.01	365.68	0.007	43.537	363.99	365.68	1.69	2.83	0.68	0.01	365.69	0.007	0.007	0.003	1.12	0.01
24	15	1.48	364.58	365.69	1.11	0.43	1.28	0.18	365.87	0.052	27.000	364.89	365.37	0.48**	0.43	3.40	0.18	365.55	0.052	0.052	n/a	1.00	n/a
25	24	11.93	361.54	363.21	1.67	2.80	4.27	0.28	363.49	0.271	123.51	9362.16	363.49	1.33	2.21	5.40	0.45	363.94	0.460	0.365	0.451	2.25	1.02
26	24	4.61	362.67	364.51	1.83	1.09	1.53	0.28	364.79	0.041	66.365	363.00	363.75	0.75**	1.09	4.25	0.28	364.04	0.041	0.041	n/a	0.50	0.14
27	18	4.48	363.20	364.04	0.84*	1.01	4.41	0.30	364.34	0.504	85.141	363.63	364.47	0.84	1.01	4.41	0.30	364.77	0.505	0.505	0.430	1.50	0.45
28	18	3.52	363.73	364.92	1.19	1.51	2.34	0.08	365.01	0.119	24.000	363.85	364.94	1.09	1.37	2.57	0.10	365.04	0.147	0.133	0.032	1.00	0.10
29	15	0.64	363.20	364.51	1.25	1.23	0.52	0.00	364.51	0.010	27.000	363.34	364.51	1.17	1.19	0.54	0.00	364.51	0.009	0.009	0.002	1.00	0.00
30	24	6.81	362.42	364.51	2.00	3.14	2.17	0.07	364.58	0.091	24.000	362.54	364.53	1.99	3.14	2.17	0.07	364.60	0.085	0.088	0.021	1.00	0.07
31	18	2.65	361.94	363.21	1.27	0.68	1.67	0.23	363.44	0.064	24.000	362.19	362.81	0.62**	0.68	3.87	0.23	363.04	0.064	0.064	n/a	1.00	n/a
32	24	0.26	362.30	364.25	1.95	3.12	0.08	0.00	364.25	0.000	73.029	362.65	364.25	1.60	2.69	0.10	0.00	364.25	0.000	0.000	0.000	1.00	0.00

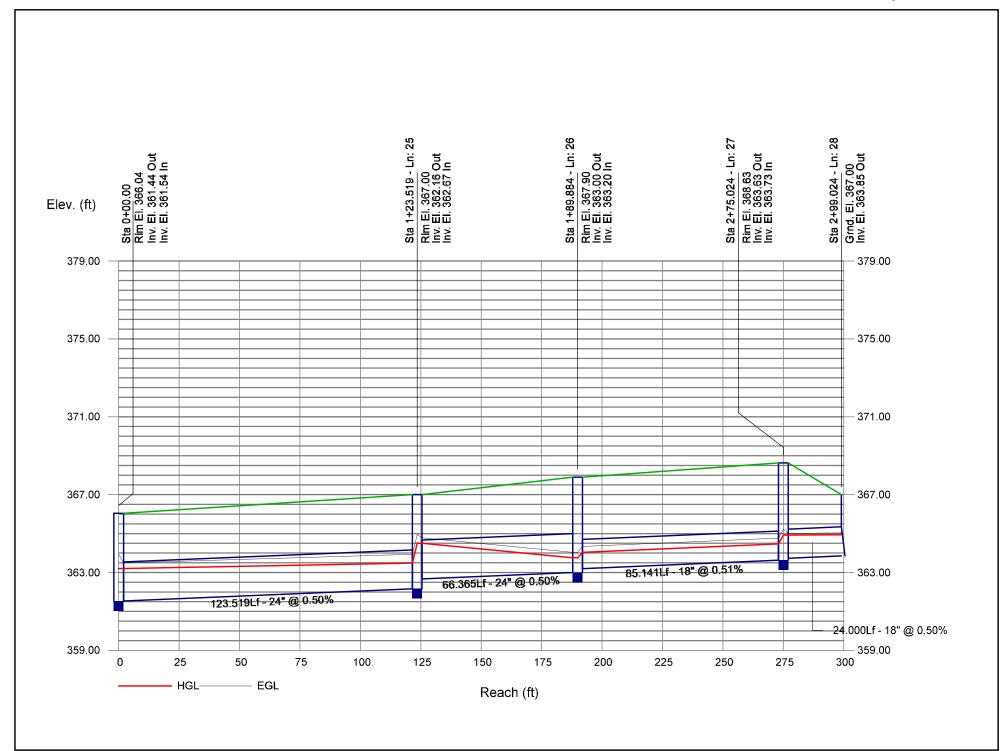

Project File: SCM#3.stm Number of lines: 32 Run Date: 12/5/2024

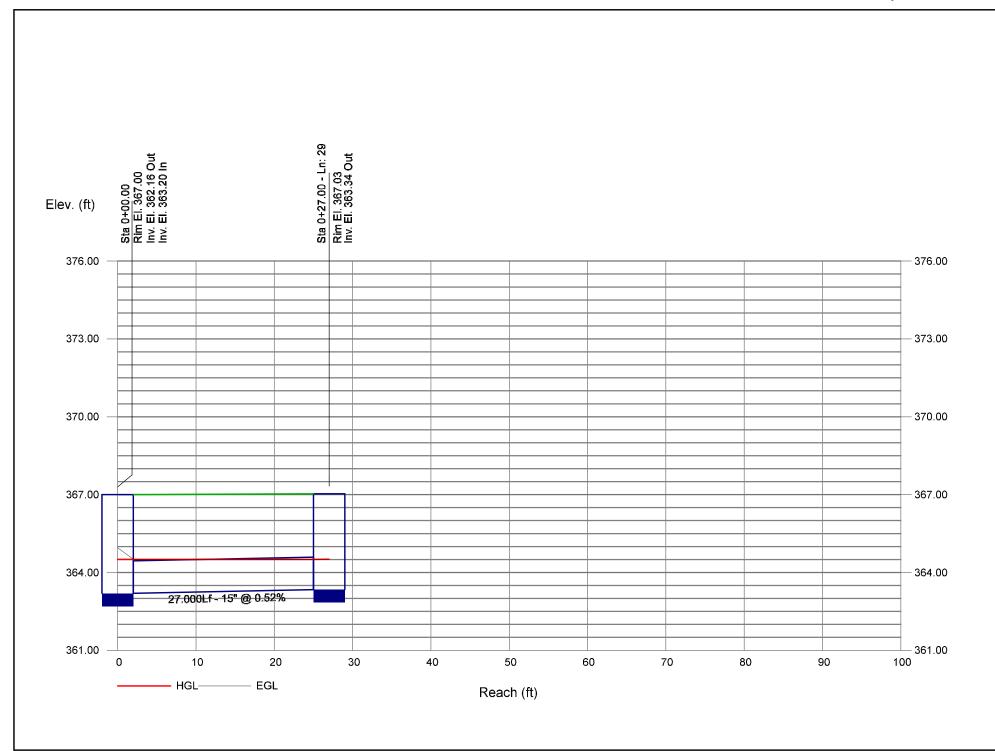

Notes: * depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

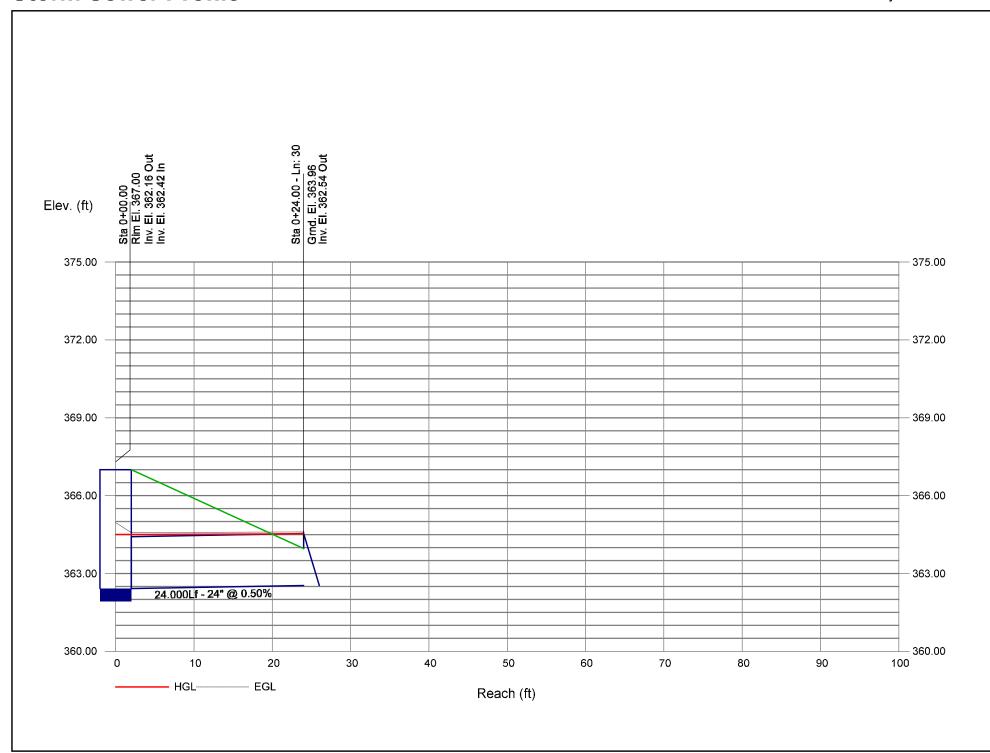


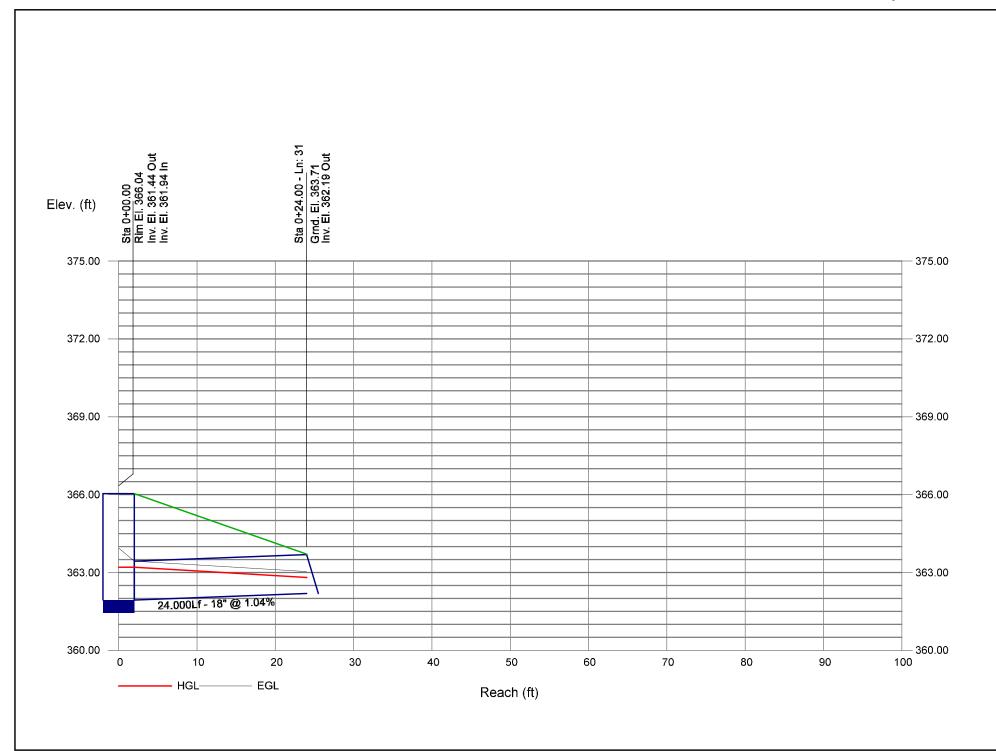


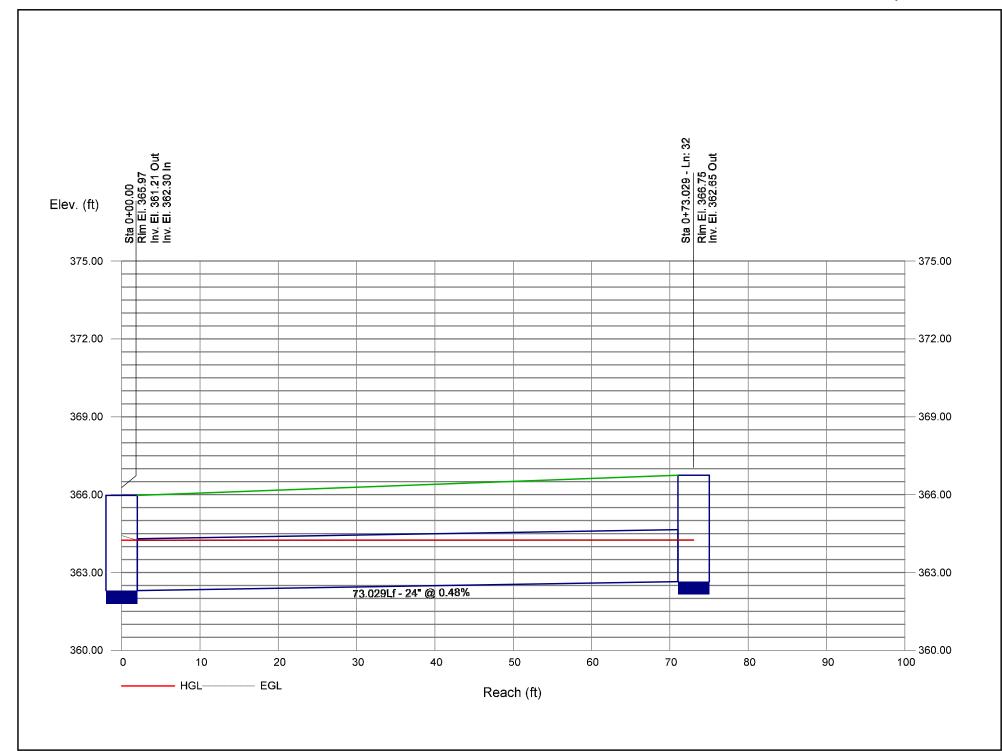


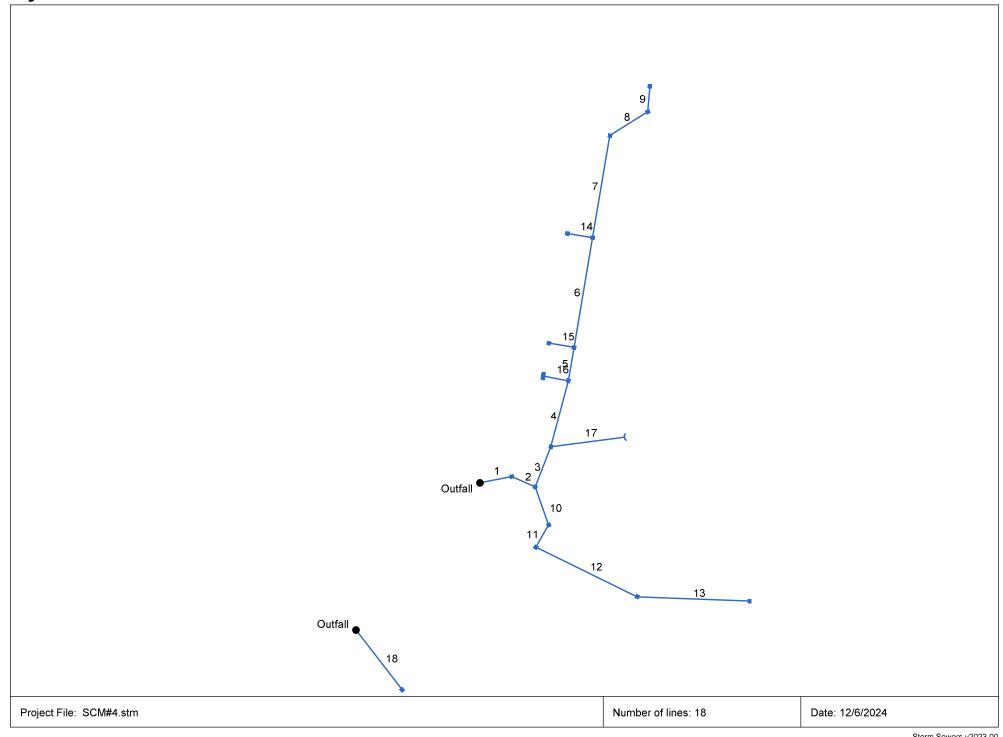












25-Year SCM#4 Report Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Inventory Report

.ine		Aligni	ment			Flow	Data					Physical	Data				Line ID
lo.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	34.253	-11.231	Comb	0.00	0.07	0.57	10.0	357.00	0.50	357.17	24	Cir	0.013	0.95	363.04	Pipe - (14)
2	1	27.000	35.364	Comb	0.00	0.01	0.57	10.0	357.27	0.48	357.40	24	Cir	0.013	1.72	363.02	Pipe - (19)
3	2	45.598	-92.825	Comb	0.00	0.04	0.57	10.0	357.50	0.50	357.73	24	Cir	0.013	1.35	362.81	Pipe - (13) (1)
4	3	72.000	-6.548	Comb	0.00	0.06	0.57	10.0	357.95	0.64	358.41	24	Cir	0.013	1.50	362.04	Pipe - (13)
5	4	35.770	-5.010	Comb	0.00	0.07	0.57	10.0	358.54	0.50	358.72	18	Cir	0.013	1.50	362.04	Pipe - (12)
6	5	117.298	-0.174	Comb	0.00	0.06	0.57	10.0	358.86	1.19	360.25	15	Cir	0.013	1.50	364.99	Pipe - (11)
7	6	109.503			0.00	0.02	0.57	10.0	360.58	3.41	364.31	15	Cir	0.013	1.18	368.85	Pipe - (9)
8	7	47.144	48.466	Comb	0.00	0.11	0.57	10.0	364.41	0.51	364.65	15	Cir	0.013	1.25	369.03	Pipe - (8)
9	8	27.000	-53.413	Comb	0.00	0.52	0.57	10.0	364.75	0.52	364.89	15	Cir	0.013	1.00	369.03	Pipe - (7)
10	2	42.392	46.461	Comb	0.00	0.25	0.57	10.0	357.51	0.50	357.72	24	Cir	0.013	1.19	363.00	Pipe - (18)
11	10	27.000	48.827	Comb	0.00	0.21	0.57	10.0	358.32	0.52	358.46	18	Cir	0.013	1.50	363.00	Pipe - (17)
12	11	118.810	-93.248	Comb	0.00	0.25	0.57	10.0	359.07	2.35	361.86	15	Cir	0.013	0.69	368.09	Pipe - (16)
13	12	118.495	-24.060	Comb	0.00	0.32	0.57	10.0	363.06	1.31	364.61	15	Cir	0.013	1.00	372.03	Pipe - (15)
14	6	27.000	-90.000	Comb	0.00	0.16	0.57	10.0	360.64	0.96	360.90	15	Cir	0.013	1.00	364.99	Pipe - (10)
15	5	27.000	-90.174	Comb	0.00	0.07	0.57	10.0	358.68	1.41	359.06	15	Cir	0.013	1.00	362.16	Pipe - (20)
16	4	27.000	-94.006	Comb	0.00	0.08	0.57	10.0	358.68	0.74	358.88	15	Cir	0.013	1.00	362.03	Pipe - (21)
17	3	78.211	61.239	Hdwl	0.00	0.90	0.57	10.0	358.33	0.51	358.73	18	Cir	0.013	1.00	359.75	Pipe - (163)
18	End	79.656	52.362	DrGrt	0.00	1.33	0.57	10.0	356.95	1.00	357.75	18	Cir	0.013	1.00	363.00	Pipe - (24)(0)
rojec	_ t File: SCI	 Vl#4.stm		<u> </u>						1		Number	of lines: 18	1	1	Date: 1	

Structure Report

Project File: SCM#4.stm

Struct	Structure ID	Junction	Rim		Structure			Line Out	i		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1	CB 401	Combination	363.04	Rect	4.00	4.00	24	Cir	357.17	24	Cir	357.27
2	CB 402	Combination	363.02	Rect	4.00	4.00	24	Cir	357.40	24 24	Cir Cir	357.50 357.51
3	CB 407	Combination	362.81	Rect	4.00	4.00	24	Cir	357.73	24 18	Cir Cir	357.95 358.33
4	CB 408	Combination	362.04	Rect	4.00	4.00	24	Cir	358.41	18 15	Cir Cir	358.54 358.68
5	CB 409	Combination	362.04	Rect	4.00	4.00	18	Cir	358.72	15 15	Cir Cir	358.86 358.68
6	CB 410	Combination	364.99	Rect	4.00	4.00	15	Cir	360.25	15 15	Cir Cir	360.58 360.64
7	CB 411	Combination	368.85	Rect	4.00	4.00	15	Cir	364.31	15	Cir	364.41
8	CB 412	Combination	369.03	Rect	4.00	4.00	15	Cir	364.65	15	Cir	364.75
9	CB 413	Combination	369.03	Rect	4.00	4.00	15	Cir	364.89			
10	CB 403	Combination	363.00	Rect	4.00	4.00	24	Cir	357.72	18	Cir	358.32
11	CB 404	Combination	363.00	Rect	4.00	4.00	18	Cir	358.46	15	Cir	359.07
12	CB 405	Combination	368.09	Rect	4.00	4.00	15	Cir	361.86	15	Cir	363.06
13	CB 406	Combination	372.03	Rect	4.00	4.00	15	Cir	364.61			
14	CB 410A	Combination	364.99	Rect	4.00	4.00	15	Cir	360.90			
15	CB 409A	Combination	362.16	Rect	4.00	4.00	15	Cir	359.06			
16	CB 408A	Combination	362.03	Rect	4.00	8.00	15	Cir	358.88			
17	FES INLET 407A	OpenHeadwall	359.75	n/a	n/a	n/a	18	Cir	358.73			
18	YI 421	DropGrate	363.00	Rect	4.00	4.00	18	Cir	357.75			

Number of Structures: 18

Storm Sewers v2023.00

Run Date: 12/6/2024

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	Pipe - (14)	11.23	24	Cir	34.253	357.00	357.17	0.496	359.00	359.07	0.20	359.27	End	Combination
2	Pipe - (19)	11.03	24	Cir	27.000	357.27	357.40	0.481	359.27	359.32	0.34	359.66	1	Combination
3	Pipe - (13) (1)	7.44	24	Cir	45.598	357.50	357.73	0.504	359.66	359.71	0.12	359.82	2	Combination
4	Pipe - (13)	4.15	24	Cir	72.000	357.95	358.41	0.639	359.82	359.12	0.40	359.12	3	Combination
5	Pipe - (12)	3.66	18	Cir	35.770	358.54	358.72	0.503	359.28	359.46	0.41	359.87	4	Combination
6	Pipe - (11)	3.21	15	Cir	117.298	358.86	360.25	1.185	359.87	360.97	n/a	360.97 j	5	Combination
7	Pipe - (9)	2.43	15	Cir	109.503	360.58	364.31	3.406	360.97	364.93	n/a	364.93	6	Combination
8	Pipe - (8)	2.37	15	Cir	47.144	364.41	364.65	0.509	365.05	365.28	0.28	365.56	7	Combination
9	Pipe - (7)	1.97	15	Cir	27.000	364.75	364.89	0.519	365.56	365.58	0.12	365.71	8	Combination
10	Pipe - (18)	3.76	24	Cir	42.392	357.51	357.72	0.495	359.66	359.67	0.03	359.70	2	Combination
11	Pipe - (17)	2.86	18	Cir	27.000	358.32	358.46	0.518	359.70	359.10	0.37	359.10	10	Combination
12	Pipe - (16)	2.12	15	Cir	118.810	359.07	361.86	2.348	359.46	362.44	0.15	362.44	11	Combination
13	Pipe - (15)	1.21	15	Cir	118.495	363.06	364.61	1.308	363.40	365.04	n/a	365.04	12	Combination
14	Pipe - (10)	0.61	15	Cir	27.000	360.64	360.90	0.963	360.97	361.20	n/a	361.20 j	6	Combination
15	Pipe - (20)	0.26	15	Cir	27.000	358.68	359.06	1.407	359.87	359.26	0.07	359.26	5	Combination
16	Pipe - (21)	0.30	15	Cir	27.000	358.68	358.88	0.741	359.12	359.09	n/a	359.09	4	Combination
17	Pipe - (163)	3.41	18	Cir	78.211	358.33	358.73	0.511	359.82	359.88	0.08	359.97	3	OpenHeadwall
18	Pipe - (24)(0)	5.03	18	Cir	79.656	356.95	357.75	1.004	358.45	358.61	n/a	358.61 j	End	DropGrate

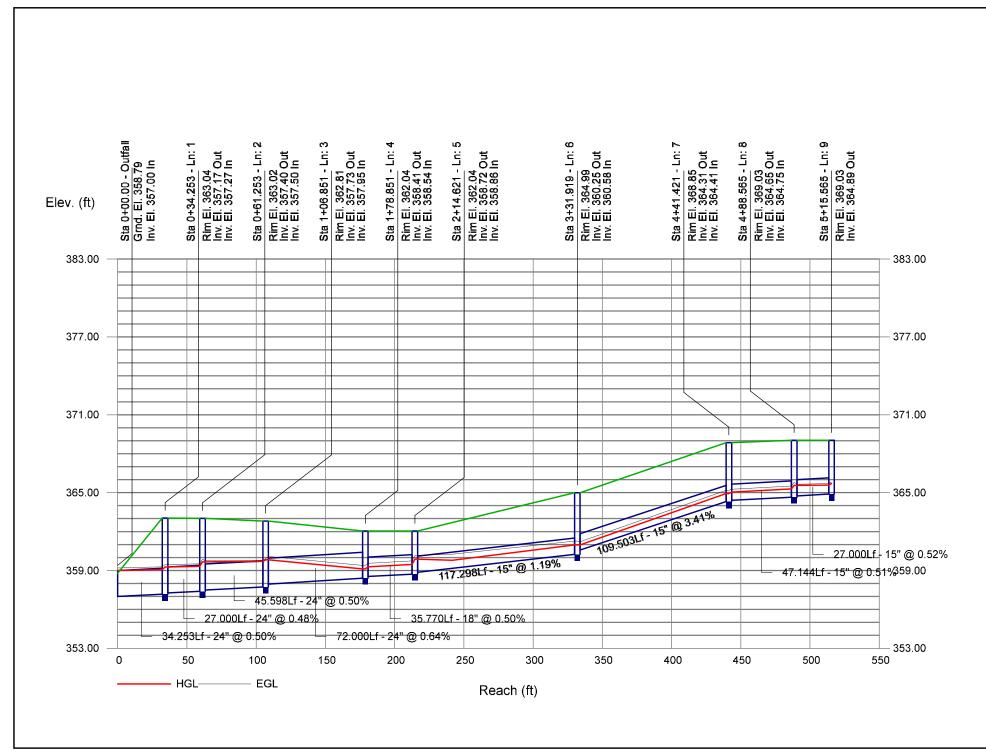
Project File: SCM#4.stm Run Date: 12/6/2024

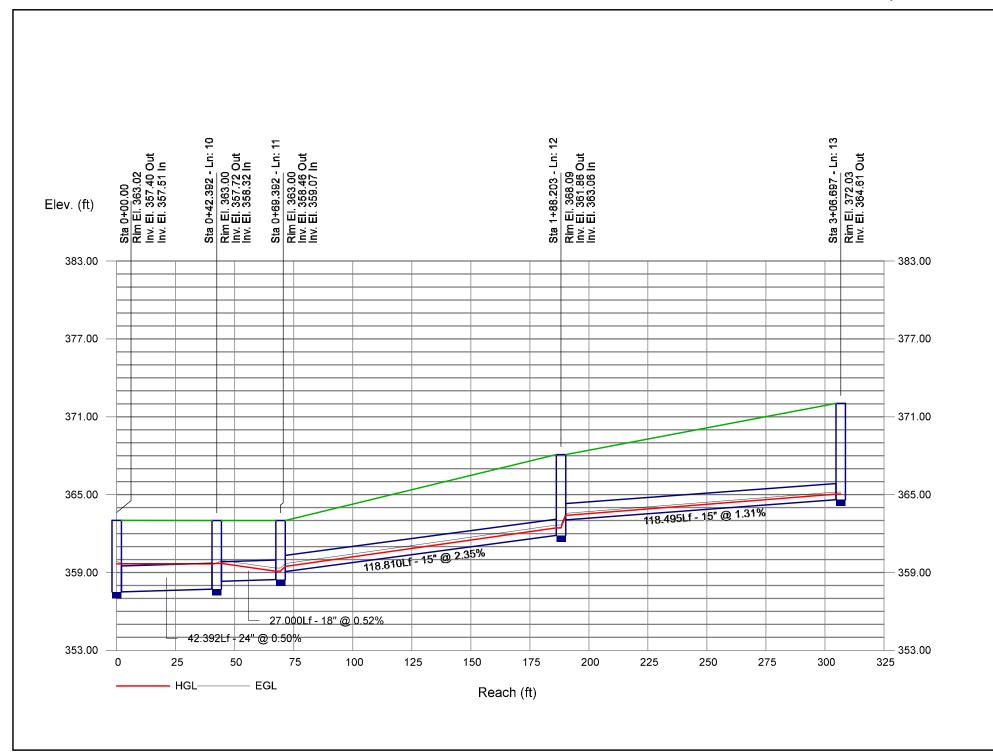
NOTES: Return period = 25 Yrs.; j - Line contains hyd. jump.

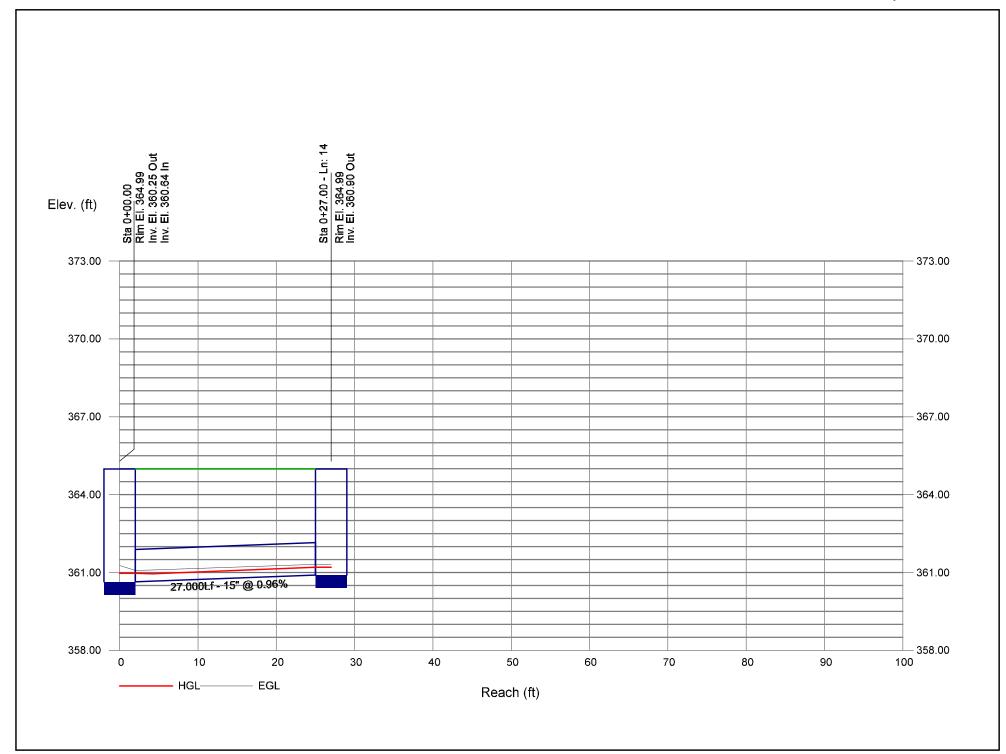
Inlet Report

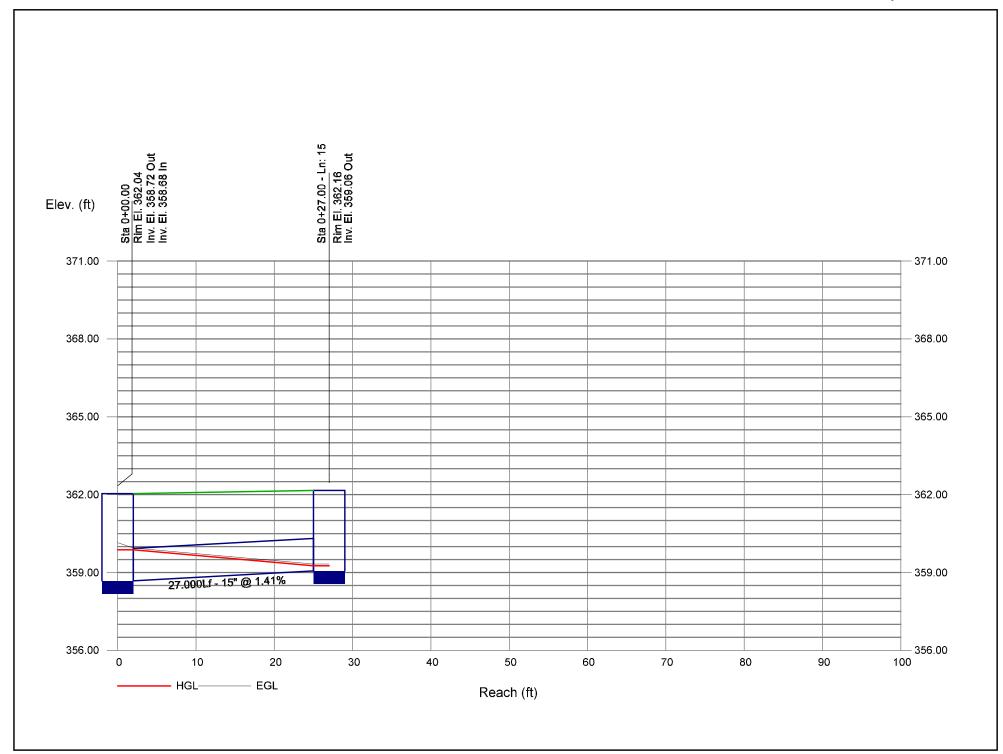
Line No	Inlet ID	Q = CIA	Q	Q capt	Q Byp	Junc	Curb Ir	nlet	Gra	ate Inlet				G	utter					Inlet		Byp Line
NO		(cfs)	(cfs)	(cfs)	(cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
1	CB 401	0.26	0.00	0.26	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.10	3.22	0.19	0.67	2.0	Off
2	CB 402	0.04	0.19	0.23	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.10	2.95	0.19	0.51	2.0	Off
3	CB 407	0.15	0.00	0.15	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.09	2.26	0.17	0.09	2.0	Off
4	CB 408	0.23	0.00	0.23	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.020	2.00	0.040	0.020	0.013	0.09	2.36	0.17	0.15	2.0	Off
5	CB 409	0.26	0.00	0.26	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	-0.01	1.23	0.15	1.23	2.0	Off
6	CB 410	0.23	0.00	0.22	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.10	2.94	0.19	0.50	2.0	Off
7	CB 411	0.08	0.00	0.08	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.030	2.00	0.040	0.020	0.013	0.05	1.34	0.17	0.00	2.0	6
8	CB 412	0.42	0.00	0.42	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.03	1.58	0.19	1.58	2.0	Off
9	CB 413	1.97	0.00	1.97	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.15	5.27	0.31	5.27	2.0	Off
10	CB 403	0.95	0.00	0.76	0.19	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.16	6.02	0.26	2.64	2.0	2
11	CB 404	0.79	0.00	0.71	0.09	Comb	6.0	1.50	0.00	3.00	2.50	0.030	2.00	0.040	0.020	0.013	0.13	4.30	0.22	1.41	2.0	Off
12	CB 405	0.95	0.25	1.00	0.20	Comb	6.0	1.50	0.00	3.00	2.50	0.038	2.00	0.040	0.020	0.013	0.14	4.96	0.24	1.83	2.0	Off
13	CB 406	1.21	0.00	0.96	0.25	Comb	6.0	1.50	7.50	3.00	2.50	0.020	2.00	0.040	0.020	0.013	0.16	5.76	0.26	2.54	2.0	12
14	CB 410A	0.61	0.00	0.53	0.08	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.14	4.92	0.23	1.66	2.0	Off
15	CB 409A	0.26	0.00	0.26	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	-0.01	1.23	0.15	1.23	2.0	Off
16	CB 408A	0.30	0.00	0.30	0.00	Comb	6.0	1.50	0.00	3.00	5.00	0.020	2.00	0.040	0.020	0.013	0.10	2.84	0.19	0.48	2.0	Off
17	FES INLET 407A	3.41	0.00	3.41	0.00	Hdwl	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.040	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
18	YI 421	5.03	0.00	5.03	0.00	DrGrt	0.0	0.00	9.00	3.00	3.00	Sag	4.00	0.020	0.020	0.013	0.27	30.92	0.27	30.92	0.0	Off

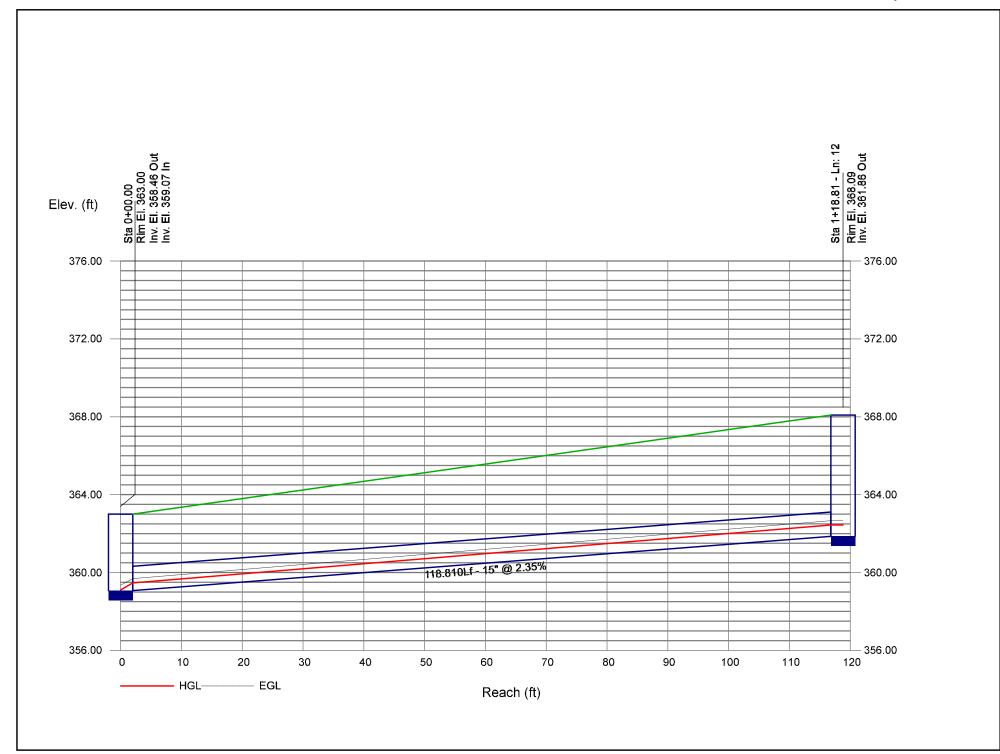
Project File: SCM#4.stm Number of lines: 18 Run Date: 12/6/2024

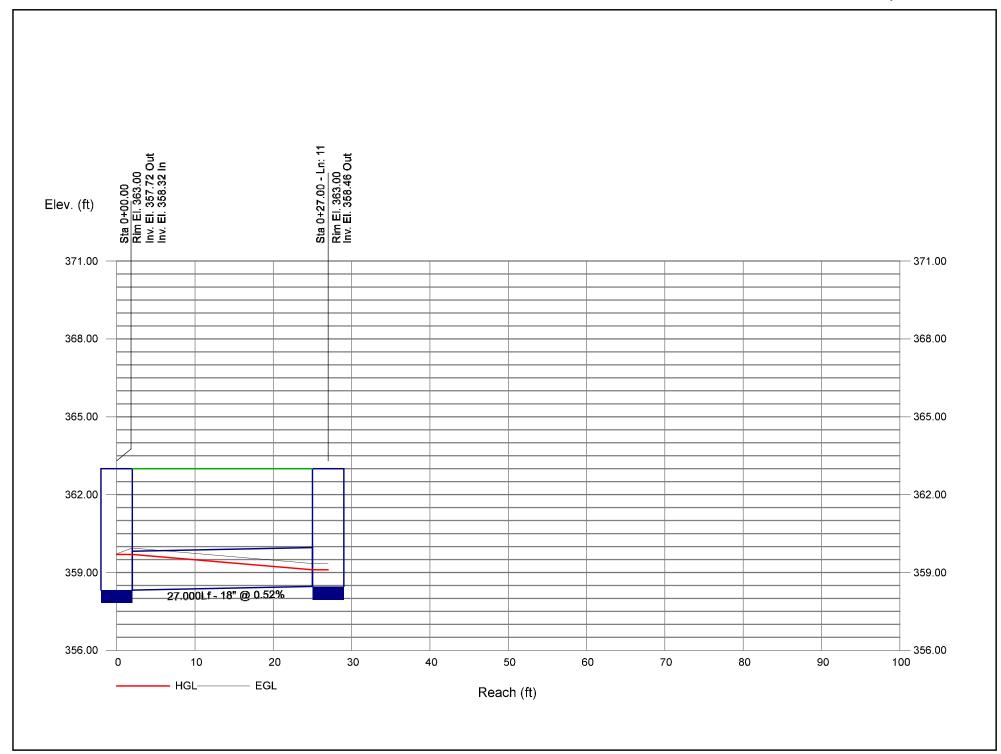

NOTES: Inlet N-Values = 0.016; Intensity = 62.86 / (Inlet time + 11.00) ^ 0.74; Return period = 25 Yrs.; * Indicates Known Q added.All curb inlets are throat.

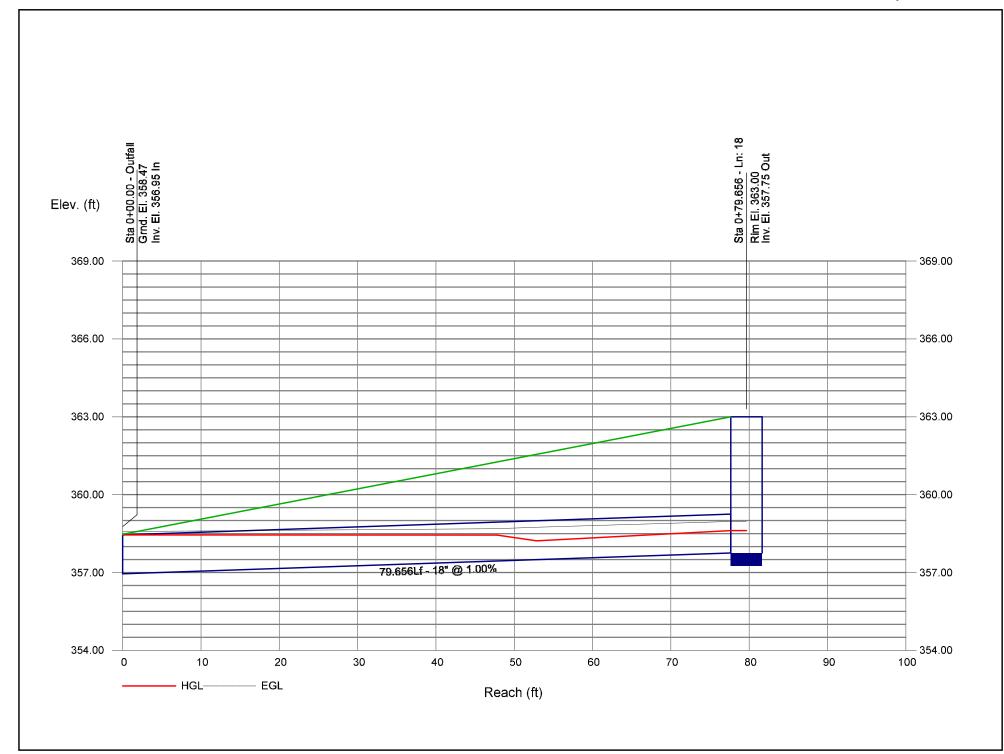

Hydraulic Grade Line Computations

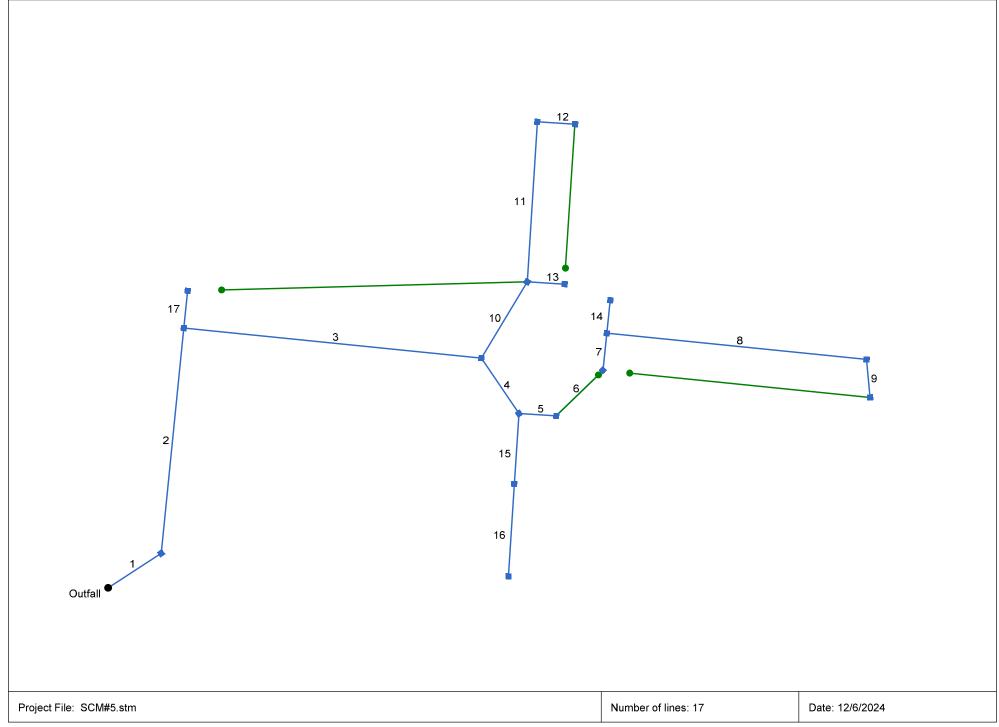

L	ine	Size	Q			D	ownstre	am				Len				Upstr	eam				Chec	k	JL	Minor
		(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	coeff (K)	(ft)
		(in)	(CIS)	(11)	(11)	(11)	(sqii)	(108)	(11)	(11)	(%)	(11)	(11.)	(11)	(11)	(sqit)	(IUS)	(11)	(ft)	(70)	(70)	(11)	(N)	(11)
	1	24	11.23	357.00	359.00	2.00	3.14	3.57	0.20	359.20	0.246	34.253	357.17	359.07	1.90	3.08	3.64	0.21	359.28	0.213	0.230	0.079	0.95	0.20
	2	24	11.03	357.27	359.27	2.00	3.14	3.51	0.19	359.46	0.230	27.000	357.40	359.32	1.92	3.10	3.56	0.20	359.52	0.207	0.218	0.059	1.72	0.34
	3	24	7.44	357.50	359.66	2.00	3.14	2.37	0.09	359.75	0.108	45.598	357.73	359.71	1.98	3.13	2.37	0.09	359.79	0.099	0.104	0.047	1.35	0.12
	4	24	4.15	357.95	359.82	1.87	1.01	1.36	0.26	360.09	0.000	72.000	358.41	359.12	0.71**	1.01	4.12	0.26	359.39	0.000	0.000	n/a	1.50	0.40
	5	18	3.66	358.54	359.28	0.74*	0.87	4.20	0.27	359.56	0.503	35.770	358.72	359.46	0.74	0.87	4.21	0.28	359.74	0.506	0.504	0.180	1.50	0.41
	6	15	3.21	358.86	359.87	1.01	0.73	3.01	0.30	360.17	0.000	117.29	8360.25	360.97 j	0.72**	0.73	4.38	0.30	361.27	0.000	0.000	n/a	1.50	n/a
	7	15	2.43	360.58	360.97	0.39	0.33	7.39	0.25	361.22	0.000	109.50	3364.31	364.93	0.62**	0.61	3.97	0.25	365.18	0.000	0.000	n/a	1.18	n/a
	8	15	2.37	364.41	365.05	0.64*	0.63	3.78	0.22	365.27	0.508	47.144	364.65	365.28	0.63	0.62	3.79	0.22	365.51	0.513	0.511	0.241	1.25	0.28
	9	15	1.97	364.75	365.56	0.81	0.85	2.33	0.08	365.65	0.162	27.000	364.89	365.58	0.69	0.70	2.82	0.12	365.71	0.265	0.213	0.058	1.00	0.12
	10	24	3.76	357.51	359.66	2.00	3.14	1.20	0.02	359.68	0.028	42.392	357.72	359.67	1.95	3.12	1.20	0.02	359.69	0.024	0.026	0.011	1.19	0.03
	11	18	2.86	358.32	359.70	1.38	0.72	1.68	0.24	359.94	0.000	27.000	358.46	359.10	0.64**	0.72	3.96	0.24	359.35	0.000	0.000	n/a	1.50	0.37
	12	15	2.12	359.07	359.46	0.39*	0.33	6.41	0.22	359.69	0.000	118.81	0361.86	362.44	0.58**	0.56	3.80	0.22	362.66	0.000	0.000	n/a	0.69	0.15
	13	15	1.21	363.06	363.40	0.34*	0.27	4.44	0.16	363.56	0.000	118.49	5364.61	365.04	0.43**	0.38	3.20	0.16	365.20	0.000	0.000	n/a	1.00	n/a
	14	15	0.61	360.64	360.97	0.33	0.23	2.32	0.11	361.08	0.000	27.000	360.90	361.20 j	0.30**	0.23	2.63	0.11	361.31	0.000	0.000	n/a	1.00	0.11
	15	15	0.26	358.68	359.87	1.19	0.13	0.22	0.07	359.94	0.000	27.000	359.06	359.26	0.20**	0.13	2.11	0.07	359.33	0.000	0.000	n/a	1.00	0.07
	16	15	0.30	358.68	359.12	0.44	0.14	0.77	0.07	359.20	0.000	27.000	358.88	359.09	0.21**	0.14	2.18	0.07	359.17	0.000	0.000	n/a	1.00	n/a
	17	18	3.41	358.33	359.82	1.49	1.77	1.93	0.06	359.88	0.100		358.73	359.88	1.15	1.46	2.34	0.08	359.97	0.120	0.110	0.086	1.00	0.08
	18	18	5.03	356.95	358.45	1.50*	1.05	2.85	0.13	358.58	0.230	79.656	357.75	358.61 j	0.86**	1.05	4.78	0.36	358.97	0.580	0.405	n/a	1.00	0.36
																				<u> </u>				


Project File: SCM#4.stm Number of lines: 18 Run Date: 12/6/2024


Notes: * depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box







Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan 25-Year SCM#5 Report

Storm Sewer Inventory Report

ine	Alignment					Flow Data					Line ID						
lo.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	45.553	-33.168	DrGrt	0.00	1.27	0.57	10.0	346.92	0.50	347.15	30	Cir	0.013	1.22	350.00	Pipe - (39)
2	1	163.558	-51.139	Comb	0.00	0.28	0.57	10.0	347.25	3.24	352.55	24	Cir	0.013	1.50	357.04	Pipe - (38)
3	2	215.399	90.101	Comb	0.00	0.04	0.57	10.0	352.65	4.00	361.27	24	Cir	0.013	1.38	366.04	Pipe - (37)
4	3	48.260	50.241	Comb	0.00	0.03	0.57	10.0	361.37	0.99	361.85	24	Cir	0.013	1.49	367.77	Pipe - (36)
5	4	27.000	-52.412	Comb	0.00	1.06	0.57	10.0	362.36	0.52	362.50	24	Cir	0.013	1.17	367.48	Pipe - (35)
6	5	47.057	-47.882	Comb	0.00	0.24	0.57	10.0	362.58	0.53	362.83	24	Cir	0.013	1.04	367.03	Pipe - (34)
7	6	27.000	-39.946	Comb	0.00	0.19	0.57	10.0	362.93	0.52	363.07	18	Cir	0.013	1.50	367.03	Pipe - (33)
8	7	187.898	90.000	Comb	0.00	0.14	0.57	10.0	363.26	3.69	370.19	15	Cir	0.013	1.48	374.04	Pipe - (31)
9	8	27.526	78.789	Comb	0.00	0.14	0.57	10.0	370.29	0.51	370.43	15	Cir	0.013	1.00	374.10	Pipe - (30)
10	3	64.208	-64.883	Comb	0.00	0.07	0.57	10.0	362.27	1.32	363.12	15	Cir	0.013	1.36	368.61	Pipe - (44)
11	10	115.871	-27.298	Comb	0.00	0.11	0.57	10.0	363.77	2.68	366.88	15	Cir	0.013	1.50	372.04	Pipe - (150)
12	11	27.018	90.079	Comb	0.00	0.12	0.57	10.0	367.17	1.07	367.46	15	Cir	0.013	1.00	372.04	Pipe - (28)
13	10	27.000	62.711	Comb	0.00	0.07	0.57	10.0	364.00	0.89	364.24	15	Cir	0.013	1.00	368.57	Pipe - (43)
14	7	24.000	0.003	DrGrt	0.00	1.45	0.57	10.0	363.18	0.88	363.39	18	Cir	0.013	1.00	367.00	Pipe - (45)
15	4	50.977	37.588	Comb	0.00	0.04	0.57	10.0	362.69	0.63	363.01	15	Cir	0.013	0.50	367.99	Pipe - (42)
16	15	66.788	0.000	Comb	0.00	0.06	0.57	10.0	363.11	1.62	364.19	15	Cir	0.013	1.00	369.04	Pipe - (41)
17	2	27.001	0.467	Comb	0.00	0.26	0.57	10.0	353.30	0.52	353.44	15	Cir	0.013	1.00	357.04	Pipe - (40)
roject F	⊥ File: SCN	/l#5.stm	l	-		1			1	1	1	Number	of lines: 17		1	Date: 1	2/6/2024

Structure Report

Project File: SCM#5.stm

Struct	Structure ID	Junction	Rim Elev (ft)		Structure			Line Ou	t	Line In		
No.		Туре		Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1	YI 501	DropGrate	350.00	Rect	4.00	4.00	30	Cir	347.15	24	Cir	347.25
2	CB 502	Combination	357.04	Rect	4.00	4.00	24	Cir	352.55	24 15	Cir Cir	352.65 353.30
3	CB 504	Combination	366.04	Rect	4.00	4.00	24	Cir	361.27	24 15	Cir Cir	361.37 362.27
4	CB 505	Combination	367.77	Rect	4.00	4.00	24	Cir	361.85	24 15	Cir Cir	362.36 362.69
5	CB 506	Combination	367.48	Rect	4.00	4.00	24	Cir	362.50	24	Cir	362.58
6	CB 507	Combination	367.03	Rect	4.00	4.00	24	Cir	362.83	18	Cir	362.93
7	CB 508	Combination	367.03	Rect	4.00	4.00	18	Cir	363.07	15 18	Cir Cir	363.26 363.18
8	CB 514	Combination	374.04	Rect	4.00	4.00	15	Cir	370.19	15	Cir	370.29
9	CB 515	Combination	374.10	Rect	4.00	4.00	15	Cir	370.43			
10	CB 511	Combination	368.61	Rect	4.00	4.00	15	Cir	363.12	15 15	Cir Cir	363.77 364.00
11	CB 517	Combination	372.04	Rect	4.00	4.00	15	Cir	366.88	15	Cir	367.17
12	CB 516	Combination	372.04	Rect	4.00	4.00	15	Cir	367.46			
13	CB 510	Combination	368.57	Rect	4.00	4.00	15	Cir	364.24			
14	YI 509	DropGrate	367.00	Rect	4.00	4.00	18	Cir	363.39			
15	CB 512	Combination	367.99	Rect	4.00	4.00	15	Cir	363.01	15	Cir	363.11
16	CB 513	Combination	369.04	Rect	4.00	4.00	15	Cir	364.19			
17	CB 503	Combination	357.04	Rect	4.00	4.00	15	Cir	353.44			

Number of Structures: 17

Storm Sewers v2023.00

Run Date: 12/6/2024

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	Pipe - (39)	18.88	30	Cir	45.553	346.92	347.15	0.505	349.42	349.50	0.29	349.79	End	DropGrate
2	Pipe - (38)	14.79	24	Cir	163.558	347.25	352.55	3.240	349.79	353.93	n/a	353.93 j	1	Combination
3	Pipe - (37)	13.18	24	Cir	215.399	352.65	361.27	4.002	353.93	362.58	n/a	362.58	2	Combination
4	Pipe - (36)	11.79	24	Cir	48.260	361.37	361.85	0.995	362.58	363.08	n/a	363.08	3	Combination
5	Pipe - (35)	11.36	24	Cir	27.000	362.36	362.50	0.519	363.59	363.73	0.57	364.30	4	Combination
6	Pipe - (34)	7.67	24	Cir	47.057	362.58	362.83	0.531	364.30	363.81	0.40	363.81	5	Combination
7	Pipe - (33)	6.84	18	Cir	27.000	362.93	363.07	0.519	364.05	364.19	0.55	364.73	6	Combination
8	Pipe - (31)	1.05	15	Cir	187.898	363.26	370.19	3.688	364.73	370.59	n/a	370.59 j	7	Combination
9	Pipe - (30)	0.53	15	Cir	27.526	370.29	370.43	0.509	370.59	370.72	0.10	370.81	8	Combination
10	Pipe - (44)	1.37	15	Cir	64.208	362.27	363.12	1.324	362.63	363.58	0.23	363.58	3	Combination
11	Pipe - (150)	0.87	15	Cir	115.871	363.77	366.88	2.684	364.01	367.24	n/a	367.24	10	Combination
12	Pipe - (28)	0.45	15	Cir	27.018	367.17	367.46	1.073	367.39	367.72	0.09	367.72	11	Combination
13	Pipe - (43)	0.26	15	Cir	27.000	364.00	364.24	0.889	364.18	364.44	0.07	364.44	10	Combination
14	Pipe - (45)	5.49	18	Cir	24.000	363.18	363.39	0.875	364.73	364.79	0.16	364.95	7	DropGrate
15	Pipe - (42)	0.37	15	Cir	50.977	362.69	363.01	0.628	363.08	363.25	n/a	363.25 j	4	Combination
16	Pipe - (41)	0.23	15	Cir	66.788	363.11	364.19	1.617	363.25	364.37	n/a	364.37	15	Combination
17	Pipe - (40)	0.98	15	Cir	27.001	353.30	353.44	0.519	353.93	353.94	0.07	354.01	2	Combination

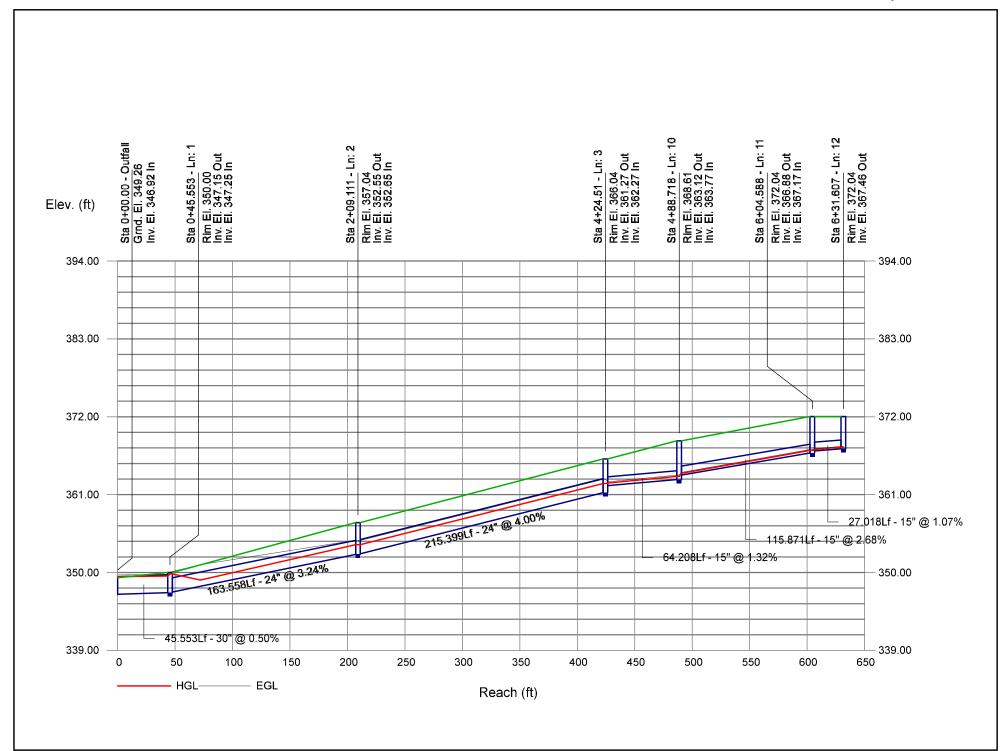
Number of lines: 17 Run Date: 12/6/2024 Project File: SCM#5.stm

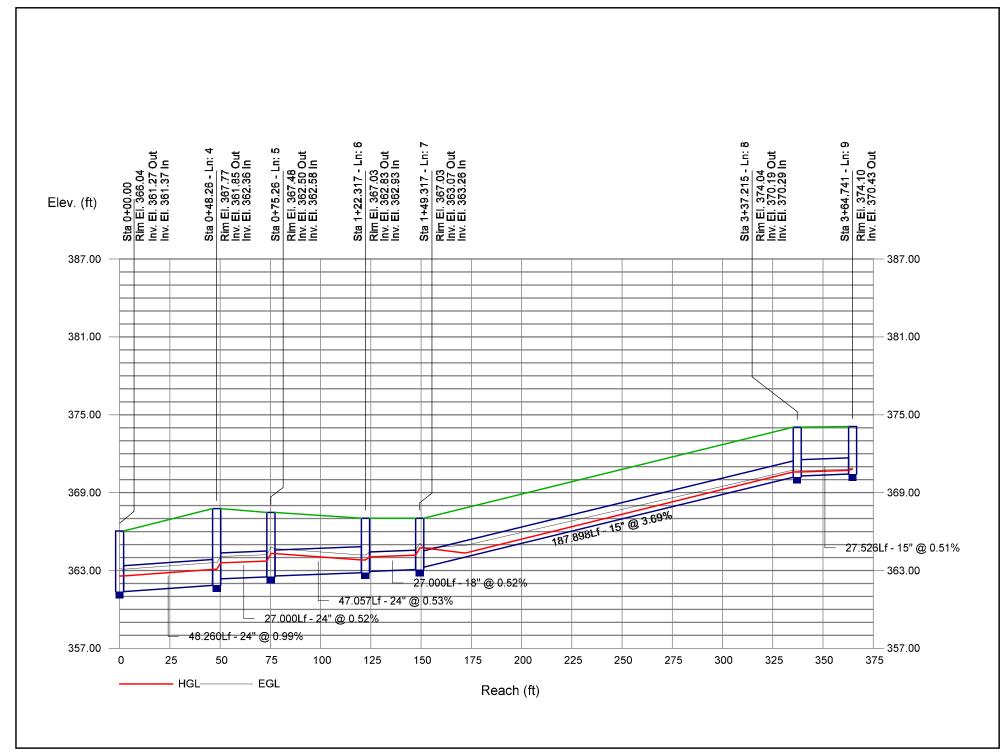
NOTES: Return period = 25 Yrs.; j - Line contains hyd. jump.

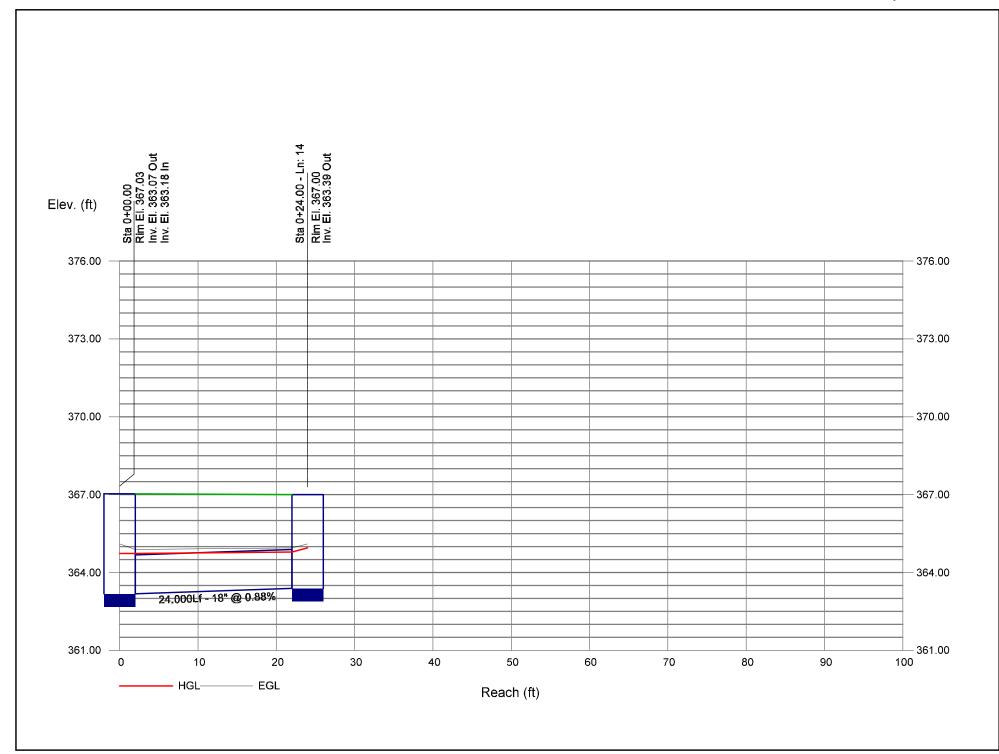
Inlet Report

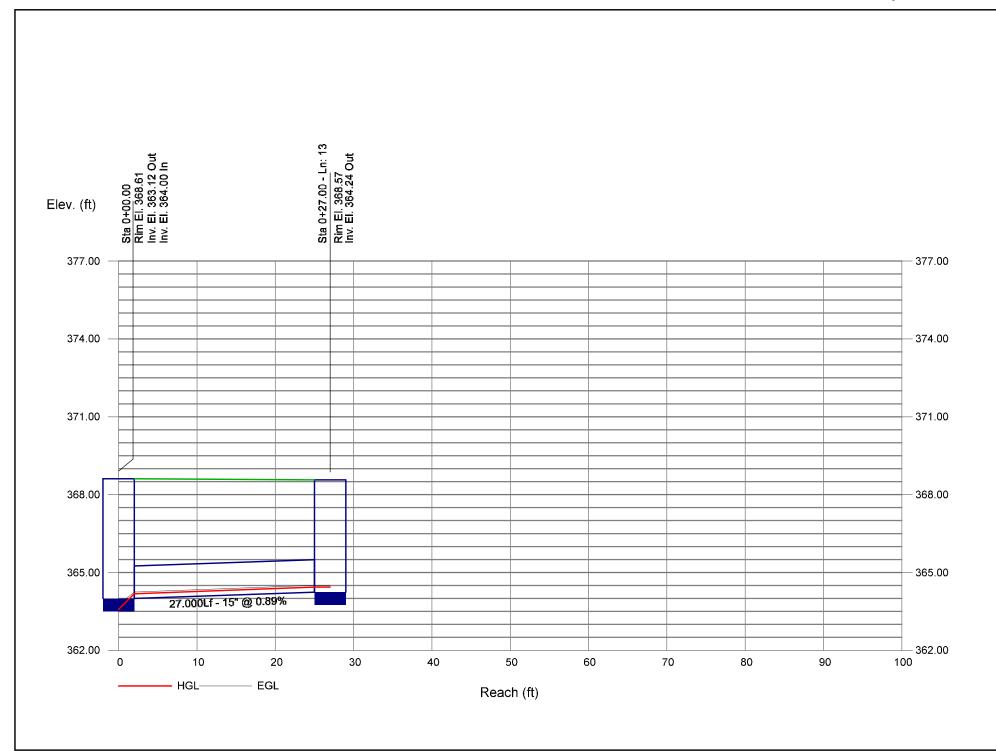
YI 501 CB 502	(cfs) 4.80	(cfs)	capt (cfs)	Byp (cfs)	Туре	Ht												+			
CB 502	4.80			1		(in)	(ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n		Spread (ft)		Spread (ft)	Depr (in)	Line No
		0.00	4.80	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	4.00	0.020	0.020	0.013	0.34	38.20	0.34	38.20	0.0	Off
	1.06	0.00	1.06	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.11	3.54	0.28	3.54	2.0	Off
CB 504	0.15	0.00	0.15	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.047	2.00	0.040	0.020	0.013	0.06	1.60	0.17	0.00	2.0	2
CB 505	0.11	0.00	0.11	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.08	1.91	0.17	0.00	2.0	3
CB 506	4.01	0.00	2.20	1.81	Comb	6.0	1.50	0.00	3.00	2.50	0.010	2.00	0.040	0.020	0.013	0.26	10.93	0.37	7.94	2.0	6
CB 507	0.91	1.83	2.74	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.19	7.60	0.36	7.60	2.0	Off
CB 508	0.72	0.02	0.74	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.09	2.42	0.26	2.42	2.0	Off
CB 514	0.53	0.00	0.51	0.02	Comb	6.0	1.50	0.00	3.00	2.50	0.039	2.00	0.040	0.020	0.013	0.10	3.24	0.20	0.75	2.0	7
CB 515	0.53	0.00	0.51	0.02	Comb	6.0	1.50	0.00	3.00	2.50	0.039	2.00	0.040	0.020	0.013	0.10	3.24	0.20	0.75	2.0	6
CB 511	0.26	0.01	0.27	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.040	2.00	0.040	0.020	0.013	0.08	2.11	0.17	0.00	2.0	17
CB 517	0.42	0.00	0.41	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.030	2.00	0.040	0.020	0.013	0.10	3.04	0.19	0.62	2.0	10
CB 516	0.45	0.00	0.44	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.030	2.00	0.040	0.020	0.013	0.10	3.20	0.20	0.71	2.0	13
CB 510	0.26	0.01	0.28	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.040	2.00	0.040	0.020	0.013	0.08	2.13	0.17	0.07	2.0	10
YI 509	5.49	0.00	5.49	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	4.00	0.020	0.020	0.013	0.37	41.37	0.37	41.37	0.0	Off
CB 512	0.15	0.00	0.15	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.020	2.00	0.040	0.020	0.013	0.07	1.87	0.17	0.00	2.0	4
CB 513	0.23	0.00	0.23	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.020	2.00	0.040	0.020	0.013	0.09	2.36	0.17	0.15	2.0	15
CB 503	0.98	0.00	0.98	0.00	Comb	6.0	3.00	7.50	3.00	2.50	Sag	2.00	0.040	0.020	0.013	0.11	3.48	0.28	3.48	2.0	Off
	EB 506 EB 507 EB 508 EB 514 EB 515 EB 517 EB 516 EB 510 EI 509 EB 512 EB 513	6B 505 0.11 6B 506 4.01 6B 507 0.91 6B 508 0.72 6B 514 0.53 6B 515 0.53 6B 517 0.42 6B 516 0.45 6B 510 0.26 7B 509 5.49 6B 512 0.15 6B 513 0.23	6B 505 0.11 0.00 6B 506 4.01 0.00 6B 507 0.91 1.83 6B 508 0.72 0.02 6B 514 0.53 0.00 6B 515 0.53 0.00 6B 511 0.26 0.01 6B 516 0.42 0.00 6B 510 0.26 0.01 6B 510 0.26 0.01 7B 509 5.49 0.00 6B 512 0.15 0.00 6B 513 0.23 0.00	8B 505 0.11 0.00 0.11 8B 506 4.01 0.00 2.20 8B 507 0.91 1.83 2.74 8B 508 0.72 0.02 0.74 8B 514 0.53 0.00 0.51 8B 515 0.53 0.00 0.51 8B 511 0.26 0.01 0.27 8B 517 0.42 0.00 0.41 8B 516 0.45 0.00 0.44 8B 510 0.26 0.01 0.28 9B 512 0.15 0.00 0.15 8B 513 0.23 0.00 0.23	8B 505 0.11 0.00 0.11 0.00 8B 506 4.01 0.00 2.20 1.81 8B 507 0.91 1.83 2.74 0.00 8B 508 0.72 0.02 0.74 0.00 8B 514 0.53 0.00 0.51 0.02 8B 515 0.26 0.01 0.27 0.00 8B 511 0.26 0.01 0.27 0.00 8B 516 0.42 0.00 0.41 0.01 8B 516 0.26 0.01 0.28 0.00 9B 510 0.26 0.01 0.28 0.00 9B 512 0.15 0.00 0.15 0.00 9B 513 0.23 0.00 0.23 0.00	8B 505 0.11 0.00 0.11 0.00 Comb 8B 506 4.01 0.00 2.20 1.81 Comb 8B 507 0.91 1.83 2.74 0.00 Comb 8B 508 0.72 0.02 0.74 0.00 Comb 8B 514 0.53 0.00 0.51 0.02 Comb 8B 515 0.53 0.00 0.51 0.02 Comb 8B 511 0.26 0.01 0.27 0.00 Comb 8B 517 0.42 0.00 0.41 0.01 Comb 8B 516 0.45 0.00 0.44 0.01 Comb 8B 510 0.26 0.01 0.28 0.00 Comb 8B 512 0.15 0.00 0.15 0.00 Comb 8B 513 0.23 0.00 0.23 0.00 Comb	8B 505 0.11 0.00 0.11 0.00 Comb 6.0 8B 506 4.01 0.00 2.20 1.81 Comb 6.0 8B 507 0.91 1.83 2.74 0.00 Comb 6.0 8B 508 0.72 0.02 0.74 0.00 Comb 6.0 8B 514 0.53 0.00 0.51 0.02 Comb 6.0 8B 515 0.53 0.00 0.51 0.02 Comb 6.0 8B 511 0.26 0.01 0.27 0.00 Comb 6.0 8B 517 0.42 0.00 0.41 0.01 Comb 6.0 8B 516 0.45 0.00 0.44 0.01 Comb 6.0 8B 510 0.26 0.01 0.28 0.00 Comb 6.0 1509 5.49 0.00 5.49 0.00 DrGrt 0.0 8B 512 0.15 0.00 0.23 0.00 Comb 6.0 8B 513 0.23 0.00 0.23 0.00	8B 505 0.11 0.00 0.11 0.00 Comb 6.0 1.50 8B 506 4.01 0.00 2.20 1.81 Comb 6.0 1.50 8B 507 0.91 1.83 2.74 0.00 Comb 6.0 3.00 8B 508 0.72 0.02 0.74 0.00 Comb 6.0 3.00 8B 514 0.53 0.00 0.51 0.02 Comb 6.0 1.50 8B 515 0.53 0.00 0.51 0.02 Comb 6.0 1.50 8B 511 0.26 0.01 0.27 0.00 Comb 6.0 1.50 8B 517 0.42 0.00 0.41 0.01 Comb 6.0 1.50 8B 516 0.45 0.00 0.44 0.01 Comb 6.0 1.50 8B 510 0.26 0.01 0.28 0.00 Comb 6.0 1.50 8B 512 0.15 0.00 0.15 0.00 Comb 6.0 1.50 8B 513 0.23	8B 505 0.11 0.00 0.11 0.00 Comb 6.0 1.50 0.00 8B 506 4.01 0.00 2.20 1.81 Comb 6.0 1.50 0.00 8B 507 0.91 1.83 2.74 0.00 Comb 6.0 3.00 7.50 8B 508 0.72 0.02 0.74 0.00 Comb 6.0 3.00 7.50 8B 514 0.53 0.00 0.51 0.02 Comb 6.0 1.50 0.00 8B 515 0.53 0.00 0.51 0.02 Comb 6.0 1.50 0.00 8B 511 0.26 0.01 0.27 0.00 Comb 6.0 1.50 0.00 8B 517 0.42 0.00 0.41 0.01 Comb 6.0 1.50 0.00 8B 516 0.45 0.00 0.44 0.01 Comb 6.0 1.50 0.00 8B 510 0.26 0.01 0.28 0.00 Comb 6.0 1.50 0.00 8B 512	8B 505 0.11 0.00 0.11 0.00 Comb 6.0 1.50 0.00 3.00 8B 506 4.01 0.00 2.20 1.81 Comb 6.0 1.50 0.00 3.00 8B 507 0.91 1.83 2.74 0.00 Comb 6.0 3.00 7.50 3.00 8B 508 0.72 0.02 0.74 0.00 Comb 6.0 3.00 7.50 3.00 8B 514 0.53 0.00 0.51 0.02 Comb 6.0 1.50 0.00 3.00 8B 515 0.53 0.00 0.51 0.02 Comb 6.0 1.50 0.00 3.00 8B 511 0.26 0.01 0.27 0.00 Comb 6.0 1.50 0.00 3.00 8B 516 0.45 0.00 0.41 0.01 Comb 6.0 1.50 0.00 3.00 8B 510 0.26 0.01 0.28 0.00	8B 505 0.11 0.00 0.11 0.00 Comb 6.0 1.50 0.00 3.00 2.50 8B 506 4.01 0.00 2.20 1.81 Comb 6.0 1.50 0.00 3.00 2.50 8B 507 0.91 1.83 2.74 0.00 Comb 6.0 3.00 7.50 3.00 2.50 8B 508 0.72 0.02 0.74 0.00 Comb 6.0 3.00 7.50 3.00 2.50 8B 514 0.53 0.00 0.51 0.02 Comb 6.0 1.50 0.00 3.00 2.50 8B 515 0.53 0.00 0.51 0.02 Comb 6.0 1.50 0.00 3.00 2.50 8B 517 0.26 0.01 0.27 0.00 Comb 6.0 1.50 0.00 3.00 2.50 8B 516 0.45 0.00 0.44 0.01 Comb 6.0 1.50 0.00 3.00 2.50 8B 510 0.26 0.01 0.28 0.00	8B 505 0.11 0.00 0.11 0.00 Comb 6.0 1.50 0.00 3.00 2.50 0.010 8B 506 4.01 0.00 2.20 1.81 Comb 6.0 1.50 0.00 3.00 2.50 0.010 8B 507 0.91 1.83 2.74 0.00 Comb 6.0 3.00 7.50 3.00 2.50 Sag 8B 508 0.72 0.02 0.74 0.00 Comb 6.0 3.00 7.50 3.00 2.50 Sag 8B 514 0.53 0.00 0.51 0.02 Comb 6.0 1.50 0.00 3.00 2.50 0.039 8B 515 0.53 0.00 0.51 0.02 Comb 6.0 1.50 0.00 3.00 2.50 0.039 8B 517 0.26 0.01 0.27 0.00 Comb 6.0 1.50 0.00 3.00 2.50 0.030 8B 516 0.45 <td>8B 505 0.11 0.00 0.11 0.00 Comb 6.0 1.50 0.00 3.00 2.50 0.010 2.00 8B 506 4.01 0.00 2.20 1.81 Comb 6.0 1.50 0.00 3.00 2.50 0.010 2.00 8B 507 0.91 1.83 2.74 0.00 Comb 6.0 3.00 7.50 3.00 2.50 Sag 2.00 8B 508 0.72 0.02 0.74 0.00 Comb 6.0 3.00 7.50 3.00 2.50 Sag 2.00 8B 514 0.53 0.00 0.51 0.02 Comb 6.0 1.50 0.00 3.00 2.50 Sag 2.00 8B 515 0.53 0.00 0.51 0.02 Comb 6.0 1.50 0.00 3.00 2.50 0.039 2.00 8B 517 0.42 0.00 0.41 0.01 Comb 6.0 1.50 0.00</td> <td>88 505 0.11 0.00 0.11 0.00 Comb 6.0 1.50 0.00 3.00 2.50 0.010 2.00 0.040 88 506 4.01 0.00 2.20 1.81 Comb 6.0 1.50 0.00 3.00 2.50 0.010 2.00 0.040 88 507 0.91 1.83 2.74 0.00 Comb 6.0 3.00 7.50 3.00 2.50 Sag 2.00 0.040 88 508 0.72 0.02 0.74 0.00 Comb 6.0 3.00 7.50 3.00 2.50 Sag 2.00 0.040 88 514 0.53 0.00 0.51 0.02 Comb 6.0 1.50 0.00 3.00 2.50 Sag 2.00 0.040 88 515 0.53 0.00 0.51 0.02 Comb 6.0 1.50 0.00 3.00 2.50 0.039 2.00 0.040 88 517 0.42 0.0</td> <td>B 505</td> <td>8B 505</td> <td>8 505</td> <td>8 505 0.11 0.00 0.11 0.00 Comb 6.0 1.50 0.00 3.00 2.50 0.010 2.00 0.040 0.020 0.013 0.08 1.91 8 506 4.01 0.00 2.20 1.81 Comb 6.0 1.50 0.00 3.00 2.50 0.010 2.00 0.040 0.020 0.013 0.26 10.93 8 507 0.91 1.83 2.74 0.00 Comb 6.0 3.00 7.50 3.00 2.50 Sag 2.00 0.040 0.020 0.013 0.19 7.60 8 508 0.72 0.02 0.74 0.00 Comb 6.0 3.00 7.50 3.00 2.50 Sag 2.00 0.040 0.020 0.013 0.19 7.60 8 514 0.53 0.00 0.51 0.02 Comb 6.0 1.50 0.00 3.00 2.50 0.039 2.00 0.040 0.020 0.013 0.10 3.24 8 515 0.53 0.00 0.51 0.02 Comb 6.0 1.50 0.00 3.00 2.50 0.039 2.00 0.040 0.020 0.013 0.10 3.24 8 511 0.26 0.01 0.27 0.00 Comb 6.0 1.50 0.00 3.00 2.50 0.030 2.00 0.040 0.020 0.013 0.10 3.04 8 516 0.45 0.00 0.44 0.01 Comb 6.0 1.50 0.00 3.00 2.50 0.030 2.00 0.040 0.020 0.013 0.10 3.04 8 516 0.45 0.00 0.44 0.01 Comb 6.0 1.50 0.00 3.00 2.50 0.030 2.00 0.040 0.020 0.013 0.10 3.24 8 517 0.42 0.00 0.44 0.01 Comb 6.0 1.50 0.00 3.00 2.50 0.030 2.00 0.040 0.020 0.013 0.10 3.04 8 516 0.45 0.00 0.44 0.01 Comb 6.0 1.50 0.00 3.00 2.50 0.030 2.00 0.040 0.020 0.013 0.10 3.20 8 517 0.54 0.00 0.44 0.01 Comb 6.0 1.50 0.00 3.00 2.50 0.040 2.00 0.040 0.020 0.013 0.08 2.13 8 519 5.49 0.00 5.49 0.00 DrGrt 0.0 0.00 3.00 2.50 0.020 2.00 0.040 0.020 0.013 0.07 1.87 8 512 0.15 0.00 0.15 0.00 0.0mb 6.0 1.50 0.00 3.00 2.50 0.020 2.00 0.040 0.020 0.013 0.07 1.87 8 513 0.23 0.00 0.23 0.00 0.0mb 6.0 1.50 0.00 3.00 2.50 0.020 2.00 0.040 0.020 0.013 0.07 1.87 8 513 0.23 0.00 0.23 0.00 0.00 0.00 0.00 0.00 3.00 2.50 0.020 0.020 0.040 0</td> <td>8 505</td> <td>8 505</td> <td>88 505 0.11 0.00 0.11 0.00 Comb 6.0 1.50 0.00 3.00 2.50 0.010 2.00 0.040 0.020 0.013 0.08 1.91 0.17 0.00 2.0 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08</td>	8B 505 0.11 0.00 0.11 0.00 Comb 6.0 1.50 0.00 3.00 2.50 0.010 2.00 8B 506 4.01 0.00 2.20 1.81 Comb 6.0 1.50 0.00 3.00 2.50 0.010 2.00 8B 507 0.91 1.83 2.74 0.00 Comb 6.0 3.00 7.50 3.00 2.50 Sag 2.00 8B 508 0.72 0.02 0.74 0.00 Comb 6.0 3.00 7.50 3.00 2.50 Sag 2.00 8B 514 0.53 0.00 0.51 0.02 Comb 6.0 1.50 0.00 3.00 2.50 Sag 2.00 8B 515 0.53 0.00 0.51 0.02 Comb 6.0 1.50 0.00 3.00 2.50 0.039 2.00 8B 517 0.42 0.00 0.41 0.01 Comb 6.0 1.50 0.00	88 505 0.11 0.00 0.11 0.00 Comb 6.0 1.50 0.00 3.00 2.50 0.010 2.00 0.040 88 506 4.01 0.00 2.20 1.81 Comb 6.0 1.50 0.00 3.00 2.50 0.010 2.00 0.040 88 507 0.91 1.83 2.74 0.00 Comb 6.0 3.00 7.50 3.00 2.50 Sag 2.00 0.040 88 508 0.72 0.02 0.74 0.00 Comb 6.0 3.00 7.50 3.00 2.50 Sag 2.00 0.040 88 514 0.53 0.00 0.51 0.02 Comb 6.0 1.50 0.00 3.00 2.50 Sag 2.00 0.040 88 515 0.53 0.00 0.51 0.02 Comb 6.0 1.50 0.00 3.00 2.50 0.039 2.00 0.040 88 517 0.42 0.0	B 505	8B 505	8 505	8 505 0.11 0.00 0.11 0.00 Comb 6.0 1.50 0.00 3.00 2.50 0.010 2.00 0.040 0.020 0.013 0.08 1.91 8 506 4.01 0.00 2.20 1.81 Comb 6.0 1.50 0.00 3.00 2.50 0.010 2.00 0.040 0.020 0.013 0.26 10.93 8 507 0.91 1.83 2.74 0.00 Comb 6.0 3.00 7.50 3.00 2.50 Sag 2.00 0.040 0.020 0.013 0.19 7.60 8 508 0.72 0.02 0.74 0.00 Comb 6.0 3.00 7.50 3.00 2.50 Sag 2.00 0.040 0.020 0.013 0.19 7.60 8 514 0.53 0.00 0.51 0.02 Comb 6.0 1.50 0.00 3.00 2.50 0.039 2.00 0.040 0.020 0.013 0.10 3.24 8 515 0.53 0.00 0.51 0.02 Comb 6.0 1.50 0.00 3.00 2.50 0.039 2.00 0.040 0.020 0.013 0.10 3.24 8 511 0.26 0.01 0.27 0.00 Comb 6.0 1.50 0.00 3.00 2.50 0.030 2.00 0.040 0.020 0.013 0.10 3.04 8 516 0.45 0.00 0.44 0.01 Comb 6.0 1.50 0.00 3.00 2.50 0.030 2.00 0.040 0.020 0.013 0.10 3.04 8 516 0.45 0.00 0.44 0.01 Comb 6.0 1.50 0.00 3.00 2.50 0.030 2.00 0.040 0.020 0.013 0.10 3.24 8 517 0.42 0.00 0.44 0.01 Comb 6.0 1.50 0.00 3.00 2.50 0.030 2.00 0.040 0.020 0.013 0.10 3.04 8 516 0.45 0.00 0.44 0.01 Comb 6.0 1.50 0.00 3.00 2.50 0.030 2.00 0.040 0.020 0.013 0.10 3.20 8 517 0.54 0.00 0.44 0.01 Comb 6.0 1.50 0.00 3.00 2.50 0.040 2.00 0.040 0.020 0.013 0.08 2.13 8 519 5.49 0.00 5.49 0.00 DrGrt 0.0 0.00 3.00 2.50 0.020 2.00 0.040 0.020 0.013 0.07 1.87 8 512 0.15 0.00 0.15 0.00 0.0mb 6.0 1.50 0.00 3.00 2.50 0.020 2.00 0.040 0.020 0.013 0.07 1.87 8 513 0.23 0.00 0.23 0.00 0.0mb 6.0 1.50 0.00 3.00 2.50 0.020 2.00 0.040 0.020 0.013 0.07 1.87 8 513 0.23 0.00 0.23 0.00 0.00 0.00 0.00 0.00 3.00 2.50 0.020 0.020 0.040 0	8 505	8 505	88 505 0.11 0.00 0.11 0.00 Comb 6.0 1.50 0.00 3.00 2.50 0.010 2.00 0.040 0.020 0.013 0.08 1.91 0.17 0.00 2.0 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

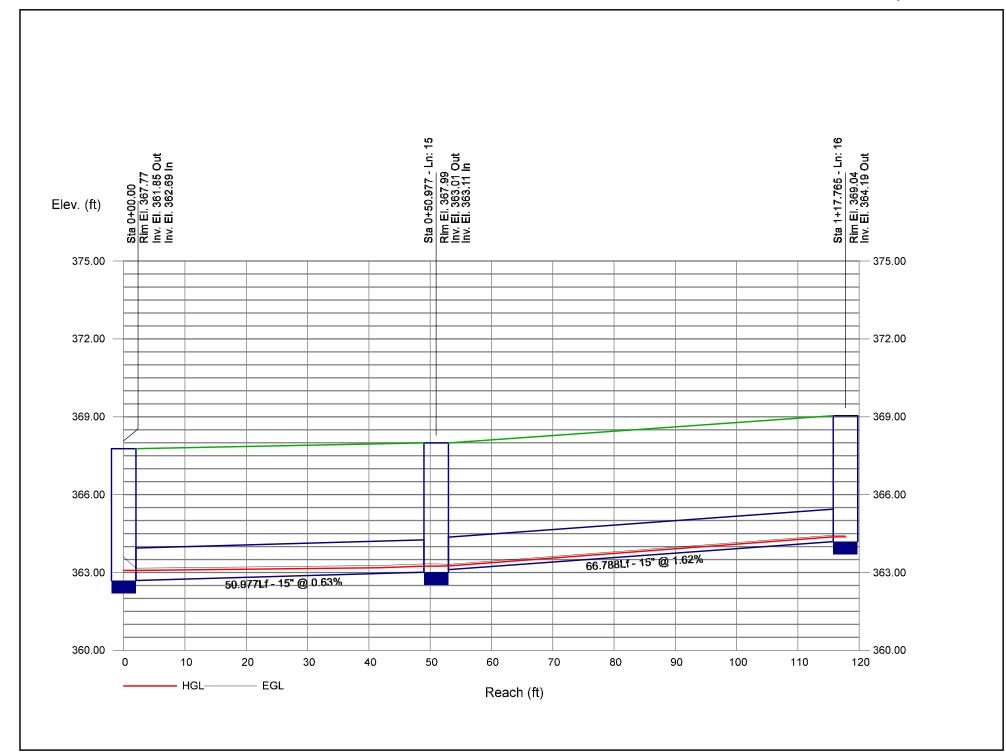
Project File: SCM#5.stm Number of lines: 17 Run Date: 12/6/2024


NOTES: Inlet N-Values = 0.016; Intensity = 62.86 / (Inlet time + 11.00) ^ 0.74; Return period = 25 Yrs.; * Indicates Known Q added.All curb inlets are throat.


Hydraulic Grade Line Computations


Line	Size	Q			D	ownstre	am				Len				Upstr	eam				Chec	k	JL	Minor
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)		Invert elev (ft)	HGL elev (ft)	Depth	Area (sqft)	Vel (ft/s)	VeI head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	coeff (K)	loss (ft)
	,	(5.5)	()	(,	(,	(- 41-)	(,	(,	,	(//	(,	,	(1-7	(,	(- 4)	(122)	(,	(,	(//	(7-7	(,	(,	+
1	30	18.88	346.92	349.42	2.50	4.91	3.85	0.23	349.65	0.212	45.553	347.15	349.50	2.35	4.79	3.94	0.24	349.74	0.183	0.198	0.090	1.22	0.29
2	24	14.79	347.25	349.79	2.00	2.32	4.71	0.34	350.14	0.428	163.55	8352.55	353.93 j	1.38**	2.32	6.37	0.63	354.57	0.628	0.528	n/a	1.50	0.95
3	24	13.18	352.65	353.93	1.28	2.13	6.18	0.57	354.51	0.000	215.39	9361.27	362.58	1.31**	2.17	6.07	0.57	363.15	0.000	0.000	n/a	1.38	n/a
4	24	11.79	361.37	362.58	1.21	1.98	5.96	0.52	363.10	0.000	48.260	361.85	363.08	1.23**	2.03	5.81	0.52	363.61	0.000	0.000	n/a	1.49	n/a
5	24	11.36	362.36	363.59	1.23*	2.03	5.60	0.49	364.08	0.518	27.000	362.50	363.73	1.23	2.02	5.62	0.49	364.22	0.521	0.520	0.140	1.17	0.57
6	24	7.67	362.58	364.30	1.72	1.54	2.67	0.39	364.69	0.000	47.057	362.83	363.81	0.98**	1.54	4.98	0.39	364.20	0.000	0.000	n/a	1.04	0.40
7	18	6.84	362.93	364.05	1.12*	1.41	4.85	0.37	364.41	0.519	27.000	363.07	364.19	1.12	1.41	4.85	0.37	364.55	0.519	0.519	0.140	1.50	0.55
8	15	1.05	363.26	364.73	1.25	0.34	0.86	0.01	364.75	0.027	187.89	8370.19	370.59 j	0.40**	0.34	3.07	0.15	370.74	0.524	0.275	n/a	1.48	0.22
9	15	0.53	370.29	370.59	0.30	0.21	2.30	0.08	370.68	0.404	27.526	370.43	370.72	0.29**	0.21	2.50	0.10	370.81	0.511	0.458	0.126	1.00	0.10
10	15	1.37	362.27	362.63	0.36*	0.30	4.61	0.17	362.81	0.000	64.208	363.12	363.58	0.46**	0.41	3.32	0.17	363.75	0.000	0.000	n/a	1.36	0.23
11	15	0.87	363.77	364.01	0.24*	0.17	5.19	0.13	364.14	0.000	115.87	1366.88	367.24	0.36**	0.30	2.91	0.13	367.38	0.000	0.000	n/a	1.50	n/a
12	15	0.45	367.17	367.39	0.22*	0.15	3.11	0.09	367.48	0.000	27.018	367.46	367.72	0.26**	0.19	2.43	0.09	367.81	0.000	0.000	n/a	1.00	0.09
13	15	0.26	364.00	364.18	0.18*	0.11	2.48	0.07	364.25	0.000	27.000	364.24	364.44	0.20**	0.13	2.11	0.07	364.51	0.000	0.000	n/a	1.00	0.07
14	18	5.49	363.18	364.73	1.50	1.77	3.11	0.15	364.88	0.273	24.000	363.39	364.79	1.40	1.71	3.20	0.16	364.95	0.236	0.255	0.061	1.00	0.16
15	15	0.37	362.69	363.08	0.39	0.16	1.13	0.08	363.16	0.000	50.977	363.01	363.25 j	0.24**	0.16	2.30	0.08	363.33	0.000	0.000	n/a	0.50	0.04
16	15	0.23	363.11	363.25	0.14*	0.08	2.92	0.06	363.32	0.000	66.788	364.19	364.37	0.18**	0.11	2.02	0.06	364.44	0.000	0.000	n/a	1.00	n/a
17	15	0.98	353.30	353.93	0.63	0.63	1.57	0.04	353.97	0.088	27.001	353.44	353.94	0.50	0.46	2.15	0.07	354.01	0.204	0.146	0.039	1.00	0.07
														L					<u> </u>				


Project File: SCM#5.stm Number of lines: 17 Run Date: 12/6/2024


Notes: * depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

25-Year Bypass Report Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan Outfall 1 Outfall 2 Project File: Bypass.stm Number of lines: 3 Date: 12/5/2024

Storm Sewer Inventory Report

ine		Align	ment			Flow	Data					Physica	ıl Data				Line ID
lo.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	79.189	3.627	Hdwl	0.00	1.58	0.57	10.0	366.06	4.36	369.51	18	Cir	0.013	1.00	371.30	Pipe - (27)
2	End	23.999	80.505	Comb	0.00	0.08	0.57	10.0	356.16	0.50	356.28	15	Cir	0.013	0.71	360.04	Pipe - (26)
3	2	27.005	-24.771	Comb	0.00	0.09	0.57	10.0	356.41	0.52	356.55	15	Cir	0.013	1.00	360.04	Pipe - (25)
rojec	t File: Byp	ass.stm										Number	of lines: 3			Date: 1	2/5/2024

Structure Report

Struct	Structure ID	Junction	Rim		Structure			Line Out			Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1	FES INLET 601	OpenHeadwall	371.30	n/a	n/a	n/a	18	Cir	369.51			
2	CB 421	Combination	360.04	Rect	4.00	4.00	15	Cir	356.28	15	Cir	356.41
3	CB 422	Combination	360.04	Rect	4.00	4.00	15	Cir	356.55			
Project I	rile: Bypass.stm		1	1	1	1	N	lumber of Structu	ıres: 3	Run I	Date: 12/5/202	4

Page 1

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	Pipe - (27)	5.98	18	Cir	79.189	366.06	369.51	4.357	367.56	370.45	n/a	370.45 j	End	OpenHeadwall
2	Pipe - (26)	0.62	15	Cir	23.999	356.16	356.28	0.500	357.41	357.41	0.00	357.41	End	Combination
3	Pipe - (25)	0.34	15	Cir	27.005	356.41	356.55	0.518	357.41	357.41	0.00	357.42	2	Combination

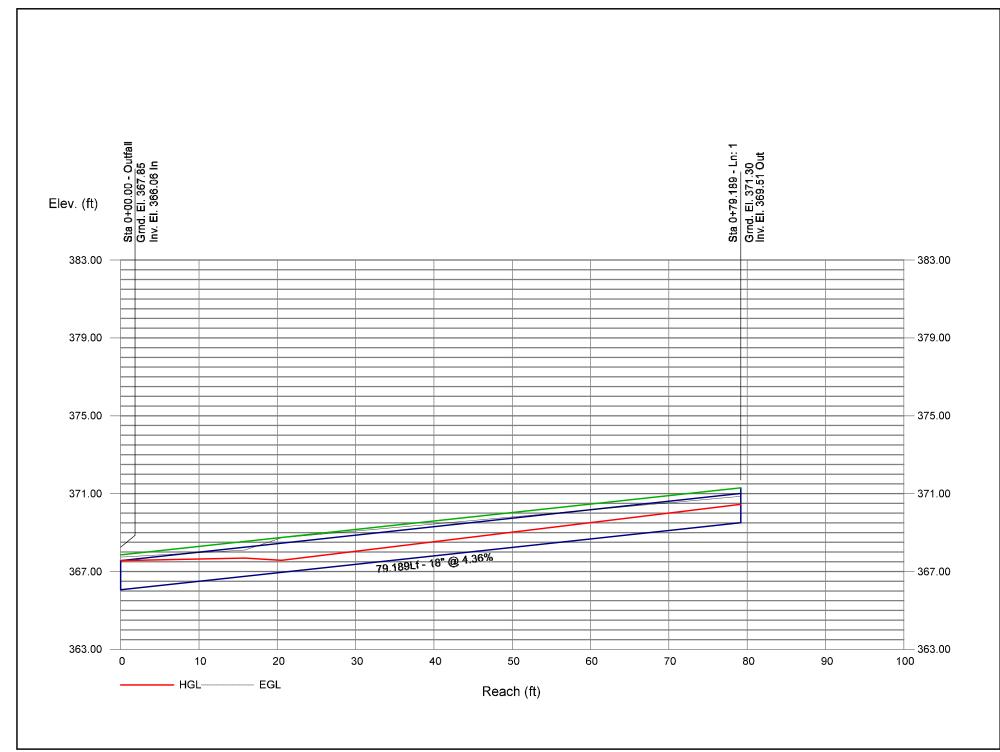
Project File: Bypass.stm Number of lines: 3 Run Date: 12/5/2024

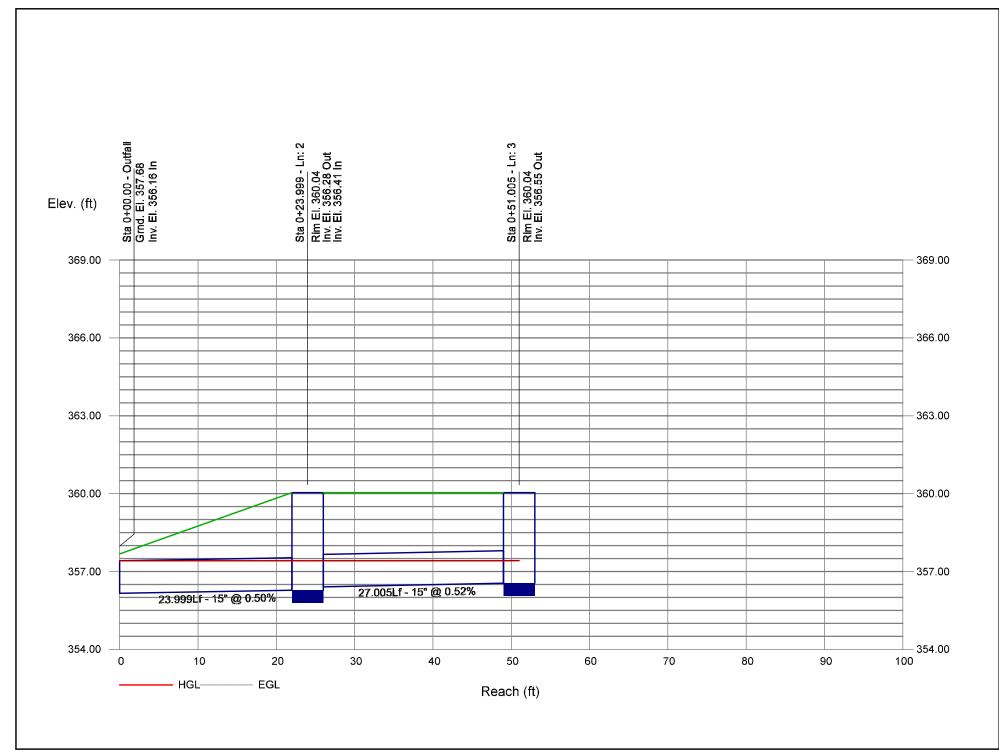
NOTES: Return period = 25 Yrs.; j - Line contains hyd. jump.

Inlet Report

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb I	nlet	Gra	ate Inlet				G	utter					Inlet		Вур
No		CIA (cfs)			Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	Line No
1	FES INLET 601	5.98	0.00	5.98	0.00	Hdwl	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.040	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
2	CB 421	0.30	0.00	0.30	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.029	2.00	0.040	0.020	0.013	0.09	2.52	0.18	0.30	2.0	Off
3	CB 422	0.34	0.00	0.34	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.029	2.00	0.040	0.020	0.013	0.09	2.72	0.18	0.41	2.0	Off

Project File: Bypass.stm Run Date: 12/5/2024 Number of lines: 3


NOTES: Inlet N-Values = 0.016; Intensity = 62.86 / (Inlet time + 11.00) ^ 0.74; Return period = 25 Yrs.; * Indicates Known Q added.All curb inlets are throat.


Hydraulic Grade Line Computations

Line	Size	Q			D	ownstre	eam				Len				Upst	ream				Chec	k	JL	Minor
(1)	(in) (2)	(cfs) (3)	Invert elev (ft) (4)	HGL elev (ft) (5)	Depth (ft) (6)	Area (sqft) (7)	Vel (ft/s) (8)	Vel head (ft) (9)	EGL elev (ft) (10)	Sf (%) (11)		Invert elev (ft) (13)	HGL elev (ft) (14)	Depth (ft) (15)	Area (sqft) (16)	Vel (ft/s) (17)	Vel head (ft) (18)	EGL elev (ft) (19)	Sf (%) (20)	Ave Sf (%) (21)	Enrgy loss (ft) (22)	(K) (23)	(ft) (24)
1	18	5.98	366.06	367.56	1.50	1.17	3.38	0.18	367.74	0.324	79.189	369.51	370.45 j	0.94**	1.17	5.11	0.41	370.86	0.623	0.474	n/a	1.00	0.41
2	15	0.62	356.16	357.41	1.25*	1.23	0.50	0.00	357.41	0.009	23.999	356.28	357.41	1.13	1.17	0.53	0.00	357.42	0.008	0.009	0.002	0.71	0.00
3	15	0.34	356.41	357.41	1.00	1.06	0.32	0.00	357.42	0.003	27.005	356.55	357.41	0.86	0.91	0.38	0.00	357.42	0.004	0.003	0.001	1.00	0.00

Project File: Bypass.stm Number of lines: 3 Run Date: 12/5/2024

Notes: * depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

APPENDIX D STORMWATER CONTROL MEASURE CALCULATIONS

Project Information

Complete this sheet if required by your reviewing authority. Contact them for any questions. Grey boxes/text are optional.

SNAP v4.2.0

LOCATION

oody Development		Parcel ID (optional):	1767284304 & 1767284925	
/16/2024	date	Nutrient Management Watershed:	Neuse	menu
ake County	menu	Subwatershed:	Neuse-Upper	menu
	Ν	Phosphorus Delivery Zone:	Neuse - Upper 03020201	menu
	W	Nitrogen Delivery Zone:	Neuse - Upper 03020201	menu
/1	6/2024	6/2024 date e County menu	date County menu Nutrient Management Watershed: Subwatershed: Phosphorus Delivery Zone:	6/2024 date e County menu N Phosphorus Delivery Zone: Neuse Neuse Neuse-Upper Neuse - Upper 03020201

PROJECT DETAILS

Development Land Use Type:	Single Family Residential	menu	Disturbed Area:	827,640	ft ²
Part of Common Development Plan?	no	y/n	Project Activity:	New Development	menu
Designated Downtown Area?	no	y/n	Project Drains to SA Waters?	no	y/n
Public Linear Road/Sidewalk Project?	no	y/n	Pre-Project Land Use:	crops	menu
Project Owner Type:	Private	menu	Project Description (optional):		

STORMWATER DETAILS

(Falls ONLY) Onsite Reduction % Req.		%	Project Uses LID/Runoff Volume Match?	no	y/n
Existing BUA/Development Onsite?	yes	y/n	Local Gov't nutrient req's same as State?	yes	y/n
Local Gov't cutoff date for Existing BUA:		date	Project Drains to Regional SCM?	no	y/n
Nitrogen Export Rate Target:	3.60	lb/ac/yr	Total Nitrogen Offset Credits Needed:		lb/yr
Phosphorus Export Rate Target:		lb/ac/yr	Total Phosphorus Offset Credits Needed:		lb/yr

Project Area and Offsite Land Cover Characteristics

Precipitation
Station:

Raleigh

Copy & Paste VALUES ONLY for Best Results

Click here to scroll down to error messages on this sheet.

PROJECT AREA LAND COVERS	TN EMC (mg/L)	TP EMC (mg/L)	Pre-Project Area (ft²)	Post-Project Area (ft ²)	Change pre-to-post (ft ²)
Roof	1.18	0.11		324,522	324,522
Roadway	1.64	0.34		169,884	169,884
Parking/Driveway/Sidewalk	1.42	0.18		120,661	120,661
Protected Forest	0.97	0.03	198,564	198,564	0
Managed Pervious/Landscaping	2.48	1.07	1,908,895	1,243,734	-665,161
Offsite or Existing Roof	1.18	0.11	6,411	6,411	0
Offsite or Existing Roadway	1.64	0.34			0
Offsite or Existing Parking/Driveway/Sidew	1.42	0.18	24,233	24,233	0
Offsite Protected Forest	0.97	0.03			0
Offsite Managed Pervious	2.48	1.07			0
CUSTOM LAND COVER 1					0
CUSTOM LAND COVER 2					0
CUSTOM LAND COVER 3					0
LAND TAKEN UP BY SCM	1.18	0.11		50,094	50,094
	Total (Regulate	d & UnReg) Area	2,138,103.00	2,138,103.00	
	Project	(Regulated) Area	2,107,459.00	2,107,459.00	

SNAP v4.2.0	for Best		Click here to go to SCM101's Land Cover Data		Summary Data	the top															
Catchment ID SCM ID		nsto 1 Dra	1 103	2 201	ains to 2 Dr.	2 203	3 301	3 Dr	ains to 3	4 401	ains to 4 Dra	4 403	5 501	sins to 5	5 503	6 601	ains to 602	rains to 6	1		
Type of SCM	Wet Pond			Wet Pond			Wet Pond			Wet Pond			Wet Pond								
lydrologic soil group at SCM location	В			С			С			С			С								
SCM Description	SCM #1			SCM #2			SCM #3			SCM #4			SCM #S								
Design Storm Size (inches/24hrs)	0.13			0.13			0.13			0.13			0.13								
Percent of Full Size	100%			100%			100%			100%			100%								
% Annual Effluent	68%	0%	0%	72%	0%	0%	72%	0%	0%	72%	0%	0%	72%	0%	0%	0%	0%	0%			
% Annual Overflow	16%	0%	0%	16%	0%	0%	16%	0%	0%	16%	0%	0%	16%	0%	0%	0%	0%	0%			
% Annual ET/Infiltrated	17%	0%	0%	13%	0%	0%	13%	0%	0%	13%	0%	0%	13%	0%	0%	0%	0%	0%	ı		
Custom % Annual Effluent																					
Custom % Annual Overflow Custom % Annual ET/Infiltrated																					
	0.43	0.00	0.00	0.42	0.00	0.00	0.42	0.00	0.00	0.43	0.00	0.00	0.43	0.00	0.00	0.00	0.00	0.00			
SCM Effluent TP EMC (mg/L)	0.13	0.00	0.00	0.13	0.00	0.00	0.13	0.00	0.00	0.13	0.00	0.00	0.13	0.00	0.00	0.00	0.00	0.00	-		
SCM Effluent TN EMC (mg/L)	0.86	0.00	0.00	0.86	0.00	0.00	0.86	0.00	0.00	0.86	0.00	0.00	0.86	0.00	0.00	0.00	0.00	0.00			
Custom Effluent TP EMC Custom Effluent TN EMC																					
	0.11	0.00	0.00	0.11	0.00	0.00	0.11	0.00	0.00	0.11	0.00	0.00	0.11	0.00	0.00	0.00	0.00	0.00			
SCM Land Cover TP EMC (mg/L)	0.11	0.00	0.00	0.11	0.00	0.00	0.11	0.00	0.00	0.11	0.00	0.00	0.11 1.18	0.00	0.00	0.00	0.00	0.00	-		
SCM Land Cover TN EMC (mg/L) This SCM Drains to Numbered SCM	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0.00	0.00	0.00	1		
This SCIVI Drains to Numbered SCIVI				-	_	-		-	-	-	-	-			-	-		-			
Catchment Routing	Catchments Draining to SCM 101	Catchments Draining to SCM 102	Catchments Draining to SCM 103	Catchments Draining to SCM 201	Catchments Draining to SCM 202	Catchments Draining to SCM 203	Catchments Draining to SCM 301	Catchments Draining to SCM 302	Catchments Draining to SCM 303	Catchments Draining to SCM 401	Catchments Draining to SCM 402	Catchments Draining to SCM 403	Catchments Draining to SCM 501	Catchments Draining to SCM 502	Catchments Draining to SCM 503	Catchments Draining to SCM 601	Catchments Draining to SCM 602	Catchments Draining to SCM 603			
Catchment 1																					-
Catchment 2																					-
Catchment 3																					-
Catchment 4																					
Catchment 5																					
Catchment 6																					
Error Check - Missing SCM Area:																					
Error Check - Min/Max Size:																					
Error Check - Hydrology:																					
Error Check - Missing SCM Info:																					
Error Check - Drainage Data w/o SCM:																					
Error Checks - SCM Type:																					
SCM ID:	101	102	103	201	202	203	301	302	303	401	402	403	501	502	503	601	602	603			
SCM Drainage Area Land Covers	Area Draining Directly to SCM 101 (ft2)	Area Draining Directly to SCM 102 (ft2)	Area Draining Directly to SCM 103 (ft2)	Area Draining Directly to SCM 201 (ft2)	Area Draining Directly to SCM 202 (ft2)	Area Draining Directly to SCM 203 (ft2)	Area Draining Directly to SCM 301 (ft2)	Area Draining Directly to SCM 302 (ft2)	Area Draining Directly to SCM 303 (ft2)	Area Draining Directly to SCM 401 (ft2)	Area Draining Directly to SCM 402 (ft2)	Area Draining Directly to SCM 403 (ft2)	Area Draining Directly to SCM 501 (ft2)	Area Draining Directly to SCM 502 (ft2)	Area Draining Directly to SCM 503 (ft2)	Area Draining Directly to SCM 601 (ft2)	Area Draining Directly to SCM 602 (ft2)	Area Draining Directly to SCM 603 (ft2)	Total Land Use Area Treated By All SCMs (ft ²)	Allowable Total Land Use Area to be Treated Based on Post-Project Areas (ft ²)	Post-Proje
of	72,745			13,939			86,249			42,689			74,488						290,110	324,522	34
adway	43,560						43,124			36,590			41,818						165,092	169,884	4
rking/Driveway/Sidewalk	26,572			871			21,345		1	16,553			50,530				1		115,871	120,661	4
otected Forest	365 380			60.113			6,970			871			2,178						10,019	198,564	18
inaged Pervious/Landscaping site or Existing Roof	265,280			60,113	1		216,493	1	1	116,305	1		124,146	1			1	1	782,337 0	1,243,734 6,411	46
fsite or Existing Roadway					l			1	1		l			1			1	1	0	0	
site or Existing Parking/Driveway/Sidev	valk																		0	24,233	2
fsite Protected Forest																			0	0	
site Managed Pervious									1								1		0	0	
STOM LAND COVER 1 STOM LAND COVER 2																			0	0	
STOM LAND COVER 2 STOM LAND COVER 3									1								1	1	0	0	
ND TAKEN UP BY SCM	17,424			8,712	l		7,405	1	1	6,534	l		10,019	1			1	1	50,094	50,094	
TOTAL AREA DRAINING TO SCM (ft²):	425,581	0	0	83,635	0	0	381,586	0	0	219,542	0	0	303,179	0	0	0	0	0	1,413,523	2,138,103	72
	425.581			83.635			381.586			219.542			303.179			0					-

Errors / Advisories

Landcover & SCM Data Review

Landcover & 3CM Data Ke	eview	Errors / Advisories
Avg Annual precip (in) =	46.22	
Total (Regulated + Unregulated) Area (ft²) =	2,138,103	
Project (Regulated) Area (ft ²) =	2,107,459	
Net BUA (Project Area BUA only ft ²) =	615,067	Net BUA indicates new development or expansion.
Custom Landcovers are present:	no	
Total Nitrogen Scaled to Project		174.17

SCM Area (ft ²) =	50,094	
SCM Treated Area (ft ²) =	1,413,523	
Catchment Routing:	No errors	
Treating Runoff from	no	

Disturbed Area (ft²) =

Total Phosphorus Export Target Scaled to Project Area (lb/yr): 0.00

827,640

Nutrient Export Summary	Total Area (Onsite + Offsite) P <u>re-Project</u>	Project Area (Onsite Only) <u>Pre-Project</u>	Total Area Post-Project before Treatment	Project Area Post-Project before Treatment	Total Area Post-Project after Treatment	Project Area Post-Project after Treatment	Total Area Post-Project SCM-Treated Area Only	Project Area Post-Project SCM-Treated Area Only	Total Area Post-Project Untreated Areas	Project Area Post-Project Untreated Areas
Area (All Landcover Types) (acres)	49.0841	48.3806	49.0841	48.3806	49.0841	48.3806	32.4500	32.4500	16.6341	15.9306
Percent Built-Upon Area (BUA) (%)	1%	0%	30%	29%	30%	29%	40%	40%	10%	6%
Built-Upon Area (BUA) (sqft)	30,644	0	645,711	606,252	645,711	606,252	571,073	571,073	74,638	43,994
Annual Runoff Volume (ft ³ /yr)	466,191	365,275	2,550,076	2,449,160	2,248,200	2,147,284	1,889,752	1,889,752	358,447	257,531
Annual Runoff % Change			447%	570%	382%	488%				
Total Runoff Change (cuft/yr)			2,083,885	2,083,885	1,782,008	1,782,008				
Total Nitrogen EMC (mg/L)	2.13	1.86	1.43	1.44	1.05	1.04	0.96	0.96	1.54	1.60
Total Nitrogen Load Leaving Site (lb/yr)	61.95	53.32	228.16	219.53	147.43	138.80	113.07	113.07	34.36	25.73
Total Nitrogen Loading Rate (lb/ac/yr)	1.26	1.10	4.65	4.54	3.00	2.87	3.48	3.48	2.07	1.62
Total Nitrogen % Change Pre-to-Post			268%	312%	138%	160%				
Total Nitrogen Change (lb/yr) Pre-to-Post			166.21	166.21	85.48	85.48				
Total Phosphorus EMC (mg/L)	0.80	0.77	0.25	0.26	0.18	0.18	0.15	0.15	0.35	0.42
Total Phosphorus Load Leaving Site (lb/yr)	23.21	22.17	40.39	39.34	25.35	24.31	17.61	17.61	7.74	6.70
Total Phosphorus Loading Rate (lb/ac/yr)	0.47	0.46	0.82	0.81	0.52	0.50	0.54	0.54	0.47	0.42
Total Phosphorus % Change Pre-to-Post			74%	77%	9%	10%				
Total Phosphorus Change (lb/yr)Pre-to-Post			17.17	17.17	2.14	2.14				

SCM/Catchment Summary

SCM ID and Type	Volume Reduction (%)	TN Reduction (%)	TP Reduction (%)	TN Out (lbs/ac/yr)	TP Out (lbs/ac/yr)
Catchment 1	16.88%	44.06%	50.02%	2.96	0.47
101: Wet Pond	16.88%	44.06%	50.02%	2.96	0.47
102: NA	0.00%	0.00%	0.00%	0.00	0.00
103: NA	0.00%	0.00%	0.00%	0.00	0.00
Catchment 2	12.66%	38.48%	42.93%	2.40	0.37
201: Wet Pond	12.66%	38.48%	42.93%	2.40	0.37
202: NA	0.00%	0.00%	0.00%	0.00	0.00
203: NA	0.00%	0.00%	0.00%	0.00	0.00
Catchment 3	12.66%	40.89%	45.85%	3.34	0.52
301: Wet Pond	12.66%	40.89%	45.85%	3.34	0.52
302: NA	0.00%	0.00%	0.00%	0.00	0.00
303: NA	0.00%	0.00%	0.00%	0.00	0.00
Catchment 4	12.66%	41.82%	47.51%	3.73	0.59
401: NA	12.66%	41.82%	47.51%	3.73	0.59
402: NA	0.00%	0.00%	0.00%	0.00	0.00
403: NA	0.00%	0.00%	0.00%	0.00	0.00
Catchment 5	12.66%	40.37%	41.27%	4.53	0.69
501: NA	12.66%	40.37%	41.27%	4.53	0.69
502: NA	0.00%	0.00%	0.00%	0.00	0.00
503: NA	0.00%	0.00%	0.00%	0.00	0.00
Catchment 6	0.00%	0.00%	0.00%	0.00	0.00
601: NA	0.00%	0.00%	0.00%	0.00	0.00
602: NA	0.00%	0.00%	0.00%	0.00	0.00
603: NA	0.00%	0.00%	0.00%	0.00	0.00

Falls Lake ONLY: Onsite Reduction	n Compliance Ch	neck
	Nitrogen	Phosphorus
Onsite % Reduction Requirement		
Export Target Scaled to Area (lb/yr)	174.17	
Export Load Post-Project Before Treatment	219.53	39.34
Total Reduction Need (lb/yr)		
Onsite Reduction Need (lb/yr)		
Onsite Export Target (lb/yr)		
Project Area Post-Project After Treatment	138.80	24.31

Nutrient Management Strategy Watershed - Nutrient Offset Credit Reporting Form

SNAP v4 2 (

Please complete and submit the following information to the local government permitting your development project to characterize it and assess the need to purchase nutrient offset credits. Contact and rule implementation information can be found online at:

http://deg.nc.gov/about/divisions/water-resources/planning/nonpoint-source-management/nutrient-offset-information

PROJECT INFORMATION

Applicant Name:	Caruso Home	S			
Project Name:	Moody Devel	opment			
Project Address:	0 Rolesville R	D & 0 Amazon Trail			
Date: (mm/dd/yyyy)	12/3/2024	Development La	nd Use Type:	Single Fa	mily Residential
County:	Wake	Project A	ctivity Type:	New I	Development
Projec	t Area (sqft):	2,107,459	Project	t Latitude:	0.000000
Post-Project Built-U	pon Area %:	28.77%	Project L	.ongitude:	0.000000

WATERSHED INFORMATION

Nutrient Management Watershed:	Neuse	N Target Export Rate (lb/ac/yr):	3.60
Subwatershed:	Neuse-Upper	P Target Export Rate (lb/ac/yr):	0.00
Nitrogen Delivery Zone:	Neuse - Upper 03020201	Nitrogen Delivery Factor:	100%
Phosphorus Delivery Zone:	Neuse - Upper 03020201	Phosphorus Delivery Factor:	100%

PERMANENT NUTRIENT OFFSET REQUEST

Post-Project Nitrogen Calculations - Projects with No Offsite or Built-Upon Area

(A)	(B)	(C)	(D)	(F)	(G)	(Where Applicable)	
TN Untreated Load (lb/yr)	TN Export Target Load (lb/yr)	TN Treated Load (lb/yr)	TN Remaining Reduction Need (lb/yr)	TN Delivery Factor (%)	TN Permanent Offsets Required (lb/yr)	Additional Local Gov't Offsets (lb/yr)	Total TN Permanent Offsets to Buy (lb/yr)
219.5	174.2	138.8	0.0	100.0%	0.0		0.0

Post-Project Phosphorus Calculations - Projects with No Offsite or Built-Upon Area

(A)	(B)	(C)	(D)	(F)	(G)	(Where Applicable)	
TP Untreated Load (lb/yr)	TP Export Target Load (lb/yr)	TP Treated Load (lb/yr)	TP Remaining Reduction Need (lb/yr)	TP Delivery Factor (%)	TP Permanent Offsets Required (lb/yr)	Additional Local Gov't Offsets (lb/yr)	Total TP Permanent Offsets to Buy (lb/yr)
							0.0

LOCAL GOVERNMENT AUTHORIZATION

Local Government Name:		
Staff Name:	Phone:	
Staff Email:	Date:	
Local Government Authorizing Signature:		

SITE DATA

		Project Information
	Project Name:	The Preserve at Moody Farm
	Applicant:	American Engineeinrg
	Applicant Contact Name:	Jakob Klein
	Applicant Contact Number:	(919) 469-1101
	Contact Email:	jklein@american-ea.com
	Municipal Jurisdiction (Select from dropdown menu):	Rolesville
	Last Updated:	Monday, January 27, 2025
		Site Data:
	Total Site Area (Ac):	48.28
	Existing Lake/Pond Area (Ac):	1.49
	Proposed Disturbed Area (Ac):	19.00
	Impervious Surface Area (acre):	15.03
	Type of Development (Select from Dropdown menu):	Residential
	Percent Built Upon Area (BUA):	31%
	Project Density:	High
	Is the proposed project a site expansion?	No
	Number of Drainage Areas on Site:	2
	1-Year, 24-Hour Storm (inches) (See NOAA Website):	2.86
NOAA	2-Year, 24-Hour Storm (inches) (See NOAA Website):	3.46
NOAA		
	10-Year, 24-Hour Storm (inches) (See NOAA Website):	5.06
		Lot Data (if applicable):
	Total Acreage in Lots:	24.38
	Number of Lots:	82
	Number of Lots: Average Lot Size (SF):	82 10000.00
rograph mod	Average Lot Size (SF): Total Impervious Surface Area on Lots (SF): Average Impervious Surface Area Per Lot (SF): Stormwater Narrative (limit to 1,200 mwater Impact Analysis Report for detailed narrative and calculeling for the project shows peak flows being attenuated for the te, the NCDEQ SNAP Tool was implemented as well for for nite.	10000.00 402666.00 4910.56 Characters - attach additional pages with submittal if necessary): ations. The Moody project will have five (5) SCM's which the cumalitive areas are post-development POD 2. 1-year and 10-year storm events. Although the Wake County tool calculations show 5.56 lb/ac/yr as the nitroge
rograph mod ing rate on s	Average Lot Size (SF): Total Impervious Surface Area on Lots (SF): Average Impervious Surface Area Per Lot (SF): Stormwater Narrative (limit to 1,200 mwater Impact Analysis Report for detailed narrative and calculeling for the project shows peak flows being attenuated for the te, the NCDEQ SNAP Tool was implemented as well for for nite.	10000.00 402666.00 4910.56 characters - attach additional pages with submittal if necessary):
ograph mod ng rate on s	Average Lot Size (SF): Total Impervious Surface Area on Lots (SF): Average Impervious Surface Area Per Lot (SF): Stormwater Narrative (limit to 1,200 mwater Impact Analysis Report for detailed narrative and calculeling for the project shows peak flows being attenuated for the te, the NCDEQ SNAP Tool was implemented as well for for nite.	10000.00 402666.00 4910.56 Characters - attach additional pages with submittal if necessary): ations. The Moody project will have five (5) SCM's which the cumalitive areas are post-development POD 2. 1-year and 10-year storm events. Although the Wake County tool calculations show 5.56 lb/ac/yr as the nitroge
ograph mod ing rate on s	Average Lot Size (SF): Total Impervious Surface Area on Lots (SF): Average Impervious Surface Area Per Lot (SF): Stormwater Narrative (limit to 1,200 mwater Impact Analysis Report for detailed narrative and calculeling for the project shows peak flows being attenuated for the te, the NCDEQ SNAP Tool was implemented as well for for nite.	10000.00 402666.00 4910.56 Characters - attach additional pages with submittal if necessary): ations. The Moody project will have five (5) SCM's which the cumalitive areas are post-development POD 2. 1-year and 10-year storm events. Although the Wake County tool calculations show 5.56 lb/ac/yr as the nitroge
ograph mod ng rate on s	Average Lot Size (SF): Total Impervious Surface Area on Lots (SF): Average Impervious Surface Area Per Lot (SF): Stormwater Narrative (limit to 1,200 mwater Impact Analysis Report for detailed narrative and calculeling for the project shows peak flows being attenuated for the te, the NCDEQ SNAP Tool was implemented as well for for nite.	10000.00 402666.00 4910.56 Characters - attach additional pages with submittal if necessary): ations. The Moody project will have five (5) SCM's which the cumalitive areas are post-development POD 2. 1-year and 10-year storm events. Although the Wake County tool calculations show 5.56 lb/ac/yr as the nitroge
ograph mod ng rate on s	Average Lot Size (SF): Total Impervious Surface Area on Lots (SF): Average Impervious Surface Area Per Lot (SF): Stormwater Narrative (limit to 1,200 mwater Impact Analysis Report for detailed narrative and calculeling for the project shows peak flows being attenuated for the te, the NCDEQ SNAP Tool was implemented as well for for nite.	10000.00 402666.00 4910.56 Characters - attach additional pages with submittal if necessary): ations. The Moody project will have five (5) SCM's which the cumalitive areas are post-development POD 2. 1-year and 10-year storm events. Although the Wake County tool calculations show 5.56 lb/ac/yr as the nitroge

SITE DATA Page 2

Project Name: The Preserv DRAINAGE AREA 1 STORMWATER PRE-POST CALCULATIONS POD #1 BYPASS POD #1 BYPASS

AND USE & SITE DATA	PI	RE-DEVE		NT	POS	ST-DEVEL	OPMEN	IT		
Drainage Area (Acres)=			68		6.07					
Site Acreage within Drainage= One-year, 24-hour rainfall (in)=		6.	54		2.86	2.90				
One-year, 24-hour rainfall (in)= Two-year, 24-hour rainfall (in)=					3.46					
Ten-year, 24-hour storm (in)=					5.06					
Total Lake/Pond Area (Acres)=		0.	00		1	0.00				
Lake/Pond Area not in the Tc flow path (Acres)=			00			0.00				
Site Land Use (acres):	Α	В	С	D	A	В	С	D		
Pasture										
Woods, Poor Condition										
Woods, Fair Condition		1.23	4.84	0.01						
Woods, Good Condition										
Open Space, Poor Condition Open Space, Fair condition		0.12	0.16							
Open Space, Good Condition		0.12	3.14				4.93	0.4		
Reforestation (in dedicated OS)										
Connected Impervious			0.18				0.74			
Disconnected Impervious										
ITE FLOW	PR	E-DEVEL	OPMEN	T T _c	POST	T-DEVELO	PMENT	Тс		
Sheet Flow										
Length (ft)=	Kirpich L	Jsed, See	SCM Sizing	& Calcs	Kirpich Us	sed, See SC	M Sizing	& Calcs		
Slope (ft/ft)= Surface Cover:										
Surface Cover: n-value=										
n-value= T ₁ (hrs)=					 					
Shallow Flow										
Length (ft)=										
Slope (ft/ft)=										
Surface Cover:										
Average Velocity (ft/sec)=										
T _t (hrs)=	L				L					
Channel Flow 1										
Length (ft)= Slope (ft/ft)=										
Cross Sectional Flow Area (ft²)=										
Wetted Perimeter (ft)=										
Channel Lining:										
n-value=										
Hydraulic Radius (ft)=										
Average Velocity (ft/sec)=										
T _t (hrs)=										
Channel Flow 2	1									
Length (ft)= Slope (ft/ft)=										
Cross Sectional Flow Area (ft²)=										
Wetted Perimeter (ft)=										
Channel Lining:										
n-value=										
Hydraulic Radius (ft)=										
Average Velocity (ft/sec)=										
T _t (hrs)=	<u> </u>				l					
Channel Flow 3	1									
Length (ft)=										
Slope (ft/ft)= Cross Sectional Flow Area (ft ²)=										
Wetted Perimeter (ft)=										
Wetted Perimeter (tt)= Channel Lining:										
n-value=										
Hydraulic Radius (ft)=										
Average Velocity (ft/sec)=										
T _t (hrs)=										
Tc (hrs)=			67			6.67				
ESULTS Composite Curve Number=	PI	RE-DEVE	LOPMEN 2	N F	POS	ST-DEVEL	OPMEN	ıΤ		
Disconnected Impervious Adjustment						- 17				
Disconnected impervious area (acre) =										
CN _{adjusted (1-year)} =					77					
High Density Only										
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ⁹) =		_	_	3	3,519	_	_			
1-year, 24-hour storm (Peak Flow)										
Runoff (inches) = Q* _{1-year} =		0.	73		1	0.99				
Volume of runoff (ft ³) =			445		1	10,438	В			
Volume change (ft ³) =										
	 	0.1	330		1	0.702				
	L	0.1				0.702				
Peak Discharge (cfs)= Q _{1-year} =						1.42				
	I	1.	11							
Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)			11 250			14,952	2			
Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =		26,								
Peak Discharge (cfs)= Ω_{+pus} 2-year, 24-hour storm (LID) Runoff (inches) = Ω_{-2pus} Volume of runoff (th) = Peak Discharge (cfs)= Ω_{2pus} 10-year, 24-hour storm (DIA)		26,	250			14,952				
Peak Discharge (cfs)= $Q_{1,yyuz}$ = 2-year, 24-hour storm (LID) Runoff (inches) = $Q^*_{2,yyuz}$ = Volume of runoff (R^*)= Peak Discharge (cfs)= $Q_{2,yyuz}$ =		26,	250 249 26			14,952	ı			

DA1

<u>DRAINAGE AREA 2</u> STORMWATER PRE-POST CALCULATIONS

AND USE & SITE DATA	PF		LOPMEN	NT	PC		LOPME	NT
Drainage Area (Acres)=			.72			32		
Site Acreage within Drainage= One-year, 24-hour rainfall (in)=		31	.72		96	31	70	
				2.				
Two-year, 24-hour rainfall (in)= Ten-year, 24-hour storm (in)=				3. 5.				
Total Lake/Pond Area (Acres)=		0.	00	5.	JIG	0.	20	
Lake/Pond Area not in the Tc flow path (Acres)=			68			0.		
Site Land Use (acres):	Α	В	С	D	Α	В	С	D
Pasture			0.35	_	0.00	0.13	0.00	0.00
Woods, Poor Condition			2.30				2.30	2.30
Woods, Fair Condition		1.72	10.03	2.82				
Woods, Good Condition						0.11	0.12	
Open Space, Poor Condition								
Open Space, Fair condition		2.07	10.09	4.07				
Open Space, Good Condition		2.07	10.00	4.07		4.43	14.50	1.03
Reforestation (in dedicated OS)								
Connected Impervious		0.14	0.39	0.05		2.51	9.26	0.64
Disconnected Impervious								
FLOW	PRE	-DEVEL	OPMEN	T T _c	POS	T-DEVE	OPMEN	T Tc
Sheet Flow								
Length (ft)=		100	0.00			100	.00	
Slope (ft/ft)=			30			0.0		
Surface Cover:		Gri				Gra		
n-value=			240			0.2		
T _t (hrs)=			214			0.2		
Shallow Flow		0.2				0.2		
Length (ft)=		520	0.00			150	00	
Slope (ft/ft)=		0.0				0.0		
Surface Cover:			aved			Unp		
Average Velocity (ft/sec)=		2.				2.°		
T _t (hrs)=		0.				0.		
Channel Flow 1		0.				0.		
Length (ft)=		160	0.00			550	00	
Slope (ft/ft)=			0.00			0.0		
Slope (π/π)= Cross Sectional Flow Area (ft²)=		2.				1.		
Cross Sectional Flow Area (tt*)= Wetted Perimeter (ft)=			00			1.		
Wetted Perimeter (π)= Channel Lining:		5. We				Concrete		
Channel Lining:			eas 040			Concrete 0.0		
Hydraulic Radius (ft)=		0.0				0.0		
Average Velocity (ft/sec)=		3.				19		
Average velocity (ft/sec)= T _t (hrs)=		0.				19		
Channel Flow 2		U.				0.		
Length (ft)=						20	00	
Slope (ft/ft)=						0.0		
Cross Sectional Flow Area (ft²)=						2.		
Wetted Perimeter (ft)=						6.		
Channel Lining:					Gr		n/riprap sid	es
n-value=					- 31	0.0		
Hydraulic Radius (ft)=						0.0		
Average Velocity (ft/sec)=						3.		
Average velocity (ft/sec)= T _t (hrs)=						0.		
Channel Flow 3						0.	~	
Channel Flow 3 Length (ft)=						495	0.00	
Slope (ft/ft)=						0.0		
Cross Sectional Flow Area (ft²)=							00	
						12		
Wetted Perimeter (ft)= Channel Lining:						We		
n-value=						0.0		
Hydraulic Radius (ft)=						0.0		
Average Velocity (ft/sec)=						5.		
ranago valouty (10000)=								
T. (hrs)=							07	
T _t (hrs)=		0	25			0.		
Tc (hrs)=	pr			NT	DC	0.	31	NT
Tc (hrs)=	PF	RE-DEVE	LOPMEN	NT	PC	0. OST-DEVI	31 ELOPME	NT
Tc (hrs)= ULTS Composite Curve Number=	PF	RE-DEVE		NT	PC	0.	31 ELOPME	NT
Tc (hrs)= ULTS Composite Curve Number= Disconnected Impervious Adjustment	PF	RE-DEVE	LOPMEN	NT	PC	0. OST-DEVI	31 ELOPME	NT
Tc (hrs)= JLTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) =	PF	RE-DEVE	LOPMEN			0. OST-DEVI	31 ELOPME	NT
Tc (hrs)= ULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN-alphated (1-year) ²	PF	RE-DEVE	LOPMEN	NT 8		0. OST-DEVI	31 ELOPME	NT
Tc (hrs)= ULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNaquated (1-yaur) ² High Density Only	PF	RE-DEVE	LOPMEN	8	1	0. OST-DEVI	31 ELOPME	NT
Tc (hrs)= ULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN-alphated (1-year) ²	PF	RE-DEVE	LOPMEN		1	0. OST-DEVI	31 ELOPME	NT
ULTS Composite Curve Number- Disconnected Impervious Adjustment Disconnected Impervious area (acre) = CNagenet (17-par) High Density Only Volume of randf from 1" rainfall for DA	PP	RE-DEVE	LOPMEN	8	1	0. OST-DEVI	31 ELOPME	NT
Tc (hrs)= Composite Curve Number= Disconnected impervious Adjustanea (acre) = CNugleand (rysur)* High Density Only Volume of runoff from 1" rainfall for DA HGH DENSITY REQUIREMENT = (ft)*=	PP	RE-DEVE	6	8	1	0. OST-DEVI	BLOPME	NT
ULTS Composite Curve Number- Disconnected Impervious Adjustment Disconnected Impervious area (acre) = CNajusted (**pur)** High Density Only Volume of randiffrom 1* randial for DA HIGH DENSITY RECUIREMENT = (ft)* = 1-year, 24-hour storm (Peak Plow)	PF	7	6	8	1	0. DST-DEVI	BLOPME	NT
Tc (hrs)= SULTS Composite Curve Number- Disconnected Impervious Adjustment Disconnected impervious area (acre) = Chapased (1-year)** High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft) = 1-year, 24-hour storm (Peak First Runoff (inches) = Q'1-year, Volume of runoff (ft) =	PF	7	6 6	8 46,	11	0. DST-DEVI 8	BLOPME	NT
Tc (hrs)= ULTS Composite Curve Numberr- Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNaquated (1-year)* High Density Only Volume of runoff from 1* rainfall for DA HIGH DENSITY REQUIREMENT = (ft*) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = O*1-year* Volume of runoff (ft*) = Volume of runoff (ft*) = Volume change (ft*) = Volume chang	PP	0. 108	66 94 ,264	8	11	0. DST-DEVI 8	23 737	NT
Tc (hrs)- IULTS Composite Curve Number- Disconnected Impervious Adjustment Disconnected Impervious Adjustment Oisconnected impervious area (acre) = CNapostat (1-yau/F High Density Only Volume of runoff from 1* rainfall for DA AliGH DENSITY RECUIREMENT = (R*) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Of 1-year Volume of runoff (R*) = Volume of hange (R*) = Peak Discharge (cfs) = Q_1-year	PP	7	66 94 ,264	8 46,	11	0. DST-DEVI 8	23 737	NT .
Tc (hrs)= ULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected Impervious Adjustment Disconnected Impervious area (acre) = CNeghated (1-per) High Density Only Volume of runoff from 1" rainfall for Do HIGH DENSITY RECUIREMENT = (ft) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*:-pea* Volume of runoff (ft) = Volume change (ft) = Peak Discharge (cfs) = Q:-pea* 2-year, 24-hour storm (LID)	PF	0. 108	94 -264	8 46,	11	1 141	31 ELOPME 1	NT .
Tc (hrs)= BULTS Composite Curve Number- Disconnected Impervious Adjustment Disconnected Impervious Adjustment Chappane (1-year)* High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft) = 1-year, 24-hour storm (Peak First) Volume of runoff (ft) = Volume of runoff (ft) = Volume of runoff (ft) = Peak Discharge (cfs) = C1-year* 2-year, 24-hour storm (LID) Runoff (inches) = C1-year*	PF	0. 108 25. 1.	94 -264 -457	8 46,	11	0. DST-DEVI 8	31 ELOPME 1	NT .
Tc (hrs)- SULTS Composite Curve Number- Disconnected Impervious Adjustment Disconnected Impervious Adjustment Disconnected Impervious area (acro) = CNagoulad (1-year)* High Density Only Volume of nunoff from 1* rainfall for DA HIGH DENSITY RECUIRE/RET (#t) = 1-year, 24-hour storm (Peak Flow) Runof (inches) = 0 1-year Volume of runoff (#t) = Volume change (#t) = Peak Discharge (cfs) = Q _{1-year} 2-year, 24-hour storm (LID) Runof (inches) = Q ² _{2-year} Volume of runoff (#t) =	PF	0. 108 25. 1. 156	6 6 94 457 36 4.432	8 46,	11	0. DST-DEVI 8 1. 141 36. 1. 196	31 ELOPME 1 1 23 37 37 37 77 71 238	NT .
Tc (hrs)= BULTS Composite Curve Number- Disconnected Impervious Adjustment Disconnected Impervious Adjustment Disconnected Impervious area (acre) = CNagouset (1-year) High Density Only Volume of nunoff from 1* rainfall for DA HIGH DENSITY RECUIREMENT = (R*) = 1-year, 24-hour storm (Paak Flow) Volume of nunoff (R*) = Volume of nunoff (R*) = Peak Discharge (rsi)= **C_1-year* 2-year, 24-hour storm (LID) Runoff (inches) = **C_2-year* Volume of nunoff (R*) = Volume of nunoff (R*) = Peak Discharge (rsi)= **C_2-year* Volume of (rsi)= **C_2-year* Peak Discharge (rsi)= **C_2-year*	PF	0. 108 25. 1.	6 6 94 457 36 4.432	8 46,	11	0. DST-DEVI 8	31 ELOPME 1 1 23 37 37 37 77 71 238	NT .
ULTS Composite Curve Number- Disconnected Impervious Adjustment Disconnected Impervious and care) e Disconnected Impervious area (acre) e Disconnected Impervious area (acre) e Chapter of Part High Density Only Volume of runoff from "t rainfall for DA HGH DENSITY RECUREMENT = (ft) = 1-year, 24-hour storm (Peak Flow) Volume of runoff (ft) e Volume of runoff (ft) = Peak Discharge (cfs) = 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	PF	0. 108 25. 1. 156 36.	94 457 457 483	8 46,	11	0. DST-DEVI 8 1. 141 36. 1. 196 50.	23 737 71 238 338	NT -
To (tra)- LTS Composite Curve Number- isconnected Impervious Adjustment Disconnected Impervious area (serce) = CNaquese (*serce)* High Density Only Volume of runoff from *rainfall* of (tr)- Alch Unested Flow) Runoff (inches) = Q***, serce Volume of runoff (inches) = Q***, serce Peak Discharge (cfs)= Q***, serce Volume of runoff (inches) Volume of runoff (inches) Peak Discharge (cfs)= Q***, serce Volume of runoff (inches) Runoff (inches) = Q***, serce 10-year, 24-hour storm (Disk)	PP	0. 108 25. 1. 156 36. 2.	994 457 457 462	8 46,	11	0: 0: 0: 0: 1: 141 36: 1: 1966 50: 3:	23 7737 23 771 238 538	NT
JLTS Composite Curve Number* Disconnected Impervious Adjustment Disconnected Impervious area (acre) = CN ₀₀₀₀₄₀₁ (rysur)* High Density Only Volume of runoff from 1* rainfall for Do High Density ReulineElment = (ft) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = 0* 1-year* Volume of runoff (th) = Peak Discharge (cfs) = 0+year* 2-year, 24-hour storm (LID) Runoff (inches) = 0* 2-year* Volume of runoff (tt) = Peak Discharge (cfs) = 0-year* 10-year, 24-hour storm (LID) Runoff (inches) = 0* 2-year* Volume of runoff (tt) = Peak Discharge (cfs) = 0-year* Volume of runoff (tt) =	PP	0. 0. 108 25. 1. 1. 1566 36. 36. 2. 301	94 457 336 432 783 62	8 46,	11	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	223 23 773 77 77 2238 3338	NT
ULTS Composite Curve Number Disconnected Impervious Adjustment Disconnected Impervious adjustment Disconnected Impervious adjustment Disconnected Impervious area (acre) = CNadjustment (**pur)** High Density Only Volume of runoff from 1*rainfall of often Volume of runoff from 1*rainfall of often Volume of runoff (**pur)** Volume of runoff (**pur)** Peak Discharge (**pl) = 0**pure Volume of runoff (**pur)** Volume of runoff (**pur)** Volume of runoff (**pur)** Peak Discharge (**pl) = 0**pure Volume of runoff (**pur)** Peak Discharge (**pl) = 0**pure 10**year, 24*hour storm (Disk) Runoff (inches) = 0**pure 10**year, 24*hour storm (Disk)	PR	0. 0. 108 25. 1. 1. 1566 36. 36. 2. 301	994 457 457 462	8 46,	11	0: 0: 0: 0: 1: 141 36: 1: 1966 50: 3:	223 23 773 77 77 2238 3338	NT

DRAINAGE AREA 3 STORMWATER PRE-POST CALCULATIONS

NOTE: DA #2 AND DA #3 ARE EQUAVALENT TO HYDROGRAPH MODELING POD #2

LAND USE & SITE DATA	Р	RE-DEVE	LOPME	NT	POST-DEVELOPMENT						
Drainage Area (Acres)=		10	.26		12.78						
Site Acreage within Drainage=		10	.26		12.78						
One-year, 24-hour rainfall (in)=				2.	.86						
Two-year, 24-hour rainfall (in)=				3.	3.46						
Ten-year, 24-hour storm (in)=				5.	.06						
Total Lake/Pond Area (Acres)=											
Lake/Pond Area not in the Tc flow path (Acres)=											
Site Land Use (acres):	Α	В	С	D	Α	В	С	D			
Pasture			0.13								
Woods, Poor Condition											
Woods, Fair Condition		0.67	2.75	1.10							
Woods, Good Condition							0.31	1.21			
Open Space, Poor Condition											
Open Space, Fair condition		0.80	3.03	1.58							
Open Space, Good Condition							4.99	4.57			
Reforestation (in dedicated OS)											
Connected Impervious		0.05	0.12	0.02			1.45	0.25			
Disconnected Impervious											
SITE FLOW	PR	E-DEVEL	OPMEN	T T _c	POS	ST-DEVE	LOPMEN	T Tc			
Sheet Flow											
Length (ft)=	1	Minimum 5	min Tc use	ed	N	Minimum 5	min Tc use	ed			
Slope (ft/ft)=											
Surface Cover:											
n-value=											
T _t (hrs)=											
Shallow Flow											
Length (ft)=											
Slope (ft/ft)=											
Surface Cover:											
Average Velocity (ft/sec)=											
T_t (hrs)=											
Channel Flow 1											
Length (ft)=											
Slope (ft/ft)=											
Cross Sectional Flow Area (ft²)=											
Wetted Perimeter (ft)=											
Channel Lining:											
n-value=											
Hydraulic Radius (ft)=											
Average Velocity (ft/sec)=											
T _t (hrs)=											

DA3 Page 5

Project Name:	The Preserve at Moody Farm

DRAINAGE AREA 3 STORMWATER PRE-POST CALCULATIONS

NOTE: DA #2 AND DA #3 ARE EQUAVALENT TO HYDROGRAPH MODELING POD #2

			1
Channel Flow 2			
Length (ft)=			
Slope (ft/ft)=			
Cross Sectional Flow Area (ft ²)=			
Wetted Perimeter (ft)=			
Channel Lining:			
n-value=			
Hydraulic Radius (ft)=			
Average Velocity (ft/sec)=			1
T _t (hrs)=			1
Channel Flow 3			
Length (ft)=			
Slope (ft/ft)=			
Cross Sectional Flow Area (ft²)=			
Wetted Perimeter (ft)=			
Channel Lining:			
n-value=			1
Hydraulic Radius (ft)=			1
Average Velocity (ft/sec)=			1
T _t (hrs)=			1
Tc (hrs)=	5.00	5.00	
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT	
Composite Curve Number=	76	80	1
Disconnected Impervious Adjustment			
Disconnected impervious area (acre) =			1
CN _{adjusted (1-year)} =		30	1
High Density Only			1
Volume of runoff from 1" rainfall for DA	7.	270	
<u> </u>	7,8	873	
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow)	7,8	373	
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	0.94	1.12	
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow)			
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	0.94 35,195	1.12	ADDITIONAL CFS IN
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) =	0.94 35,195	1.12 51,871	ADDITIONAL CFS IN POST-DEV DUE TO
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft^3) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q^*_{1-year} = Volume of runoff (ft^3) =	0.94 35,195	1.12 51,871 676	POST-DEV DUE TO SEVERAL BACK OF
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft^3) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q^*_{1-year} = Volume of runoff (ft^3) = Volume change (ft^3) = Peak Discharge (cfs) = Q_{1-year} =	0.94 35,195	1.12 51,871 676	POST-DEV DUE TO SEVERAL BACK OF ROOF ADDED TO DA. THIS ADDITIONAL CF
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft^3) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q^*_{1-year} = Volume of runoff (ft^3) = Volume change (ft^3) = Peak Discharge (cfs) = Q_{1-year} = 2-year, 24-hour storm (LID)	0.94 35,195 16,	1.12 51,871 676 2.466	POST-DEV DUE TO SEVERAL BACK OF ROOF ADDED TO DA. THIS ADDITIONAL CF IS OFFSET FROM DA
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	0.94 35,195 16, 1.424	1.12 51,871 .676 2.466 1.57	POST-DEV DUE TO SEVERAL BACK OF ROOF ADDED TO DA THIS ADDITIONAL CF
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) =	0.94 35,195 16, 1.424 1.36 50,816	1.12 51,871 676 2.466 1.57 72,913	POST-DEV DUE TO SEVERAL BACK OF ROOF ADDED TO DA THIS ADDITIONAL CF IS OFFSET FROM DA #2 IMPROVED PEAK
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft^3) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q^*_{1-year} = Volume of runoff (ft^3) = Volume change (ft^3) = Peak Discharge (cfs) = Q_{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q^*_{2-year} = Volume of runoff (ft^3) = Peak Discharge (cfs) = Q_{2-year} =	0.94 35,195 16, 1.424 1.36 50,816	1.12 51,871 676 2.466 1.57 72,913	POST-DEV DUE TO SEVERAL BACK OF ROOF ADDED TO DA THIS ADDITIONAL CF IS OFFSET FROM DA #2 IMPROVED PEAK
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft^3) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q^*_{1-year} = Volume of runoff (ft^3) = Volume change (ft^3) = Peak Discharge (cfs) = Q_{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q^*_{2-year} = Volume of runoff (ft^3) = Peak Discharge (cfs) = Q_{2-year} = 10-year, 24-hour storm (DIA)	0.94 35,195 16, 1.424 1.36 50,816 2.056	1.12 51,871 .676 2.466 1.57 72,913 3.466	POST-DEV DUE TO SEVERAL BACK OF ROOF ADDED TO DA. THIS ADDITIONAL CF. IS OFFSET FROM DA #2 IMPROVED PEAK

Post-development peak flow exceeds pre-development peak flow for this DA!

The Preserve at Moody Farm

<u>DRAINAGE AREA 4</u> <u>STORMWATER PRE-POST CALCULATIONS</u>

LAND USE & SITE DATA	Р	RE-DEVE	LOPME	NT	POST-DEVELOPMENT							
Drainage Area (Acres)=		13	.94		13.94							
Site Acreage within Drainage=		0.	00		0.00							
One-year, 24-hour rainfall (in)=				2.	86							
Two-year, 24-hour rainfall (in)=				3.4	46							
Ten-year, 24-hour storm (in)=				5.0	.06							
Total Lake/Pond Area (Acres)=		0.	79			0.	79					
Lake/Pond Area not in the Tc flow path (Acres)=		0.	79			0.79						
Site Land Use (acres):	Α	В	С	D	Α	В	С	D				
Pasture												
Woods, Poor Condition												
Woods, Fair Condition												
Woods, Good Condition		1.61	2.90	0.97		1.61	2.90	0.97				
Open Space, Poor Condition												
Open Space, Fair condition												
Open Space, Good Condition		2.35	4.54	0.26		2.35	4.54	0.26				
Reforestation (in dedicated OS)												
Connected Impervious			0.52	0.79			0.52	0.79				
Disconnected Impervious												
SITE FLOW	PR	E-DEVEL	OPMEN	T T _c	POS	T-DEVE	LOPMEN	T Tc				
Sheet Flow												
Length (ft)=	Fro	m Culvert	Γc Calculat	ions	Froi	m Culvert	Tc Calculati	ons				
Slope (ft/ft)=												
Surface Cover:												
n-value=												
T _t (hrs)=												
Shallow Flow												
Length (ft)=												
Slope (ft/ft)=												
Surface Cover:												
Average Velocity (ft/sec)=												
T _t (hrs)=												
Channel Flow 1												
Length (ft)=												
Slope (ft/ft)=												
Cross Sectional Flow Area (ft²)=												
Wetted Perimeter (ft)=												
Channel Lining:												
n-value=												
Hydraulic Radius (ft)=												
Average Velocity (ft/sec)=												
T _t (hrs)=												

The Preserve at Moody Farm

<u>DRAINAGE AREA 4</u> <u>STORMWATER PRE-POST CALCULATIONS</u>

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	34.70	34.70
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number=	71	71
Disconnected Impervious Adjustment		
Disconnected impervious area (acre) =		
CN _{adjusted (1-year)} =	7	1
CN _{adjusted (1-year)} = High Density Only	7	1
	6,8	
High Density Only Volume of runoff from 1" rainfall for DA		
High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =		
High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow)	6,8	309
High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	6,8	309
High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) =	6,8	309
High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) =	0.70	0.70
High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} =	0.70	0.70
High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	0.70 0.185	0.70
High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	0.70 0.185	0.70
High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) =	0.70 0.185 1.06 0	0.70 0.185
High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q_1-year = 2-year, 24-hour storm (LID) Runoff (inches) = Q*_2-year = Volume of runoff (ft³) = Peak Discharge (cfs) = Q_2-year =	0.70 0.185 1.06 0	0.70 0.185
High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q _{2-year} = 10-year, 24-hour storm (DIA)	0.70 0.185 1.06 0 0.282	0.70 0.185 1.06

<u>DA SITE SUMMARY</u> STORMWATER PRE-POST CALCULATIONS

NORTH CAROLINA		OITE		,								
		SILE	SUMMAR	<u> </u>								
DRAINAGE AREA SUMMARIES						T			T			
DRAINAGE AREA:	DA1	DA2	DA3 (1-year, 24-	DA4	DA5	DA6	DA7	DA8	DA9	DA10		
Runoff (in) = Q _{pre,1-year} =	0.73	0.94	0.94	0.70	,	T						
Peak Flow (cfs)=Q _{1-year} =	0.830	25.457	1.424	0.185								
() () ()		ļ	t (1-year, 24		rm)	VALUE	PRIOR	TO SO	CM .			
Proposed Impervious Surface (acre) =	0.74	12.41	1.70				OITAU					
Runoff (in)=Q _{1-year} =	0.99	1.23	1.12 /	0.70		1	I					
Peak Flow (cfs)=Q _{1-year} =	0.702	36.502	2.466	0.185								
Increase in volume per DA (ft³) 1-yr storm=		33,473	16,676	0								
Minimum Volume to be Managed for DA HIGH DENSITY REQUIREMENT = (ft³) =	3,519	46,484	7,873	6,809								
TARGET CURVE NUMBER (TCN)						1				l.		
		Si	ite Data									
	5	SITE \SOIL	COMPOSI	TION								
HYDROLOGIC SOIL GROU	JP			Site	Area		<u>%</u>		Target CN	<u>l</u>		
A				0.	00	0	%		N/A			
В				8.	05	17	7%		N/A			
С				32	.53	6	7%		N/A			
D				7.	71	16	3%	N/A				
		То	tal Site Area	(acres) =		48.28						
Percent BL	JA (Include	s Existing	xisting Lakes/Pond Areas) =				30%					
			Project	Density =		High						
		Target Curve Number (TCN) =				N/A						
		CN _{adjusted (1-year)} =					7	9				
Minimum Volume to be Manag	ed (Total S	Site) Per TCN Requirement= ft ³ =				N/A						
	S	ite Nitrog	en Loading	Data								
HSG			TN export coefficient			Site			N			
			(lbs/ac/yr)			Acreage			Export			
Pasture			1.2		0.13			0.16				
Woods, Poor Condition			1.6		0.00			0.00				
Woods, Fair Condition			1.2			0.00			0.00			
Woods, Good Condition			8.0			7.23			5.78			
Open Space, Poor Condition			1.0			0.00			0.00			
Open Space, Fair Condition			8.0			0.00			0.00			
Open Space, Good Condition			0.6			42.00			25.20			
Reforestation (in dedicated OS)			0.6			0.00			0.00			
Impervious			21.2			16.16			342.59			
SITE NITROGEN LOADING RATE (I						5.70						
Nitrogen Loa						373.73						
Sit	te Nitroge	n Loading	Data For E	xpansion	s Only							
			Existing					New				
Impervious(acres)=			NA]		NA				
"Expansion Area" (acres=)												
Nitrogen Load (lbs/yr)=			NA					NA				
SITE NITROGEN LOADING RATE (lbs/ac/yr)=			NA					NA				
Total Site loading rate (lbs/ac/yr)												
TOTAL SITE NITROGEN TO MITIGATE (lbs/yr)=					N	A						

SITE SUMMARY Page 21

DRAINAGE AREA 1 BMP CALCULATIONS

COUNTY NORTH CAROLINA													
DRAINAGE AREA 1 - BMP DEVICES AN	D ADJUSTMENTS												
DA1 Site Acreage=				2.9									
DA1 Off-Site Acreage= Total Required Storage Volume for Site				3.1									
TCN Requirement (ft ³)=				N/A									
Total Required Storage Volume for DA1 1" Rainfall for High Density (ft ³)=				3,51	9								
Will site use underground detention/cistern?	No	Enter %	of the year	water will be reused=		0%		Note: Suppr submitted to	orting inform o demonstra	nation/details ste water usa	should be		
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA												
	HSG		DA1(a)		DA1(b)		DA1(c)	Sub-E		Sub-E			
	ньо	Site	Ac) Off-site	Site	Ac) Off-site	Site	C) Off-site	Site (A	Ac) Off-site	Site (A	(c) Off-site		
Pasture													
Woods, Poor Condition													
Woods, Fair Condition													
Woods, Good Condition Open Space, Poor Condition									-				
Open Space, Fair Condition													
Open Space, Good Condition		2.18	2.97										
Reforestation (in dedicated OS)													
Impervious		0.72	0.20										
Sub-DA1(a) BMP(s)					T			1					
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³) Provided Volume that will drawdown 2-5 days (ft ³)						Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdowi Time (hours)		
N/A								0%	22.59	0.00			
								0%	22.59	0.00			
			4,107					0%	22.59	0.00			
		1						0%	22.59	0.00			
	otal Nitrogen remaining leaving the subbasin (lbs):					-	.59	0%	22.59	0.00			
Sub-DA1(b) BMP(s)	own muogen remaining leaving the subbasin (lbs):					22							
	If Sub-DA1(b) is connected to upstream subbasin(s),												
enter t	the nitrogen leaving the most upstream subbasin(lbs):												
Device Name (As Shown on Plan)	Device Type	Wate	er Quality Vo or Sub-DA (fl	lume	V dra	Provided folume that v wdown 2-5 o (ft ²)	vill days	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdowi Time (hours)		
								0%	0.00	0.00			
								0%	0.00	0.00			
								0%	0.00	0.00			
								0%	0.00	0.00			
	otal Nitrogen remaining leaving the subbasin (lbs):							0%	0.00	0.00			
Sub-DA1 (c) BMP(s)	otal Nitrogen remaining leaving the subbasin (lbs):												
Sub-DAT (c) BMF(s)	If Sub-DA1(c) is connected to upstream subbasin(s),												
enter t	the nitrogen leaving the most upstream subbasin(lbs):												
						Provided		Nitrogen	Sub-DA	Nitrogen	Drawdown		
Device Name (As Shown on Plan)	Device Type	Wate	er Quality Vo or Sub-DA (fi	lume ²)	Volume that will drawdown 2-5 days (ft ²)			Removal Efficiency	Nitrogen (lbs)	Removed (lbs)	Time (hours)		
									0.00	0.00			
								0%	0.00	0.00			
		-						0%	0.00				
								0%	0.00	0.00			
т	otal Nitrogen remaining leaving the subbasin (lbs):							1		-			
Sub-DA1(d) BMP(s)													
If Sub-DA1(d) is connected to upstream subb	easin(s), enter the nitrogen leaving the most upstream												
	subbasin(lbs):				ı	Bid. d		1					
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fl		dra	Provided folume that v wdown 2-5 o (ft ³)	vill days	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdow Time (hours)		
								0%	0.00	0.00			
								0%	0.00	0.00			
								0%	0.00	0.00			
		-						0%	0.00	0.00			
-	tol Mikeson manalalas kendenda atau atau atau							0%	0.00	0.00			
Sub-DA1(e) BMP(s)	otal Nitrogen remaining leaving the subbasin (lbs):												
	asin(s), enter the nitrogen leaving the most upstream												
	subbasin(bs):												
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fi			Provided folume that www. 2-5 of (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdow Time (hours)		
								0%	0.00	0.00			
		1						0%	0.00	0.00			
								0%	0.00	0.00			
								0%	0.00	0.00			
								0%	0.00	0.00			
T	otal Nitrogen remaining leaving the subbasin (lbs):	14 BY:-											
	Di Total Volume Treated (ft ³)=	A1 BMP SI	UMMARY				107						
	Nitrogen Mitigated(lbs)=					4,							
1-year, 24-hour storm	5 5()	_											
	Post BMP Volume of Runoff (ft ³) _(1-year) =					6,3	331						
	Post BMP Runoff (inches) = Q*(1-year)=						60						
	Post BMP CN _(1-year) =						19						
	Post BMP Peak Discharge (cfs)= Q _{1-year} =					0.	84						
2-year, 24-hour storm (LID)													
	Post BMP Volume of Runoff (ft3) _(2-year) =						845						
	Post BMP Runoff (inches) = Q* _(2-year) =						03						
	Post BMP CN _(2-year) =					7	0						
	Post BMP Peak Discharge (cfs)= Q _(2-year) =												
10-year, 24-hour storm (DIA)													
	Post BMP Volume of Runoff (ft ²) _(10-year) = Post BMP Runoff (inches) = Q* _(10-year) =						033						
	Post BMP Runoff (inches) = Q* _(10-year) = Post BMP CN(_{10-year)} =	-					71 18						
							-						
İ	Post BMP Peak Discharge (cfs)= Q _(10-year) =	1											

A1_BMPs Page 2

DRAINAGE AREA 2 BMP CALCULATIONS

COUNTY NORTH CAROLINA													
DRAINAGE AREA 1 - BMP DEVICES AN	DADJUSTMENTS												
DA2 Site Acreage= DA2 Off-Site Acreage=				31.7									
Total Required Storage Volume				N/A									
TCN Requirement (ft³)= Total Required Storage Volume for DA2				46,48									
1" Rainfall for High Density (ft3)=													
Will site use underground detention/cistern?	No	Enter %	of the year v	vater will be reused=		0%		Note: Supporting information/details should be submitted to demonstrate water usage.					
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA												
	HSG	Sub-I			DA2(b) Ac)		DA2(c) Ac)	Sub-DA2(d) Sub-DA2(e) (Ac) (Ac)					
Pasture		Site 0.13	Off-site	Site	Off-site	Site	Off-site	Site	Off-site				
Woods, Poor Condition													
Woods, Fair Condition													
Woods, Good Condition Open Space, Poor Condition						0.16		0.02		0.05			
Open Space, Fair Condition													
Open Space, Good Condition		4.94	1.03	1.39		5.12		2.78		2.85			
Reforestation (in dedicated OS)													
Impervious Sub-DA1(a) BMP(s)		3.68 0.54 3.63						2.35		4.06			
Device Name (As Shown on Plan)	Device Type	Wate	er Quality Vo or Sub-DA (ft	lume ²)	V dra	Provided folume that v wdown 2-5	rill tays	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)		
WP#1	Wet Detention Basin					(ft ²)		25%	81.75	20.44			
	wet Detention Basin							25%	61.32	0.00	69		
		1	5,368 5,368						61.32	0.00			
								0%	61.32	0.00			
T.	otal Nitrogen remaining leaving the subbasin (lbs):	61.32						0%	61.32	0.00			
Sub-DA1(b) BMP(s)	.geneg .erring the seconds (IDS).						_						
	If Sub-DA1(b) is connected to upstream subbasin(s), he nitrogen leaving the most upstream subbasin(lbs):												
Gilleri	ne mogen leaving the most upstream subbasin(los).					Provided					L .		
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (ft		dra	folume that w wdown 2-5	rill lays	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)		
WP#2	Wet Detention Basin							25%	12.28	3.07	73		
			454			454		0%	9.21	0.00			
			404	454				0%	9.21	0.00			
								0%	9.21	0.00			
	otal Nitrogen remaining leaving the subbasin (lbs):					9	21						
Sub-DA1 (c) BMP(s)	# Sub-D&1/c) is connected to unetream subhasin(s)												
enter t	If Sub-DA1(c) is connected to upstream subbasin(s), he nitrogen leaving the most upstream subbasin(lbs):												
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (ft		V dra	Provided folume that w wdown 2-5	vill Jays	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)		
WP#3	Wet Detention Basin					(ft ³)		25%	80.16	20.04	85		
WF#5								0%	60.12	0.00	- 63		
			4,846			4,846		0%	60.12	0.00			
								0%	60.12 60.12	0.00			
T	I otal Nitrogen remaining leaving the subbasin (lbs):	60.12					.12						
Sub-DA1(d) BMP(s)													
If Sub-DA1(d) is connected to upstream subt	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):												
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (ft		V dra	Provided folume that v wdown 2-5 (ft ³)	rill Jays	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)		
WP#4	Wet Detention Basin					(4.)		25%	51.50	12.88	65		
		1						0%	38.63	0.00	- 03		
			2,143			2,143		0%	38.63	0.00			
		1						0%	38.63 38.63	0.00			
T	otal Nitrogen remaining leaving the subbasin (lbs):					38	.63						
Sub-DA1(e) BMP(s)													
If Sub-DA1(e) is connected to upstream subt	easin(s), enter the nitrogen leaving the most upstream subbasin(lbs):												
Device Name (As Shown on Plan)	Device Type		er Quality Vo		V dra	Provided folume that v wdown 2-5	rill tays	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)		
	Wet Detention Basin					(ft³)			87.82	21.96			
WP#5	wet Detention Basin	1						25%	65.87	0.00	54		
			4,084			4,083		0%	65.87	0.00			
		1						0%	65.87	0.00			
T	otal Nitrogen remaining leaving the subbasin (lbs):					65	.87	0%	65.87	0.00			
		A2 BMP SI	UMMARY										
	Total Volume Treated (ft ³)=						894						
1-year, 24-hour storm	Nitrogen Mitigated(lbs)=					78	.38						
	Post BMP Volume of Runoff (ft ²) _(1-year) =						,843						
	Post BMP Runoff (inches) = Q* _(1-year) =						08						
	Post BMP CN _(1-year) = Post BMP Peak Discharge (cfs)= Q _{1-year} =						05						
2-year, 24-hour storm (LID)	russ own reak Discharge (cis)= Q _{1-year} =					11	.05						
- ,, 24-1001 310111 (EID)	Post BMP Volume of Runoff (ft3) _(2-year) =					179	,344						
	Post BMP Runoff (inches) = Q* _(2-year) =						56						
	Post BMP CN _(2-year) =					- 1	9						
	Post BMP Peak Discharge (cfs)= Q _(2-year) =												
10-year, 24-hour storm (DIA)						337	,244						
10-year, 24-hour storm (DIA)	Post BMP Volume of Runoff $(ft^2)_{(10\cdot year)}$ = Post BMP Runoff (inches) = $Q^*_{(10\cdot year)}$ =					2	93						
10-year, 24-hour storm (DIA)	Post BMP Volume of Runoff (ft ³) _(10-year) =					2							

A2_BMPs Page 2:

DRAINAGE AREA 3 BMP CALCULATIONS

NORTH CAROLINA											
DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS										
DA3 Site Acreage=				12.7	8						
DA3 Off-Site Acreage=											
Total Required Storage Volume				N/A							
TCN Requirement (ft ³)= Total Required Storage Volume for DA3											
1" Rainfall for High Density (ft3)=				7,87	3						
Will site use underground detention/cistern?	No	Enter %	of the year	water will be reused=		0%				nation/details ite water usa	
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA							1			
			DA3(a)		DA3(b)	Sub-I			DA3(d)		DA3(e)
	нѕс	Site (A	Off-site	Site (A	Ac) Off-site	Site (A	Off-site	Site (A	Off-site	Site	Off-site
Pasture		Oile	OII-Site	Oile	OII-Site	Oite	OII-Site	Oile	OII-SILC	Oile	OII-Site
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition		0.89				0.61					
Open Space, Poor Condition		2.00				2.01					
Open Space, Fair Condition											
Open Space, Good Condition		4.33		0.06		5.19					
Reforestation (in dedicated OS)		4.00		0.00		0.18					
		1.00		0.04		0.40					
Impervious Sub-DA1(a) BMP(s)		1.23		0.01		0.46					
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (ff			Provided olume that wwdown 2-5 c		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
N/A (BYPASS)								0%	29.39	0.00	
								0%	29.39	0.00	
			3,199			3,199		0%	29.39	0.00	
								0%	29.39	0.00	
								0%	29.39	0.00	
Tota	al Nitrogen remaining leaving the subbasin (lbs):					29	.39			1	
Sub-DA1(b) BMP(s)	, , ,										
	If Sub-DA1(b) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fl			Provided olume that wwdown 2-5 of (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdowr Time (hours)
N/A (BYPASS)								0%	0.25	0.00	
								0%	0.25	0.00	
			13			13		0%	0.25	0.00	
								0%	0.25	0.00	
								0%	0.25	0.00	
Tota	al Nitrogen remaining leaving the subbasin (lbs):					0.	25	1			
Sub-DA1 (c) BMP(s)											
	If Sub-DA1(c) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fi			Provided olume that wwdown 2-5 of (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdowr Time (hours)
N/A (BYPASS)						_		0%	13.35	0.00	
,								0%	13.35	0.00	
			1,872			1,872		0%	13.35	0.00	
								0%	13.35	0.00	
									l	-	
								0%	13.35	0.00	

DA3_BMPs Page 24

Project Name:

The Preserve at Moody Farm

DRAINAGE AREA 3 BMP CALCULATIONS

Sub-DA1(d) BMP(s)							
If Sub-DA1(d) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tota	al Nitrogen remaining leaving the subbasin (lbs):						
Sub-DA1(e) BMP(s)							
If Sub-DA1(e) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tota	al Nitrogen remaining leaving the subbasin (lbs):						
	DA	A3 BMP SUMMARY					
	Total Volume Treated (ft ³)=		5,084				
	Nitrogen Mitigated(lbs)=						
1-year, 24-hour storm							
	Post BMP Volume of Runoff (ft ³) _(1-year) =		46,787				
	Post BMP Runoff (inches) = $Q^*_{(1-year)}$ =		1.01				
	Post BMP CN _(1-year) =		77				
	Post BMP Peak Discharge (cfs)= Q _{1-year} =		2.47				
2-year, 24-hour storm (LID)							
	Post BMP Volume of Runoff (ft3) _(2-year) =		67,829				
	Post BMP Runoff (inches) = Q* _(2-year) =		1.46				
	Post BMP CN _(2-year) =		77				
	Post BMP Peak Discharge (cfs)= Q _(2-year) =						
10-year, 24-hour storm (DIA)							
	Post BMP Volume of Runoff (ft ³) _(10-year) =		103,037				
	Post BMP Runoff (inches) = Q* _(10-year) =		2.22				
	Post BMP CN(10-year)=		87				
	Post BMP Peak Discharge (cfs)= Q _(10-year) =				·		

DA3_BMPs Page 25

DRAINAGE AREA 4 BMP CALCULATIONS

NORTH CAROLINA											
DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS										
DA4 Site Acreage=											
DA4 Off-Site Acreage=	13.94										
Total Required Storage Volume	N/A										
TCN Requirement (ft ³)= Total Required Storage Volume for DA4											
1" Rainfall for High Density (ft3)=	6,809										
Will site use underground detention/cistern?		Enter % of the year water will be reused=						Note: Supporting information/details should be submitted to demonstrate water usage.			
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA										
		Sub-DA4(a) Sub-D				Sub-DA4(d)		Sub-DA4(e)			
	нѕс	(Ac) Site Off-site Site		Site (A	(Ac) (Ac) Off-site Site Off-site		(Ac) Site Off-site		(Ac) Site Off-site		
Pasture		One	OII-Site	Oite	OII-Site	Oile	OII-Site	Oile	OII-Site	Oile	OII-SILC
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition			5.48								
Open Space, Poor Condition											
Open Space, Fair Condition											
Open Space, Good Condition			7.15								
Reforestation (in dedicated OS)											
Impervious			1.31								
Sub-DA1(a) BMP(s)											
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ^b)			Provided Volume that will drawdown 2-5 days (ft³)			Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	36.44	0.00	
								0%	36.44	0.00	
								0%	36.44	0.00	
								0%	36.44	0.00	
							0%	36.44	0.00		
Tota	al Nitrogen remaining leaving the subbasin (lbs):					36	.44				
Sub-DA1(b) BMP(s)											
	If Sub-DA1(b) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):										
		Water Quality Volume for Sub-DA (ft³)		Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)							
Device Name (As Shown on Plan)	Device Type					olume that v wdown 2-5 c		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
Device Name (As Shown on Plan)	Device Type					olume that v wdown 2-5 c		Removal	Nitrogen	Removed	Time
Device Name (As Shown on Plan)	Device Type					olume that v wdown 2-5 c		Removal Efficiency	Nitrogen (lbs)	Removed (lbs)	Time
Device Name (As Shown on Plan)	Device Type					olume that v wdown 2-5 c		Removal Efficiency	Nitrogen (lbs)	Removed (lbs)	Time
Device Name (As Shown on Plan)	Device Type					olume that v wdown 2-5 c		Removal Efficiency 0% 0%	Nitrogen (lbs) 0.00 0.00	Removed (lbs) 0.00 0.00	Time
Device Name (As Shown on Plan)	Device Type					olume that v wdown 2-5 c		Removal Efficiency 0% 0% 0%	Nitrogen (lbs) 0.00 0.00 0.00	Removed (lbs) 0.00 0.00 0.00	Time
	Device Type All Nitrogen remaining leaving the subbasin (lbs):					olume that v wdown 2-5 c		Removal Efficiency 0% 0% 0% 0% 0%	Nitrogen (lbs) 0.00 0.00 0.00 0.00	Removed (lbs) 0.00 0.00 0.00 0.00	Time
						olume that v wdown 2-5 c		Removal Efficiency 0% 0% 0% 0% 0%	Nitrogen (lbs) 0.00 0.00 0.00 0.00	Removed (lbs) 0.00 0.00 0.00 0.00	Time
Tota Sub-DA1 (c) BMP(s)						olume that v wdown 2-5 c		Removal Efficiency 0% 0% 0% 0% 0%	Nitrogen (lbs) 0.00 0.00 0.00 0.00	Removed (lbs) 0.00 0.00 0.00 0.00	Time
Tota Sub-DA1 (c) BMP(s)	al Nitrogen remaining leaving the subbasin (lbs): If Sub-DA1(c) is connected to upstream subbasin(s),	fc		Jume	dra	olume that v wdown 2-5 c	vill	Removal Efficiency 0% 0% 0% 0% 0%	Nitrogen (lbs) 0.00 0.00 0.00 0.00	Removed (lbs) 0.00 0.00 0.00 0.00	Time (hours)
Tota Sub-DA1 (c) BMP(s) enter th	al Nitrogen remaining leaving the subbasin (lbs): If Sub-DA1(c) is connected to upstream subbasin(lbs): ne nitrogen leaving the most upstream subbasin(lbs):	fc	or Sub-DA (ff	Jume	dra	olume that v wdown 2-5 c (ft³) Provided olume that v wdown 2-5 c	vill	Removal Efficiency 0% 0% 0% 0% 0% Nitrogen Removal	Nitrogen (lbs) 0.00 0.00 0.00 0.00 0.00 0.00 Sub-DA Nitrogen	Removed (lbs)	Time (hours) Drawdown Time
Tota Sub-DA1 (c) BMP(s) enter th	al Nitrogen remaining leaving the subbasin (lbs): If Sub-DA1(c) is connected to upstream subbasin(lbs): ne nitrogen leaving the most upstream subbasin(lbs):	fc	or Sub-DA (ff	Jume	dra	olume that v wdown 2-5 c (ft³) Provided olume that v wdown 2-5 c	vill	Removal Efficiency 0% 0% 0% 0% 0% Nitrogen Removal Efficiency	Nitrogen (lbs) 0.00 0.00 0.00 0.00 0.00 Sub-DA Nitrogen (lbs)	Removed (lbs)	Time (hours) Drawdown Time
Tota Sub-DA1 (c) BMP(s) enter th	al Nitrogen remaining leaving the subbasin (lbs): If Sub-DA1(c) is connected to upstream subbasin(lbs): ne nitrogen leaving the most upstream subbasin(lbs):	fc	or Sub-DA (ff	Jume	dra	olume that v wdown 2-5 c (ft³) Provided olume that v wdown 2-5 c	vill	Removal Efficiency 0% 0% 0% 0% 0% Nitrogen Removal Efficiency 0%	Nitrogen (lbs) 0.00 0.00 0.00 0.00 0.00 Sub-DA Nitrogen (lbs)	Removed (lbs)	Time (hours) Drawdown Time
Tota Sub-DA1 (c) BMP(s) enter th	al Nitrogen remaining leaving the subbasin (lbs): If Sub-DA1(c) is connected to upstream subbasin(lbs): ne nitrogen leaving the most upstream subbasin(lbs):	fc	or Sub-DA (ff	Jume	dra	olume that v wdown 2-5 c (ft³) Provided olume that v wdown 2-5 c	vill	Removal Efficiency 0% 0% 0% 0% 0% Nitrogen Removal Efficiency 0% 0%	Nitrogen (lbs) 0.00 0.00 0.00 0.00 0.00 Sub-DA Nitrogen (lbs) 0.00 0.00	Removed (lbs)	Time (hours) Drawdown Time

DA4_BMPs Page 26

Project Name:

The Preserve at Moody Farm

DRAINAGE AREA 4 BMP CALCULATIONS

NORTH CAROLINA							
Sub-DA1(d) BMP(s)							
If Sub-DA1(d) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tota	al Nitrogen remaining leaving the subbasin (lbs):						
Sub-DA1(e) BMP(s)							
If Sub-DA1(e) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Tota	al Nitrogen remaining leaving the subbasin (lbs):						
		A4 BMP SUMMARY					
	Total Volume Treated (ft ³)=						
	Nitrogen Mitigated(lbs)=						
1-year, 24-hour storm							
	Post BMP Volume of Runoff (ft ³) _(1-year) =						
	Post BMP Runoff (inches) = Q* _(1-year) =		0.70				
	Post BMP CN _(1-year) =		71				
	Post BMP Peak Discharge (cfs)= Q _{1-year} =		0.19				
1							
	Post BMP Volume of Runoff (ft3) _(2-year) =		0				
	Post BMP Runoff (inches) = Q* _(2-year) =						
	Post BMP CN _(2-year) =						
	Post BMP Peak Discharge (cfs)= Q _(2-year) =						
10-year, 24-hour storm (DIA)							
	Post BMP Volume of Runoff (ft ³) _(10-year) =		0				
	Post BMP Runoff (inches) = Q* _(10-year) =						
	Post BMP CN(10-year)=						
1	Post BMP Peak Discharge (cfs)= Q _(10-year) =						

DA4_BMPs Page 27

Project Name:	The Preserve at Moody Farm
i roject ivallie.	The Frederic at Moday Farm

DA SITE SUMMARY BMP CALCULATIONS

BMP SUMMARY										
DRAINAGE AREA SUMMARIES										
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
Pre-Development (1-year, 24-hour storm)										
Runoff (in)=Q* _{1-year} =	0.73	0.94	0.94	0.70				DEV PEAK I I PRE-DEV.		
Peak Flow (cfs)=Q _{1-year} =	0.830	25.457	1.424	0.185		PRE: 27.90 cfs				
Pos	t-Developm	ent (1-yea	r, 24-hour s	storm)			14.55 cfs			
Target Curve Number (TCN) =			V		NA					
Post BMP Runoff (inches) = Q* _(1-year) =	0.60	1.08	1.01	0.70						
Post BMP Peak Discharge (cfs)= Q _{1-year} =	0.842	11.053	2.470	0.185						
Post BMP CN _(1-year) =				•	77					•
	Post-BM	IP Nitrogei	n Loading							
TOTAL SITE NITROGEN MITIGATED (lbs)=					78.3	8				
SITE NITROGEN LOADING RATE (lbs/ac/yr)=					4.51	1				
TOTAL SITE NITROGEN LEFT TO MITIGATE_Wendell Only (lbs)=					59.5	0				

BMP SUMMARY Page 40

Moody: Supplemental & Supporting Info for Hydrograph Generation PreDev POD Calcs Roman Cook

PreDev_POD #1:	285072	S.F.	6.54	Ac
Land Use	Area	CN	Wtd. CN	
Pasture (Fair) - B Soils	0.12	69	1.25	
Pasture (Fair) - C Soils	0.16	79	1.96	
Pasture (Fair) - D Soils	0.00	84	0.00	
Woods/Wetlands (Fair) -B Soils	1.23	60	11.28	
Woods/Wetlands (Fair) -C Soils	5.02	73	56.02	
Woods/Wetlands (Fair) -D Soils	0.01	79	0.08	
Roofs	0.00	98	0.00	
Roadway	0.00	98	0.00	
Open Water	0.00	98	0.00	
Total (Check):	6.54	Composite "CN"	70.6	
Tc (Kirpich):	Length	Elev Delta	Tc=	
Tc, min.= 60*.000132*L^.77/S^.385	1299	46	6.67	Minutes

12/4/2024

PreDev_POD #2	1918625	S.F.	44.05	Ac
Land Use	Area	CN	Wtd. CN	
Pasture (Fair) - B Soils	2.87	69	4.50	
Pasture (Fair) - C Soils	13.78	79	24.72	
Pasture (Fair) - D Soils	1.85	84	3.53	
Woods/Wetlands (Fair) -B Soils	2.39	60	3.25	
Woods/Wetlands (Fair) -C Soils	12.44	73	20.62	
Woods/Wetlands (Fair) -D Soils	6.46	79	11.59	
Roof	0.15	98	0.33	
Roadway	0.56	98	1.24	
Open Water	1.49	98	3.32	
Total (Check):	41.98	Composite "CN"	73.1	
Tc (Kirpich):	Length	Elev Delta	Tc=	
Tc, min.= 60*.000132*L^.77/S^.385	2427	38	14.78	Minutes

PostDev POD 1 - bypass 12/4/2024

PostDev POD 1 - Bypass	128025	S.F.	2.94	Ac
Land Use	Area, Ac.	"CN"	Wtd'd "CN"	
Roadways + C&G (not Sidewalks)	0.00	98	0.00	
Roofs	0.67	98	22.34	
Driveways	0.08	98	2.67	
Sidewalks	0.00	98	0.00	
Openspace- B Soils	0.58	61	12.05	
Openspace- C Soils	0.53	74	13.43	
Openspace- D Soils	1.07	80	29.26	
Woods/Wetlands-B Soils	0.00	55	0.00	
Woods/Wetlands-C Soils	0.00	70	0.00	
Woods/Wetlands-D Soils	0.00	77	0.00	
Lands Taken Up by BMP	0.00	98	0.00	
Open Water (Exist'g or Proposed Ponds)	0.00	98	0.00	
Total (Check):	2.94	Composite "CN"	79.8	
	Percent Impervious		26%	
Tc (Kirpich):	Length	Elev Delta	Tc=	
Tc, min.= 60*.000132*L^.77/S^.385	605	30	3.25	Minutes
Percent Impervious		26%		

Post Dev - POD 2A #1 (SCM #1)

Roman Cook

12/4/2024

Post	Dev - POD 2A #1 (SCM #1)	425831	S.F.	9.78	Δc		Percent		P	ermanent Pod	ol ,
1 050	Land Use	Area, Ac.		Wtd'd "CN"	AC		Impervious Cover		- 40		П
	Roadways + C&G (not Sidewalks)	1.00	98	10.02			Cover	3.0	4.0	5.0	
	Roofs	1.67	98	16.74			10%	0.51	0.43	0.37	
	Driveways/Parking	0.39	98	3.91			20%	0.84	0.69	0.61	
	Sidewalks	0.39	98	2.21							
	Openspace- A Soils	0.00	39	0.00			30%	1.17	0.94	0.84	
	Openspace- B Soils	1.64	61	10.23			40%	1.51	1.24	1.09	
	Openspace- C Soils	4.14	74	31.34			50%	1.79	1.51	1.31	
	Openspace- C Soils Openspace- D Soils	0.32	80	2.62			60%	2.09	1.77	1.49	
	Woods-A Soils	0.00	30	0.00							
	Woods-A Soils Woods-B Soils	0.00	55	0.00			70%	2.51	2.09	1.80	
	Woods-B Soils Woods-C Soils	0.00	70	0.00			80%	2.92	2.41	2.07	
	Woods-C Soils Woods-D Soils	0.00	77	0.00			90%	3.25	2.64	2.31	
	Lands Taken Up by BMP	0.00	98	4.01			100%	3.55	2.79	2.52	
	. ,	0.40	98	0.00			All Constitution of the				
	Open Water (Exist'g or Proposed Ponds)										
	Total (Check):		Composite "CN"	81.1							
	= (a, 11)	Percent Impervious		37.6%						3	
	Tc (Kirpich):	- 0-	Elev Delta	Tc=					30		
	Tc, min.= 60*.000132*L^.77/S^.385	1083			Minutes				40		
	Percent Impervious		37.6%					37.	6% (interpolatio	n) 1.43	
		Pond Design Depth, ft.:	3.50			_	•				
•	SA/DA Factor:			From NCDEQ	SA/DA Char	D Avg, ft					
Davg = VPP-Vshelf /A shelf bottom	Min.SCM Surface Area:		5536			3.43			rea (no forebay)		
		VPP, c.f.	Perimeter, ft.		Abottom, S.f.	3.50		ebay Volume		6440	
Treatment Volume Requirement		43,409	605	7,259.00	10,525		Permar	nent Pool Vol	ume (Total):	36969	
	(From HydraFlow Attachment)			Design Pond	l Depth, ft.=		Fo	rebay Size (V	olume):	17	%
Rv=0.05009*(%Impervious)											
Total Runoff for 1" Event= S in Ad	DA to SCM:	9.78	Ac.								
Treatment "S" in Cu. Ft. =	Composite % Impervious (Above) =	38%					1				
Treatment Volume to Be Stored:	Rv=0.05+.009*(%Impervious)		inch/inch				1				
Treatment Volume Provided, Cu.	Total Runoff for 1" Event= S in Ac-Ft:	0.32	S=1"*Rv*Drainag	e Area/12			1				
	Treatment "S" in Cu. Ft. =	13796.86					1				
	Treatment Volume to Be Stored:	13797	Cu. FT				1				
	Volume Achieved at Elev.	364.29	Orifice Dia	2.00	Inch Drawdo	wn Pipe	1				
	Drawdown Pipe Elev.	363.5	Elev Diff, H., ft.	0.79			1				

Table 1: Piedmont and Mountain SA/DA Table (Adapted from Driscoll, 1986)

Percent		F	ermanent Pool	Average Depth	(ft)	
Impervious Cover	3.0	4.0	5.0	6.0	7.0	≥8.0
10%	0.51	0.43	0.37	0.30	0.27	0.25
20%	0.84	0.69	0.61	0.51	0.44	0.40
30%	1.17	0.94	0.84	0.72	0.61	0.56
40%	1.51	1.24	1.09	0.91	0.78	0.71
50%	1.79	1.51	1.31	1.13	0.95	0.87
60%	2.09	1.77	1.49	1.31	1.12	1.03
70%	2.51	2.09	1.80	1.56	1.34	1.17
80%	2.92	2.41	2.07	1.82	1.62	1.40
90%	3.25	2.64	2.31	2.04	1.84	1.59
100%	3.55	2.79	2.52	2.34	2.04	1.75

	3	4		
30%	1.17	0.94		
40%	1.51	1.24		
37.6% (interpolation)	1.43	1.17	1.30 SA/DA	

manent Pool Surface Area (no forebay):	11540	sf
Forebay Volume (Total):	6440	cf
Permanent Pool Volume (Total):	36969	cf

Post Dev - POD 2A #2 (SCM #2)

Roman Cook

12/4/2024

Table 1: Piedmont and Mountain SA	DA Table (Adapted from Driscoll, 1986)
-----------------------------------	--

0.25 0.40 0.56 0.71 0.87 1.03 1.17 1.40 1.59 1.75

Post	Dev - POD 2A #2 (SCM #2)	84018	S.F.	1.93	Ac	1	Percent		F	ermanent Po	ol Averag	e Depth (ft)	
	Land Use	Area, Ac.	"CN"	Wtd'd "CN"			Impervious Cover	3.0	4.0	5.0		0.0	7.0	≥8.0
	Roadways + C&G (not Sidewalks)	0.00	98	0.00						- 65				700
	Roofs	0.32	98	16.26			10%	0.51	0.43	0.37	0	.30	0.27	0.25
	Driveways/Parking	0.02	98	1.02		Ü	20%	0.84	0.69	0.61	0	.51	0.44	0.40
	Sidewalks	0.00	98	0.00			30%	1.17	0.94	0.84	0	.72	0.61	0.56
	Openspace- A Soils	0.00	39	0.00			40%	1.51	1.24	1.09		91	0.78	0.71
	Openspace- B Soils	0.23	61	7.40		100								
	Openspace- C Soils	0.96	74	36.83			50%	1.79	1.51	1.31	1	.13	0.95	0.87
	Openspace- D Soils	0.20	80	8.30			60%	2.09	1,77	1.49	1	.31	1.12	1.03
	Woods-A Soils	0.00	30	0.00			70%	2.51	2.09	1.80	1	.56	1.34	1.17
	Woods-B Soils	0.00	55	0.00			80%	2.92	2.41	2.07	1	82	1.62	1.40
	Woods-C Soils	0.00	70	0.00			90%	3.25	2.64	2.31	2	.04	1.84	1.59
	Woods-D Soils	0.00	77	0.00										
	Lands Taken Up by BMP	0.20	98	10.16			100%	3.55	2.79	2.52	2	.34	2.04	1.75
	Open Water (Exist'g or Proposed Ponds)	0.00	98	0.00		Ì								
	Total (Check):	1.93	Composite "CN"	80.0		Ì								
		Percent Impervious		28.0%		Ì					3	4		
	Tc (Kirpich):	Length	Elev Delta	Tc=						20%	0.84	0.69		
	Tc, min.= 60*.000132*L^.77/S^.385	390	19	2.34	Minutes	use 5 min	. minimum			30%	1.17	0.94		
	Percent Impervious		28.0%						28.0% (interp	olation)	1.10	0.89	1.00 SA/I	DA
		Pond Design Depth, ft.:	3.50				_							
SCM #1 Design Elements:	SA/DA Factor:		1.00	From NCDEO	SA/DA Char	D Avg, ft								
Davg = VPP-Vshelf /A shelf bottom	Min.SCM Surface Area:		840	S.F.		4.40	Permaner	it Pool Surface	Area (no foreb	ay):	5547 sf			
		VPP, c.f.	Perimeter, ft.	Vshelf, c.f.	Abottom, S.f.	3.50		Forebay Volur	ne (Total):		2567 cf			
Treatment Volume Requirement		15,908	517	3,197.00	2,888		Perr	nanent Pool V	olume (Total):		13341 cf			
	(From HydraFlow Attachment)			Design Pon	Depth, ft.=	3.50		Forebay Size	(Volume):		19 %			
Rv=0.05009*(%Impervious)														
Total Runoff for 1" Event= S in A	DA to SCM:	1.93	Ac.											
Treatment "S" in Cu. Ft. =	Composite % Impervious (Above) =	28%												
Treatment Volume to Be Stored:	Rv=0.05+.009*(%Impervious)	0.30	inch/inch											
Treatment Volume Provided, Cu.	Total Runoff for 1" Event= S in Ac-Ft:	0.05	S=1"*Rv*Drainag	e Area/12										
	Treatment "S" in Cu. Ft. =	2114.26												
	Treatment Volume to Be Stored:	2114	Cu. FT				1							
	Volume Achieved at Elev.	361.77	Orifice Dia	1.00	Inch Drawd	own Pipe								
	Drawdown Pipe Elev.	361.5	Elev Diff, H., ft.	0.27			1							

Post Dev - POD 2A #3 (SCM #3)

Roman Cook

12/4/2024

FOST DEV - FOD ZA #3	(3CM #3)		KOMAN COOK	12/4/2024		_	rable i	. Freumont	and Wountail	JANDI	4 10
Post	t Dev - POD 2A #3 (SCM #3)	388282	S.F.	8.91	Ac		Percent		P	ermanen	t Po
	Land Use	Area, Ac.	"CN"	Wtd'd "CN"			Impervious Cover	3.0	4.0	5.0	0
	Roadways + C&G (not Sidewalks)	0.99	98	10.88		-				-	
	Roofs	1.98	98	21.77			10%	0.51	0.43	0.3	7
	Driveways/Parking	0.25	98	2.75			20%	0.84	0.69	0.6	1
	Sidewalks	0.24	98	2.64			30%	1,17	0.94	0.8	4
	Openspace- A Soils	0.00	39	0.00			40%	1.51	1.24	1.0	0
	Openspace- B Soils	1.47	61	10.06							
	Openspace- C Soils	3.05	74	25.32			50%	1.79	1.51	1.3	
	Openspace- D Soils	0.45	80	4.04			60%	2.09	1.77	1.4	9
	Woods-A Soils	0.00	30	0.00			70%	2.51	2.09	1.8	0
	Woods-B Soils	0.06	55	0.37			80%	2.92	2.41	2.0	7
	Woods-C Soils	0.10	70	0.79			90%	3.25	2.64	2.3	
	Woods-D Soils	0.00	77	0.00							
	Lands Taken Up by BMP	0.17	98	1.87			100%	3.55	2.79	2.5	2
	Open Water (Exist'g or Proposed Ponds)	0.00	98	0.00							
	Total (Check):	8.76	Composite "CN"	80.5							
		Percent Impervious		40.7%							
	Tc (Kirpich):	Length	Elev Delta	Tc=						40%	
	Tc, min.= 60*.000132*L^.77/S^.385	1140	25	7.25	Minutes					50%	
	Percent Impervious		40.7%						41.5% (interpo	olation)	
		Pond Design Depth, ft.:	3.50				_				
SCM #1 Design Elements:	SA/DA Factor:		1.20	From NCDEQ	SA/DA Char	D Avg, ft					
Davg = VPP-Vshelf /A shelf botton	Min.SCM Surface Area:		4659	S.F.		3.72	Permanen	t Pool Surface	Area (no foreb	ay):	
		VPP, c.f.	Perimeter, ft.	Vshelf, C.f.	Abottom, S.f.	3.50	F	orebay Volum	e (Total):		
Treatment Volume Requiremen	t:	16,418	354	2,957.00	3,619		Perm	nanent Pool Vo	lume (Total):		1
	(From HydraFlow Attachment)			Design Pond	Depth, ft.=	3.50		Forebay Size (\	/olume):		
Rv=0.05009*(%Impervious)											
Total Runoff for 1" Event= S in A	Ac DA to SCM:	8.914	Ac.								
Treatment "S" in Cu. Ft. =	Composite % Impervious (Above) =	41%									
Treatment Volume to Be Stored	l: Rv=0.05+.009*(%Impervious)	0.42	inch/inch								
Treatment Volume Provided, Cu	J. Total Runoff for 1" Event= S in Ac-Ft:	0.31	S=1"*Rv*Drainag	e Area/12							
	Treatment "S" in Cu. Ft. =	13477.05									
	Treatment Volume to Be Stored:	13477	Cu. FT								
	Volume Achieved at Elev.	363.1	Orifice Dia	1.50	Inch Drawdo	own Pipe					
	Drawdown Pipe Elev.	361.5	Elev Diff, H., ft.	1.6							

Table 1: Piedmont and Mountain SA/DA Table (Adapted from Driscoll, 1986)

Percent	Permanent Pool Average Depth (ft)							
Impervious Cover	3.0	4.0	5.0	6.0	7.0	≥8.0		
10%	0.51	0.43	0.37	0.30	0.27	0.25		
20%	0.84	0.69	0.61	0.51	0.44	0.40		
30%	1.17	0.94	0.84	0.72	0.61	0.56		
40%	1.51	1.24	1.09	0.91	0.78	0.71		
50%	1.79	1.51	1.31	1.13	0.95	0.87		
60%	2.09	1.77	1.49	1.31	1.12	1.03		
70%	2.51	2.09	1.80	1.56	1.34	1.17		
80%	2.92	2.41	2.07	1.82	1.62	1.40		
90%	3.25	2.64	2.31	2.04	1.84	1.59		
100%	3.55	2.79	2.52	2.34	2.04	1.75		

	4	5	
40%	1.24	1.09	
50%	1.51	1.31	
41 5% (interpolation)	1.28	1 12	1 20 SA/DA

Permanent Pool Surface Area (no forebay):	4788	sf
Forebay Volume (Total):	3009	cf
Permanent Pool Volume (Total):	16422	cf
Forebay Size (Volume):	18	%

Hawthorne Trail: Supplemental & Supporting Info for Hydrograph Generation

Post Dev POD 2A #4 - Bypass 12/4/2024

st Dev POD 2A #4 - Bypass	281080	S.F.	6.45	Ac
Land Use	Area, Ac.	"CN"	Wtd'd "CN"	
Roadways + C&G (not Sidewalks)	0.00	98	0.00	
Roofs	0.48	98	7.22	
Driveways	0.05	98	0.77	
Sidewalks	0.00	98	0.00	
Openspace- B Soils	0.00	61	0.00	
Openspace- C Soils	1.50	74	17.15	
Openspace- D Soils	2.81	80	34.89	
Woods/Wetlands-B Soils	0.00	55	0.00	
Woods/Wetlands-C Soils	0.04	70	0.40	
Woods/Wetlands-D Soils	0.87	77	10.40	
Lands Taken Up by BMP	0.00	98	0.00	
Open Water (Exist'g or Proposed Ponds)	0.70	98	10.65	
Total (Check):	6.45	Composite "CN"	81.5	
	Percent Impervious		19%	
Tc (Kirpich):	Length	Elev Delta	Tc=	
Tc, min.= 60*.000132*L^.77/S^.385	1032	29	6.11	Minutes
Percent Impervious	_	19.0%		

Hawthorne Trail: Supplemental & Supporting Info for Hydrograph Generation

<u>Post Dev POD 2B #1 - Bypass</u> <u>Roman Cook</u> <u>12/4/2024</u>

st Dev POD 2B #1 - Bypass	3030	S.F.	0.07	Ac
Land Use	Area, Ac.	"CN"	Wtd'd "CN"	
Roadways + C&G (not Sidewalks)	0.01	98	17.14	
Roofs	0.00	98	0.00	
Driveways	0.00	98	0.00	
Sidewalks	0.00	98	3.69	
Openspace- B Soils	0.00	39	0.00	
Openspace- C Soils	0.06	74	58.86	
Openspace- D Soils	0.00	80	0.00	
Woods/Wetlands-B Soils	0.00	30	0.00	
Woods/Wetlands-C Soils	0.00	70	0.00	
Woods/Wetlands-D Soils	0.00	77	0.00	
Lands Taken Up by BMP	0.00	98	0.00	
Open Water (Exist'g or Proposed Ponds)	0.00	98	0.00	
Total (Check):	0.07	Composite "CN"	79.7	
	Percent Impervious		21%	
Tc (Kirpich):	Length	Elev Delta	Tc=	
Tc, min.= 60*.000132*L^.77/S^.385	143	11	0.90	Minutes
Percent Impervious		21.3%		

Percent Impervious

Post Dev - POD 2B #2 (SCM #4)

Dev - POD 2B #2 (SCM #4)	224311	S.F.	5.15	Ac
Land Use	Area, Ac.	"CN"	Wtd'd "CN"	
Roadways + C&G (not Sidewalks)	0.84	98	15.99	
Roofs	0.98	98	18.65	
Driveways/Parking	0.24	98	4.57	
Sidewalks	0.14	98	2.66	
Openspace- A Soils	0.00	39	0.00	
Openspace- B Soils	0.62	61	7.34	
Openspace- C Soils	2.02	74	29.03	
Openspace- D Soils	0.05	80	0.78	
Woods-A Soils	0.00	30	0.00	
Woods-B Soils	0.00	55	0.00	
Woods-C Soils	0.02	70	0.27	
Woods-D Soils	0.00	77	0.00	
Lands Taken Up by BMP	0.15	98	2.85	
Open Water (Exist'g or Proposed Ponds)	0.00	98	0.00	
Total (Check):	5.06	Composite "CN"	82	
	Percent Impervious		45.6%	
Tc (Kirpich):	Length	Elev Delta	Tc=	
Tc. min.= 60*.000132*I ^.77/\$^.385	710	19	4.67	Minu

11/19/2024

Roman Cook

Table 1: Piedmont and Mountain SA/DA	Table	(Adapted from	Driscoll.	1986)
--------------------------------------	-------	---------------	-----------	-------

Percent		P	ermanent Pool	Average Depth	(ft)	
Impervious Cover	3.0	4.0	5.0	6.0	7.0	≥8.0
10%	0.51	0.43	0.37	0.30	0.27	0.25
20%	0.84	0.69	0.61	0.51	0.44	0.40
30%	1.17	0.94	0.84	0.72	0.61	0.56
40%	1.51	1.24	1.09	0.91	0.78	0.71
50%	1.79	1.51	1.31	1.13	0.95	0.87
60%	2.09	1.77	1.49	1.31	1.12	1.03
70%	2.51	2.09	1.80	1.56	1.34	1.17
80%	2.92	2.41	2.07	1.82	1.62	1.40
90%	3.25	2.64	2.31	2.04	1.84	1.59
100%	3.55	2.79	2.52	2.34	2.04	1.75

4279 sf 2387 cf

12515 cf

		3	4	
	40%	1.51	1.24	
se 5 min. minimum	50%	1.79	1.51	
	46.4% (interpolation)	1.69	1.41	1.55 SA/D

Permanent Pool Surface Area (no forebay):

Forebay Volume (Total): Permanent Pool Volume (Total):

Forebay Size (Volume):

		Pond Design Depth, ft.:	3.50			
SCM #1 Design Elements:	SA/DA Factor:		1.55	From NCDEQ	SA/DA Char	D Avg, ft
Davg = VPP-Vshelf /A shelf bottom	Min.SCM Surface Area:		3477	S.F.		4.94
		VPP, c.f.	Perimeter, ft.	Vshelf, c.f.	Abottom, S.f.	3.50
Treatment Volume Requirement		12,515	537	2,661.00	1,995	
	(From HydraFlow Attachment)			Design Pond	d Depth, ft.=	3.50
Rv=0.05009*(%Impervious)						
Total Runoff for 1" Event= S in A	DA to SCM:	5.149	Ac.			
Treatment "S" in Cu. Ft. =	Composite % Impervious (Above) =	46%				
Treatment Volume to Be Stored:	Rv=0.05+.009*(%Impervious)		inch/inch			
Treatment Volume Provided, Cu.	Total Runoff for 1" Event= S in Ac-Ft:	0.20	S=1"*Rv*Drainag	e Area/12		
	Treatment "S" in Cu. Ft. =	8612.08				
	Treatment Volume to Be Stored:	8612	Cu. FT			
	Volume Achieved at Elev.	358.61	Orifice Dia	1.50	Inch Drawdo	own Pipe
	Drawdown Pipe Elev.	357.5	Elev Diff, H., ft.	1.11		

Hawthorne Trail: Supplemental & Supporting Info for Hydrograph Generation

Post Dev POD 2B #3 - Bypass Roman Cook 11/19/2024

st Dev POD 2B #3 - Bypass	276576	S.F.	6.35	Ac
Land Use	Area, Ac.	"CN"	Wtd'd "CN"	
Roadways + C&G (not Sidewalks)	0.00	98	0.00	
Roofs	0.18	98	2.76	
Driveways	0.02	98	0.36	
Sidewalks (+Pump Station)	0.00	98	0.00	
Openspace- A Soils	0.00	39	0.00	
Openspace- C Soils	3.76	74	43.88	
Openspace- D Soils	1.77	80	22.28	
Woods/Wetlands-A Soils	0.00	30	0.00	
Woods/Wetlands-C Soils	0.27	70	3.00	
Woods/Wetlands-D Soils	0.34	77	4.15	
Lands Taken Up by BMP	0.00	98	0.00	
Open Water (Exist'g or Proposed Ponds)	0.00	98	0.00	
Total (Check):	6.35	Composite "CN"	76.42	
	Percent Impervious		3%	
Tc (Kirpich):	Length	Elev Delta	Tc=	
Tc, min.= 60*.000132*L^.77/S^.385	931	15	6.99	Minutes
Percent Impervious		3%		

Post Dev - POD 2B #4 (SCM #5)

Roman Cook

11/19/2024

Post	Dev - POD 2B #4 (SCM #5)	303275	6.96 Ac			
	Land Use	Area, Ac.	"CN"	Wtd'd "CN"		
	Roadways + C&G (not Sidewalks)	0.96	98	13.51		1
	Roofs	1.71	98	24.07		
	Driveways/Parking	0.90	98	12.67		
	Sidewalks	0.26	98	3.66		1
	Openspace- A Soils	0.00 39 0.60 61		0.00		1
	Openspace- B Soils			5.26		1
	Openspace- C Soils	2.24 74		23.81		1
	Openspace- D Soils	0.01	80	0.11		1
	Woods-A Soils	0.00	30	0.00		1
	Woods-B Soils	0.05	55	0.39		
	Woods-C Soils	0.00	70	0.00		
	Woods-D Soils	0.00	77	0.00		
	Lands Taken Up by BMP	0.23	98	3.24		
	Open Water (Exist'g or Proposed Ponds)	0.00	98	0.00		1
	Total (Check):	6.96	Composite "CN"	87		
		Percent Impervious		58.3%		
	Tc (Kirpich):	Length	Elev Delta	Tc=		1
	Tc, min.= 60*.000132*L^.77/S^.385	1195	25	7.66	Minutes	
	Percent Impervious		58.3%			
		Pond Design Depth, ft.:	3.50	(4.5' w/ 0.5'	Sediment St	orage
CM #1 Design Elements:	SA/DA Factor:		1.87	From NCDEQ	SA/DA Char	D A
Davg = VPP-Vshelf / A shelf bottom	Min.SCM Surface Area:		5671	S.F.		4.0
		VPP, c.f.	Perimeter, ft.	Vshelf, c.f.	Abottom, S.f.	3.
reatment Volume Requirement		19,680	537	3,760.00	3,945	
	(From HydraFlow Attachment)			Design Pond	Depth, ft.=	3.
v=0.05009*(%Impervious)				_		
otal Runoff for 1" Event= S in A	DA to SCM:	6.962	Ac.			
reatment "S" in Cu. Ft. =	Composite % Impervious (Above) =	58%				
reatment Volume to Be Stored:	,	0.57	inch/inch			
	Total Runoff for 1" Event= S in Ac-Ft:	0.33	S=1"*Rv*Drainag	e Area/12		
•	Treatment "S" in Cu. Ft. =	14527.67				
	Treatment Volume to Be Stored:		Cu. FT			
	Volume Achieved at Elev.	348.92	Orifice Dia	2.00	Inch Drawd	own F
	Drawdown Pipe Elev.	347.5	Elev Diff, H., ft.	1.42		· ·····

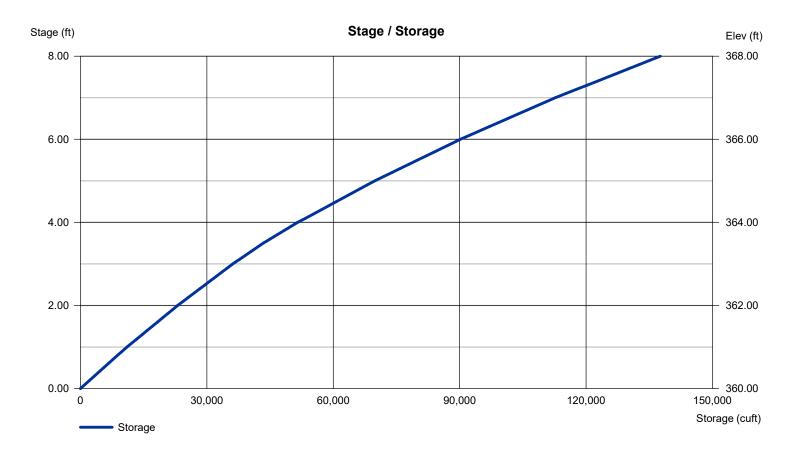
Table 1: Piedmont and Mountain SA/DA Table (Adapted from Driscoll, 1986)

Percent	Permanent Pool Average Depth (ft)								
Impervious Cover	3.0	4.0	5.0	6.0	7.0	≥8.0			
10%	0.51	0.43	0.37	0.30	0.27	0.25			
20%	0.84	0.69	0.61	0.51	0.44	0.40			
30%	1.17	0.94	0.84	0.72	0.61	0.56			
40%	1.51	1.24	1.09	0.91	0.78	0.71			
50%	1.79	1.51	1.31	1.13	0.95	0.87			
60%	2.09	1.77	1.49	1.31	1.12	1.03			
70%	2.51	2.09	1.80	1.56	1.34	1.17			
80%	2.92	2.41	2.07	1.82	1.62	1.40			
90%	3.25	2.64	2.31	2.04	1.84	1.59			
100%	3.55	2.79	2.52	2.34	2.04	1.75			

	3	4	
50%	1.79	1.51	
60%	2.09	1.77	
57.7% (interpolation)	2.02	1.71	1.87 SA/DA

Permanent Pool Surface Area (no forebay):	5760	sf
Forebay Volume (Total):	3881	cf
Permanent Pool Volume (Total):	19680	cf
Forebay Size (Volume):	20	%

Pond No. 1 - SCM #1


Pond Data

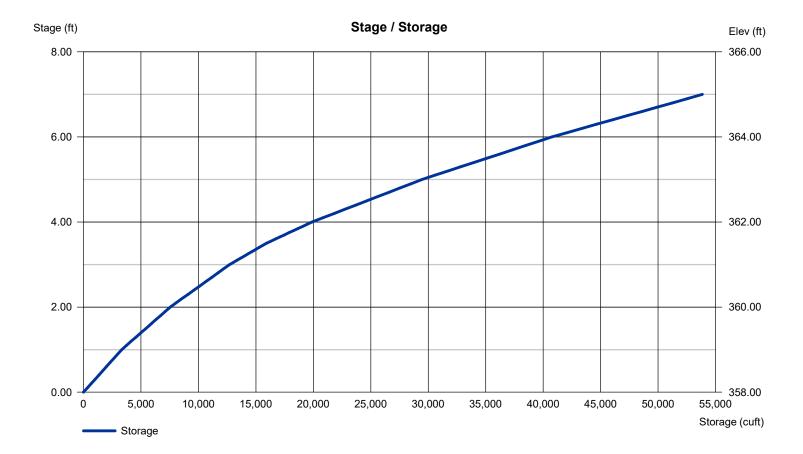
Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 360.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	360.00	10,525	0	0
1.00	361.00	11,518	11,017	11,017
2.00	362.00	12,558	12,033	23,050
3.00	363.00	13,653	13,100	36,150
3.50	363.50	15,404	7,259	43,409
4.00	364.00	17,281	8,166	51,575
5.00	365.00	19,287	18,273	69,848
6.00	366.00	21,423	20,344	90,192
7.00	367.00	23,693	22,546	112,738
8.00	368.00	26,063	24,866	137,604

Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] = 24.00 2.00 6.00 0.00 = 14.00 24.00 0.00 0.00 Rise (in) Crest Len (ft) 24.00 = 24.00 2.00 0.00 = 366.25 366.75 0.00 0.00 Span (in) Crest El. (ft) No. Barrels = 1 1 3 0 Weir Coeff. = 3.333.33 3.33 3.33 Invert El. (ft) = 360.00363.50 365.75 0.00 Weir Type = 1 Rect Length (ft) = 50.00 0.50 0.50 0.00 Multi-Stage = Yes No No No Slope (%) = 1.500.50 0.50 n/a N-Value = .013 .013 .013 n/a = 0.600.60 0.60 0.60 = 0.000 (by Wet area) Orifice Coeff. Exfil.(in/hr) Multi-Stage = n/aYes Yes No TW Elev. (ft) = 0.00

Pond No. 2 - SCM #2


Pond Data

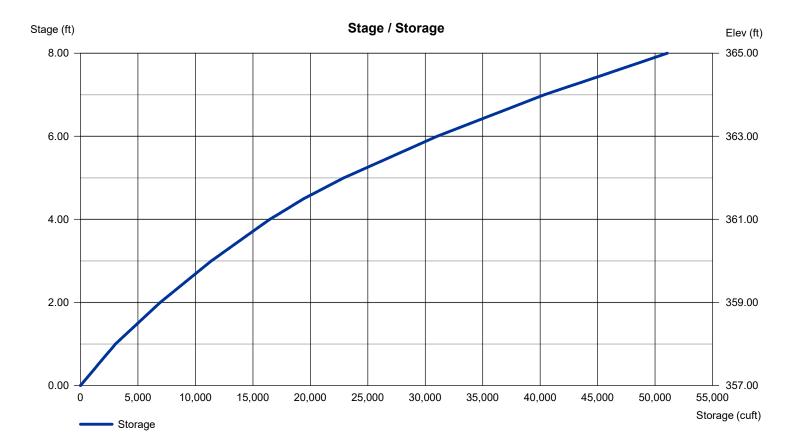
Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 358.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	358.00	2,888	0	0
1.00	359.00	3,772	3,320	3,320
2.00	360.00	4,695	4,225	7,545
3.00	361.00	5,655	5,167	12,712
3.50	361.50	7,163	3,197	15,908
4.00	362.00	8,755	3,972	19,881
5.00	363.00	10,430	9,579	29,460
6.00	364.00	12,189	11,297	40,757
7.00	365.00	14,033	13,099	53,856

Culvert / Orifice Structures Weir Structures [A] [A] [B] [B] [C] [PrfRsr] [C] [D] 1.00 0.00 0.00 Rise (in) = 18.006.00 0.00 = 14.0012.00 Crest Len (ft) Span (in) = 18.001.00 12.00 0.00 Crest El. (ft) = 363.25 363.75 0.00 0.00 = 1 0 Weir Coeff. = 3.333.33 3.33 3.33 No. Barrels 1 1 Weir Type Invert El. (ft) = 358.00361.50 362.75 0.00 = 1 Rect = 72.00 0.50 0.50 0.00 Multi-Stage = Yes No No No Length (ft) = 1.00 0.50 0.50 Slope (%) n/a = .013 N-Value .013 .013 n/a Orifice Coeff. = 0.600.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Wet area) = n/a = 0.00 Multi-Stage Yes Yes No TW Elev. (ft)

Pond No. 3 - SCM #3


Pond Data

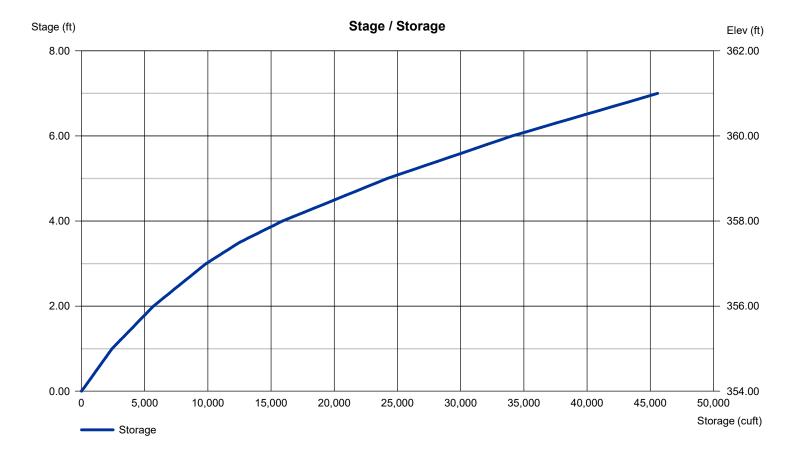
Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 357.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	357.00	2,465	0	0
1.00	358.00	3,606	3,036	3,036
2.00	359.00	4,169	3,888	6,923
3.00	360.00	4,767	4,468	11,391
4.00	361.00	5,401	5,084	16,475
4.50	361.50	6,424	2,956	19,431
5.00	362.00	7,528	3,488	22,919
6.00	363.00	8,717	8,123	31,042
7.00	364.00	9,993	9,355	40,397
8.00	365.00	11,354	10,674	51,070

Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] = 24.00 1.50 6.00 0.00 = 22.00 24.00 0.00 0.00 Rise (in) Crest Len (ft) 42.00 = 24.00 1.50 = 363.25 363.90 0.00 0.00 Span (in) 0.00 Crest El. (ft) 3 No. Barrels = 1 1 0 Weir Coeff. = 3.333.33 3.33 3.33 Invert El. (ft) = 358.00361.50 362.75 0.00 Weir Type = 1 Rect Length (ft) = 55.00 0.00 0.50 0.00 Multi-Stage = Yes No No No Slope (%) = 1.400.00 0.50 n/a N-Value = .013 .013 .013 n/a = 0.600.60 0.60 = 0.000 (by Wet area) Orifice Coeff. 0.60 Exfil.(in/hr) Multi-Stage = n/aYes Yes No TW Elev. (ft) = 0.00

Pond No. 5 - SCM #4


Pond Data

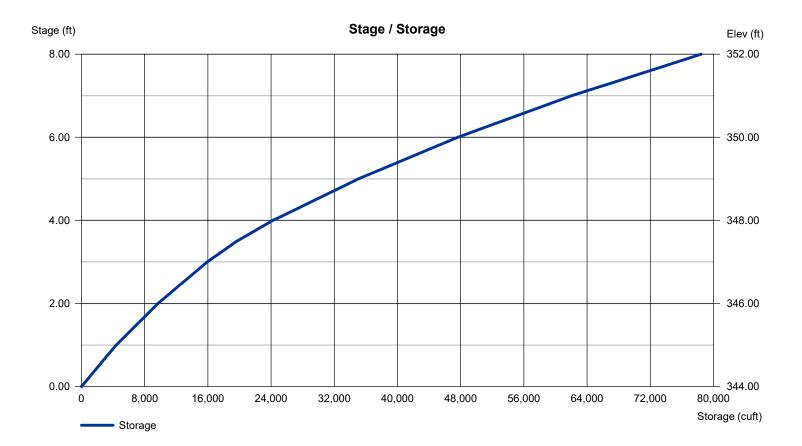
Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 354.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	354.00	1,995	0	0
1.00	355.00	2,838	2,417	2,417
2.00	356.00	3,711	3,275	5,691
3.00	357.00	4,615	4,163	9,854
3.50	357.50	6,029	2,661	12,515
4.00	358.00	7,511	3,385	15,900
5.00	359.00	9,061	8,286	24,186
6.00	360.00	10,681	9,871	34,057
7.00	361.00	12,369	11,525	45,582

Culvert / Orifice Structures Weir Structures [A] [A] [B] [B] [C] [PrfRsr] [C] [D] 1.50 0.00 Rise (in) = 24.006.00 0.00 = 22.00 24.00 0.00 Crest Len (ft) Span (in) = 24.001.50 30.00 0.00 Crest El. (ft) = 359.25 360.00 0.00 0.00 = 1 3 0 Weir Coeff. = 3.333.33 3.33 3.33 No. Barrels 1 Weir Type Invert El. (ft) = 354.00357.50 358.75 0.00 = 1 Rect = 72.500.00 0.50 0.00 Multi-Stage = Yes No No No Length (ft) = 0.500.00 0.50 Slope (%) n/a N-Value = .013 .013 .013 n/a Orifice Coeff. = 0.600.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Wet area) = 0.00 Multi-Stage = n/aYes Yes No TW Elev. (ft)

Pond No. 4 - SCM #5


Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 344.00 ft

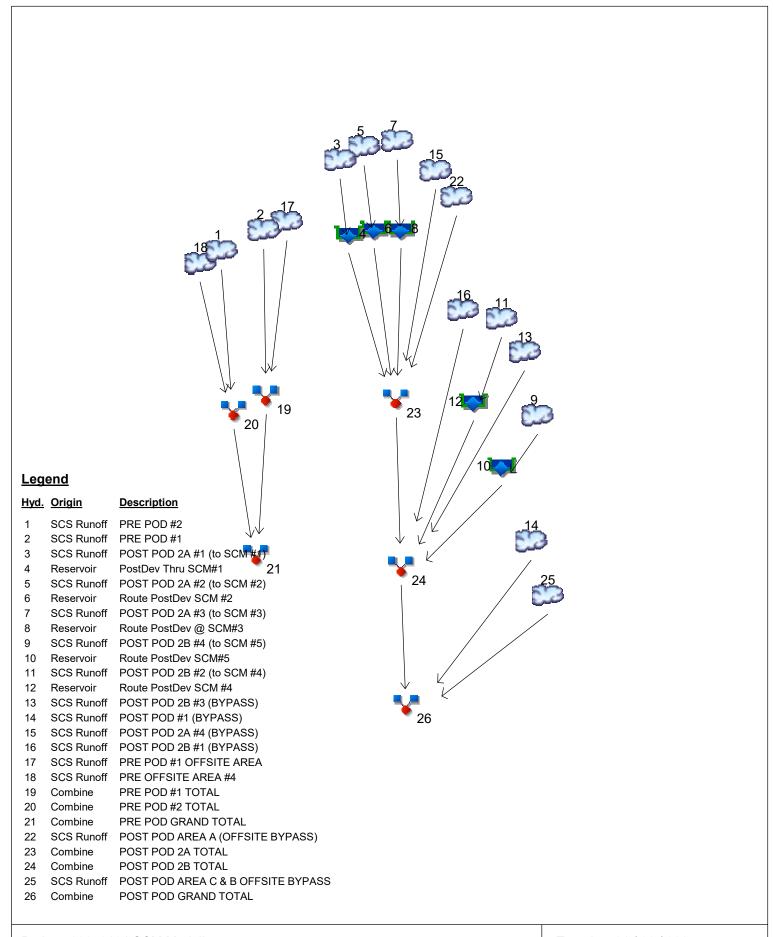
Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	344.00	3,945	0	0
1.00	345.00	4,823	4,384	4,384
2.00	346.00	5,755	5,289	9,673
3.00	347.00	6,738	6,247	15,920
3.50	347.50	8,303	3,760	19,680
4.00	348.00	9,952	4,564	24,244
5.00	349.00	11,681	10,817	35,060
6.00	350.00	13,490	12,586	47,646
7.00	351.00	15,379	14,435	62,080
8.00	352.00	17,348	16,364	78,444

Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] = 24.00 2.00 6.00 0.00 = 14.00 24.00 0.00 0.00 Rise (in) Crest Len (ft) = 24.00 2.00 24.00 = 350.50 351.00 0.00 0.00 Span (in) 0.00 Crest El. (ft) No. Barrels = 1 1 3 0 Weir Coeff. = 3.333.33 3.33 3.33 Invert El. (ft) = 344.00347.50 350.00 0.00 Weir Type = 1 Rect Length (ft) = 72.50 0.50 0.50 0.00 Multi-Stage = Yes No No No Slope (%) = 1.000.50 0.50 n/a N-Value = .013 .013 .013 n/a = 0.600.60 0.60 = 0.000 (by Wet area) Orifice Coeff. 0.60 Exfil.(in/hr) Multi-Stage = n/aYes Yes No TW Elev. (ft) = 0.00

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Tuesday, 01 / 28 / 2025

watersned Model Schematic	1
Hydrograph Return Period Recap	2
1 - Year	
Summary Report	3
Hydrograph Reports	4
Hydrograph No. 1, SCS Runoff, PRE POD #2	4
Hydrograph No. 2, SCS Runoff, PRE POD #1	5
Hydrograph No. 3, SCS Runoff, POST POD 2A #1 (to SCM #1)	6
Hydrograph No. 4, Reservoir, PostDev Thru SCM#1	7
Pond Report - SCM #1	
Hydrograph No. 5, SCS Runoff, POST POD 2A #2 (to SCM #2)	9
Hydrograph No. 6, Reservoir, Route PostDev SCM #2	10
Pond Report - SCM #2	
Hydrograph No. 7, SCS Runoff, POST POD 2A #3 (to SCM #3)	
Hydrograph No. 8, Reservoir, Route PostDev @ SCM#3	13
Pond Report - SCM #3	
Hydrograph No. 9, SCS Runoff, POST POD 2B #4 (to SCM #5)	15
Hydrograph No. 10, Reservoir, Route PostDev SCM#5	16
Pond Report - SCM #5	17
Hydrograph No. 11, SCS Runoff, POST POD 2B #2 (to SCM #4)	
Hydrograph No. 12, Reservoir, Route PostDev SCM #4	
Pond Report - SCM #4	
Hydrograph No. 13, SCS Runoff, POST POD 2B #3 (BYPASS)	
Hydrograph No. 14, SCS Runoff, POST POD #1 (BYPASS)	
Hydrograph No. 15, SCS Runoff, POST POD 2A #4 (BYPASS)	
Hydrograph No. 16, SCS Runoff, POST POD 2B #1 (BYPASS)	
Hydrograph No. 17, SCS Runoff, PRE POD #1 OFFSITE AREA	
Hydrograph No. 18, SCS Runoff, PRE OFFSITE AREA #4	
Hydrograph No. 19, Combine, PRE POD #1 TOTAL	27
Hydrograph No. 20, Combine, PRE POD #2 TOTAL	28
Hydrograph No. 21, Combine, PRE POD GRAND TOTAL	
Hydrograph No. 22, SCS Runoff, POST POD AREA A (OFFSITE BYPASS)	
Hydrograph No. 23, Combine, POST POD 2A TOTAL	
Hydrograph No. 24, Combine, POST POD 2B TOTAL	
Hydrograph No. 25, SCS Runoff, POST POD AREA C & B OFFSITE BYPASS	
Hydrograph No. 26, Combine, POST POD GRAND TOTAL	34
10 - Year	
Summary Report	35
Hydrograph Reports	36
Hydrograph No. 1, SCS Runoff, PRE POD #2	
Hydrograph No. 2, SCS Runoff, PRE POD #1	
Hydrograph No. 3, SCS Runoff, POST POD 2A #1 (to SCM #1)	
Hydrograph No. 4, Reservoir, PostDev Thru SCM#1	
Hydrograph No. 5, SCS Runoff, POST POD 2A #2 (to SCM #2)	
Hydrograph No. 6, Reservoir, Route PostDev SCM #2	41

	Hydrograph No. 7, SCS Runoff, POST POD 2A #3 (to SCM #3)	42
	Hydrograph No. 8, Reservoir, Route PostDev @ SCM#3	
	Hydrograph No. 9, SCS Runoff, POST POD 2B #4 (to SCM #5)	
	Hydrograph No. 10, Reservoir, Route PostDev SCM#5	
	Hydrograph No. 11, SCS Runoff, POST POD 2B #2 (to SCM #4)	
	Hydrograph No. 12, Reservoir, Route PostDev SCM #4	
	Hydrograph No. 13, SCS Runoff, POST POD 2B #3 (BYPASS)	
	Hydrograph No. 14, SCS Runoff, POST POD #1 (BYPASS)	
	Hydrograph No. 15, SCS Runoff, POST POD 2A #4 (BYPASS)	
	Hydrograph No. 16, SCS Runoff, POST POD 2B #1 (BYPASS)	
	Hydrograph No. 17, SCS Runoff, PRE POD #1 OFFSITE AREA	
	Hydrograph No. 18, SCS Runoff, PRE OFFSITE AREA #4	
	Hydrograph No. 19, Combine, PRE POD #1 TOTAL	
	Hydrograph No. 20, Combine, PRE POD #2 TOTAL	
	Hydrograph No. 21, Combine, PRE POD GRAND TOTAL	50
	Hydrograph No. 22, SCS Runoff, POST POD AREA A (OFFSITE BYPASS)	5/
	Hydrograph No. 23, Combine, POST POD 2A TOTAL	
	Hydrograph No. 24, Combine, POST POD 2B TOTAL	
	Hydrograph No. 26, Combine, POST POD GRAND TOTAL	ОΙ
400	Year	
		60
5	ummary Report	62
п	ydrograph Reports	
	Hydrograph No. 2, SCS Runoff, PRE POD #2	
	Hydrograph No. 3, SCS Runoff, POST POD 2A #1 (to SCM #1)	
	Hydrograph No. 4, Reservoir, PostDev Thru SCM#1	
	Hydrograph No. 5, SCS Runoff, POST POD 2A #2 (to SCM #2)	
	Hydrograph No. 6, Reservoir, Route PostDev SCM #2	
	Hydrograph No. 7, SCS Runoff, POST POD 2A #3 (to SCM #3)	
	Hydrograph No. 8, Reservoir, Route PostDev @ SCM#3	
	Hydrograph No. 9, SCS Runoff, POST POD 2B #4 (to SCM #5)	
	Hydrograph No. 10, Reservoir, Route PostDev SCM#5	
	Hydrograph No. 11, SCS Runoff, POST POD 2B #2 (to SCM #4)	
	Hydrograph No. 12, Reservoir, Route PostDev SCM #4	
	Hydrograph No. 13, SCS Runoff, POST POD 2B #3 (BYPASS)	
	Hydrograph No. 14, SCS Runoff, POST POD #1 (BYPASS)	
	Hydrograph No. 15, SCS Runoff, POST POD 2A #4 (BYPASS)	
	Hydrograph No. 16, SCS Runoff, POST POD 2B #1 (BYPASS)	78
	Hydrograph No. 17, SCS Runoff, PRE POD #1 OFFSITE AREA	
	Hydrograph No. 18, SCS Runoff, PRE OFFSITE AREA #4	
	Hydrograph No. 19, Combine, PRE POD #1 TOTAL	
	Hydrograph No. 20, Combine, PRE POD #2 TOTAL	82
	Hydrograph No. 21, Combine, PRE POD GRAND TOTAL	83
	Hydrograph No. 22, SCS Runoff, POST POD AREA A (OFFSITE BYPASS)	84
	Hydrograph No. 23, Combine, POST POD 2A TOTAL	85
	Hydrograph No. 24, Combine, POST POD 2B TOTAL	86
	Hydrograph No. 25, SCS Runoff, POST POD AREA C & B OFFSITE BYPASS	87
	Hydrograph No. 26, Combine, POST POD GRAND TOTAL	

IDF Report...... 89

Watershed Model Schematic

Hydrograph Return Period Recap

No.	Hydrograph	` '						Hydrograph			
	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		42.90	58.70		92.74	121.51	162.39		230.07	PRE POD #2
2	SCS Runoff		7.331	10.25		16.51	21.78	29.34		42.19	PRE POD #1
3	SCS Runoff		20.47	25.99		37.34	46.46	59.05		79.27	POST POD 2A #1 (to SCM #1)
4	Reservoir	3	0.152	0.644		3.166	8.862	26.27		62.03	PostDev Thru SCM#1
5	SCS Runoff		3.826	4.883		7.093	8.879	11.35		15.34	POST POD 2A #2 (to SCM #2)
6	Reservoir	5	0.024	0.027		0.149	0.351	0.843		4.791	Route PostDev SCM #2
7	SCS Runoff		18.11	23.06		33.32	41.60	53.04		71.45	POST POD 2A #3 (to SCM #3)
8	Reservoir	7	8.500	16.37		29.68	32.74	45.49		66.10	Route PostDev @ SCM#3
9	SCS Runoff		20.25	24.72		33.54	40.48	49.91		64.88	POST POD 2B #4 (to SCM #5)
10	Reservoir	9	0.518	1.442		8.062	20.07	36.07		53.87	Route PostDev SCM#5
11	SCS Runoff		12.00	15.11		21.45	26.51	33.48		44.64	POST POD 2B #2 (to SCM #4)
12	Reservoir	11	1.855	5.728		15.41	22.73	29.17		32.45	Route PostDev SCM #4
13	SCS Runoff		10.38	13.63		20.39	26.07	34.02		46.98	POST POD 2B #3 (BYPASS)
14	SCS Runoff		6.180	7.862		11.38	14.23	18.18		24.53	POST POD #1 (BYPASS)
15	SCS Runoff		12.46	15.86		22.75	28.30	35.94		48.23	POST POD 2A #4 (BYPASS)
16	SCS Runoff		0.146	0.186		0.270	0.338	0.432		0.583	POST POD 2B #1 (BYPASS)
17	SCS Runoff		4.826	6.440		9.816	12.60	16.65		23.29	PRE POD #1 OFFSITE AREA
18	SCS Runoff		9.181	12.61		19.89	25.99	34.66		49.11	PRE OFFSITE AREA #4
19	Combine	2, 17,	11.80	16.35		26.08	34.24	45.84		65.08	PRE POD #1 TOTAL
20	Combine	1, 18,	48.86	67.23		106.30	138.98	185.37		263.30	PRE POD #2 TOTAL
21	Combine	19, 20	56.68	78.45		124.89	163.83	219.21		310.97	PRE POD GRAND TOTAL
22	SCS Runoff		9.181	12.61		19.89	25.99	34.66		49.11	POST POD AREA A (OFFSITE BYP
23	Combine	4, 6, 8,	25.06	39.39		64.75	81.61	124.16		209.01	POST POD 2A TOTAL
24	Combine	15, 22 10, 12, 13,	33.77	55.98		104.31	141.81	210.54		330.13	POST POD 2B TOTAL
25	SCS Runoff	16, 23 	4.872	6.501		9.909	12.72	16.80		23.52	POST POD AREA C & B OFFSITE B
26	Combine	14, 24, 25	38.14	63.50		120.18	163.19	234.37		367.29	POST POD GRAND TOTAL

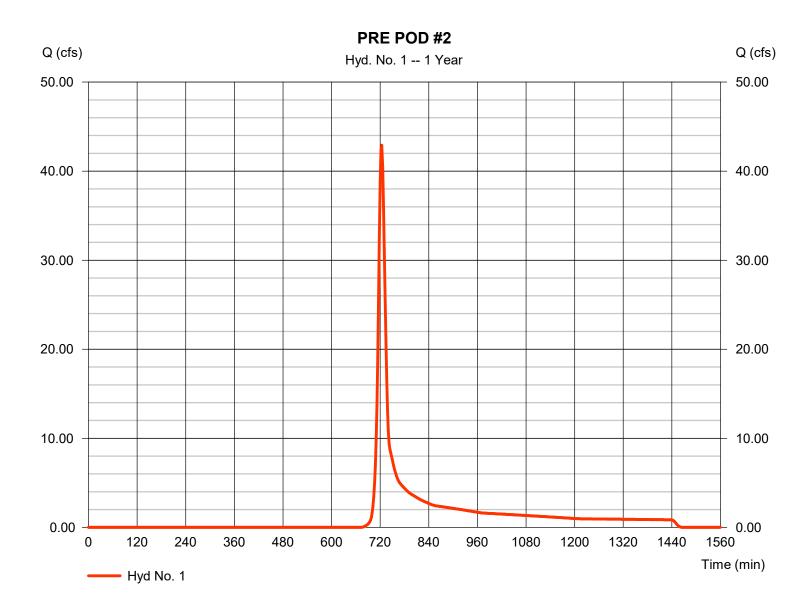
Proj. file: 20250124 SCM Modeling.gpw

Tuesday, 01 / 28 / 2025

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	42.90	2	724	128,128				PRE POD #2
2	SCS Runoff	7.331	2	720	17,610				PRE POD #1
3	SCS Runoff	20.47	2	720	46,860				POST POD 2A #1 (to SCM #1)
4	Reservoir	0.152	2	1446	36,358	3	365.69	83,906	PostDev Thru SCM#1
5	SCS Runoff	3.826	2	720	8,757				POST POD 2A #2 (to SCM #2)
6	Reservoir	0.024	2	1446	6,047	5	362.39	23,665	Route PostDev SCM #2
7	SCS Runoff	18.11	2	720	41,448				POST POD 2A #3 (to SCM #3)
8	Reservoir	8.500	2	726	38,063	7	363.13	32,260	Route PostDev @ SCM#3
9	SCS Runoff	20.25	2	716	41,192				POST POD 2B #4 (to SCM #5)
10	Reservoir	0.518	2	894	39,576	9	350.05	48,434	Route PostDev SCM#5
11	SCS Runoff	12.00	2	718	24,168				POST POD 2B #2 (to SCM #4)
12	Reservoir	1.855	2	728	23,766	11	358.92	23,504	Route PostDev SCM #4
13	SCS Runoff	10.38	2	720	23,909				POST POD 2B #3 (BYPASS)
14	SCS Runoff	6.180	2	718	12,382				POST POD #1 (BYPASS)
15	SCS Runoff	12.46	2	720	32,499				POST POD 2A #4 (BYPASS)
16	SCS Runoff	0.146	2	718	293				POST POD 2B #1 (BYPASS)
17	SCS Runoff	4.826	2	718	9,705				PRE POD #1 OFFSITE AREA
18	SCS Runoff	9.181	2	736	45,436				PRE OFFSITE AREA #4
19	Combine	11.80	2	718	27,315	2, 17,			PRE POD #1 TOTAL
20	Combine	48.86	2	724	173,564	1, 18,			PRE POD #2 TOTAL
21	Combine	56.68	2	722	200,879	19, 20			PRE POD GRAND TOTAL
22	SCS Runoff	9.181	2	736	45,436				POST POD AREA A (OFFSITE BYP
23	Combine	25.06	2	726	158,403	4, 6, 8,			POST POD 2A TOTAL
24	Combine	33.77	2	724	245,947	15, 22 10, 12, 13,			POST POD 2B TOTAL
25	SCS Runoff	4.872	2	718	9,798	16, 23			POST POD AREA C & B OFFSITE B
26	Combine	38.14	2	722	268,127	14, 24, 25			POST POD GRAND TOTAL
202	250124 SCM	Modeling.	gpw		Return F	Period: 1 Ye	ear	Tuesday, 0	01 / 28 / 2025


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

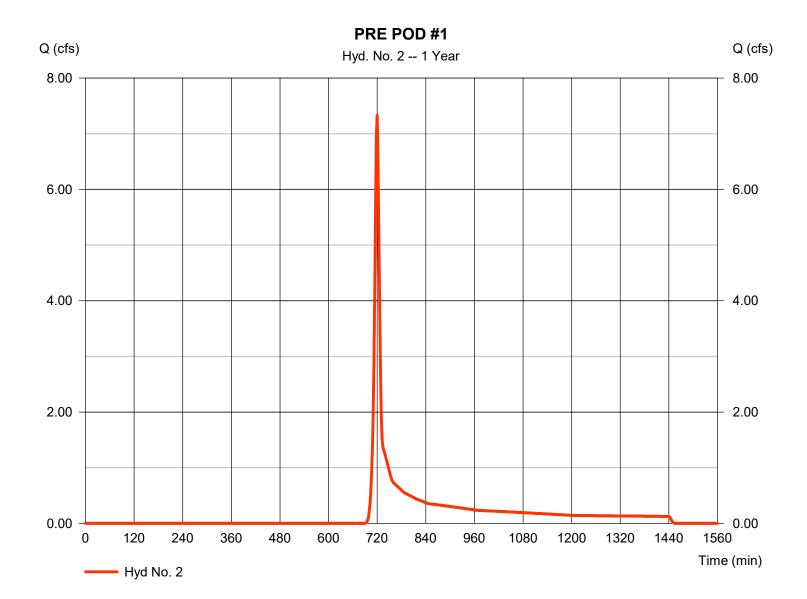
Hyd. No. 1

PRE POD #2

Hydrograph type = SCS Runoff Peak discharge = 42.90 cfsStorm frequency = 1 yrsTime to peak = 724 min Time interval = 2 min Hyd. volume = 128.128 cuft Drainage area = 41.980 acCurve number = 73.1Basin Slope = 1.4 % Hydraulic length $= 4320 \, \text{ft}$ Tc method Time of conc. (Tc) = 14.00 min = User Total precip. = 3.00 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

5

Hydrograph Report

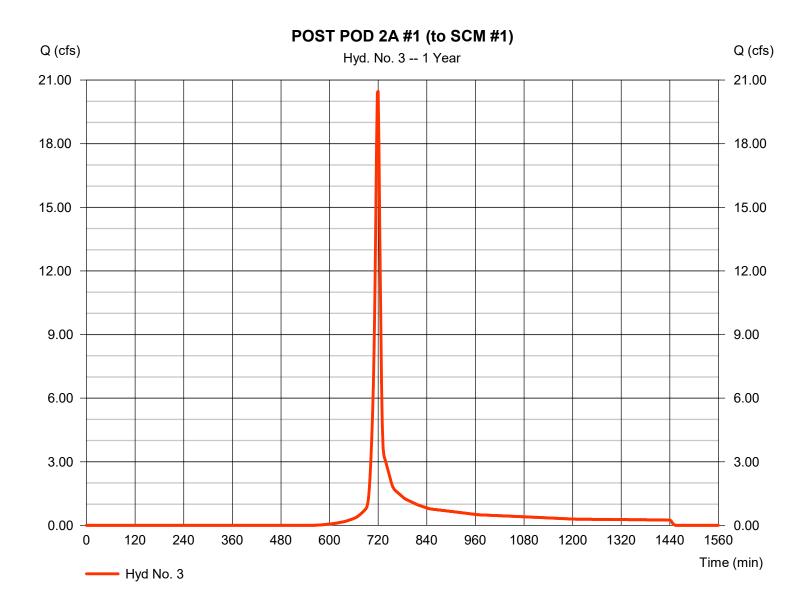

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 2

PRE POD #1

Hydrograph type = SCS Runoff Peak discharge = 7.331 cfsStorm frequency = 1 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 17,610 cuftDrainage area = 6.540 acCurve number = 70.6= 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 6.70 \, \text{min}$ = User Total precip. = 3.00 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

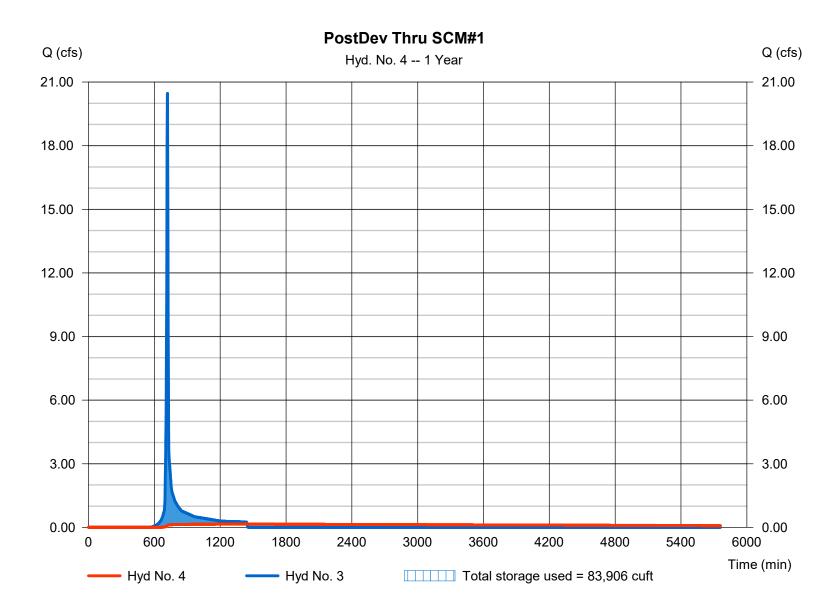
Tuesday, 01 / 28 / 2025

Hyd. No. 3

POST POD 2A #1 (to SCM #1)

Hydrograph type = SCS Runoff Peak discharge = 20.47 cfsStorm frequency = 1 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 46,860 cuftDrainage area = 9.780 acCurve number = 81.1Hydraulic length Basin Slope = 2.4 % = 1000 ftTc method Time of conc. (Tc) = User $= 6.60 \, \text{min}$ Total precip. = 3.00 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Tuesday, 01 / 28 / 2025

Hyd. No. 4

PostDev Thru SCM#1

Hydrograph type Peak discharge = 0.152 cfs= Reservoir Storm frequency Time to peak = 1 yrs= 1446 min Time interval = 2 min Hyd. volume = 36,358 cuft Inflow hyd. No. = 3 - POST POD 2A #1 (to SCMMax). Elevation = 365.69 ftMax. Storage Reservoir name = SCM #1 = 83,906 cuft

Storage Indication method used. Wet pond routing start elevation = 363.50 ft.

Weir Structures

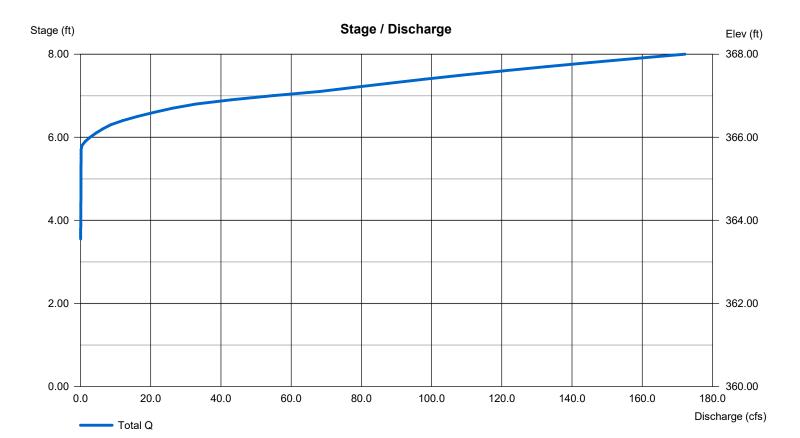
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Pond No. 1 - SCM #1

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 360.00 ft

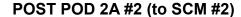

Stage / Storage Table

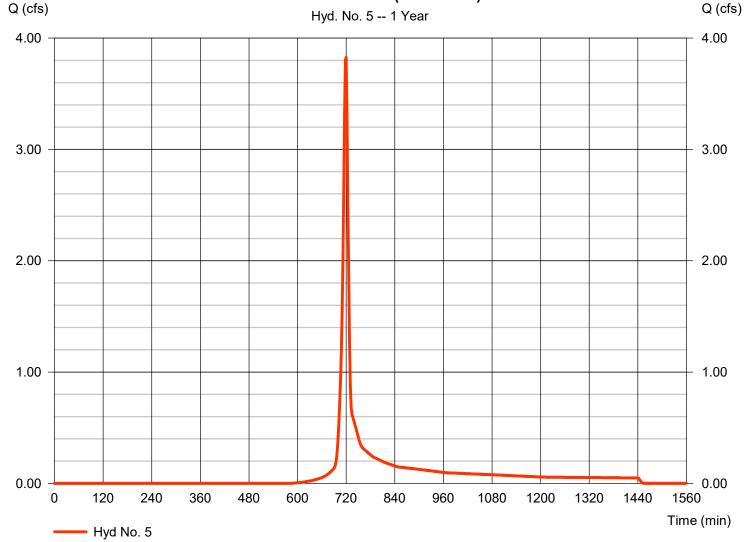
Culvert / Orifice Structures

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	360.00	10,525	0	0
1.00	361.00	11,518	11,017	11,017
2.00	362.00	12,558	12,033	23,050
3.00	363.00	13,653	13,100	36,150
3.50	363.50	15,404	7,259	43,409
4.00	364.00	17,281	8,166	51,575
5.00	365.00	19,287	18,273	69,848
6.00	366.00	21,423	20,344	90,192
7.00	367.00	23,693	22,546	112,738
8.00	368.00	26,063	24,866	137,604

[A] [B] [C] [PrfRsr] [A] [B] [C] [D] = 24.00 2.00 6.00 0.00 = 14.00 24.00 0.00 0.00 Rise (in) Crest Len (ft) = 24.00 2.00 24.00 = 366.25 366.75 0.00 0.00 Span (in) 0.00 Crest El. (ft) No. Barrels = 1 1 3 0 Weir Coeff. = 3.333.33 3.33 3.33 Invert El. (ft) = 360.00363.50 365.75 0.00 Weir Type = 1 Rect No No

Length (ft) = 50.000.50 0.50 0.00 Multi-Stage = Yes No Slope (%) = 0.500.50 0.50 n/a N-Value = .013 .013 .013 n/a = 0.600.60 0.60 = 0.000 (by Wet area) Orifice Coeff. 0.60 Exfil.(in/hr) Multi-Stage = n/aYes Yes No TW Elev. (ft) = 0.00


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

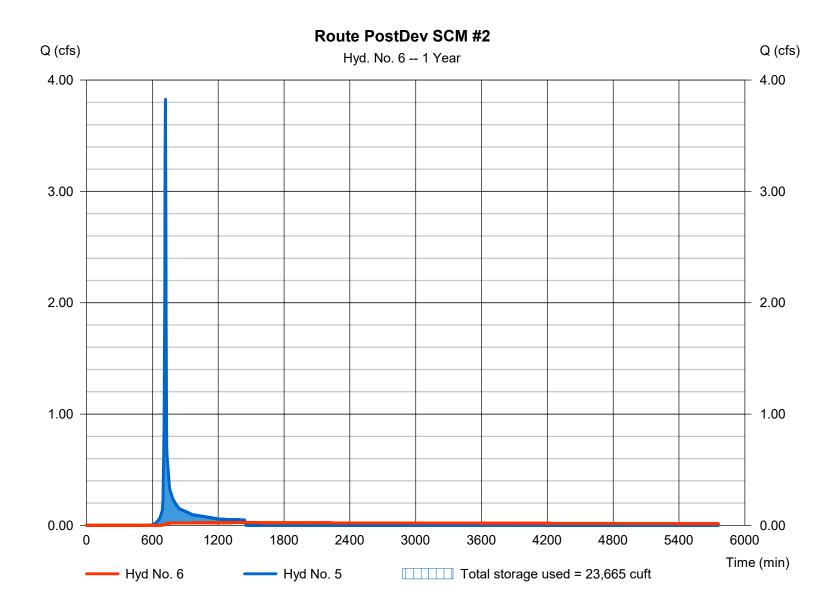

Tuesday, 01 / 28 / 2025

Hyd. No. 5

POST POD 2A #2 (to SCM #2)

Hydrograph type = SCS Runoff Peak discharge = 3.826 cfsStorm frequency = 1 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 8.757 cuft Drainage area = 1.930 acCurve number = 80 Basin Slope = 0.5 %Hydraulic length = 450 ftTc method = KIRPICH Time of conc. (Tc) $= 6.62 \, \text{min}$ Total precip. = 3.00 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Tuesday, 01 / 28 / 2025

Hyd. No. 6

Route PostDev SCM #2

Hydrograph type Peak discharge = 0.024 cfs= Reservoir Storm frequency Time to peak = 1446 min = 1 yrsTime interval = 2 min Hyd. volume = 6,047 cuftInflow hyd. No. = 5 - POST POD 2A #2 (to SCMM/2)x. Elevation = 362.39 ftMax. Storage Reservoir name = SCM #2 = 23,665 cuft

Storage Indication method used. Wet pond routing start elevation = 361.50 ft.

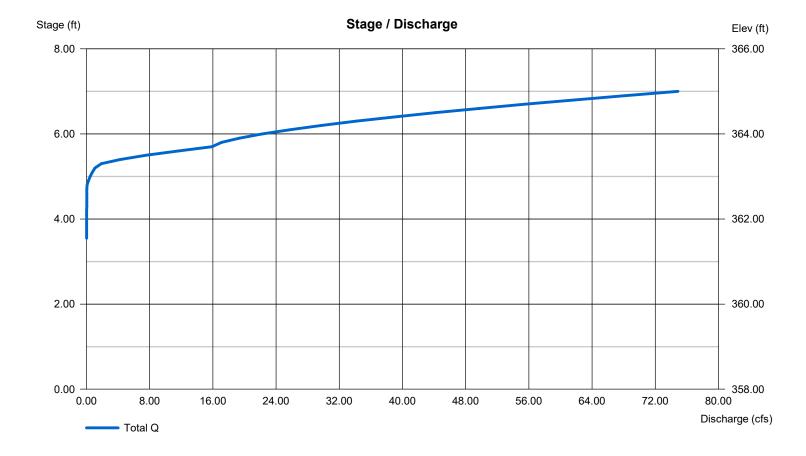
Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Pond No. 2 - SCM #2

Pond Data


Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 358.00 ft

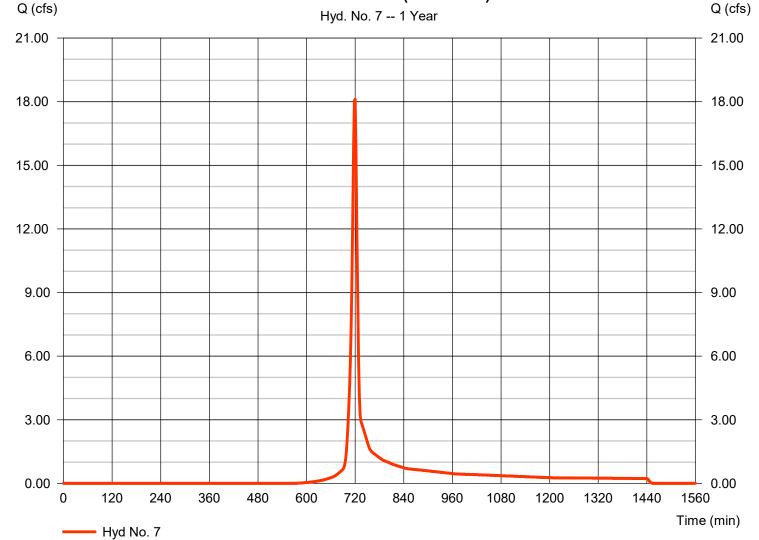
Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	358.00	2,888	0	0
1.00	359.00	3,772	3,320	3,320
2.00	360.00	4,695	4,225	7,545
3.00	361.00	5,655	5,167	12,712
3.50	361.50	7,163	3,197	15,908
4.00	362.00	8,755	3,972	19,881
5.00	363.00	10,430	9,579	29,460
6.00	364.00	12,189	11,297	40,757
7.00	365.00	14,033	13,099	53,856

Culvert / Orifice Structures Weir Structures [A] [A] [B] [B] [C] [PrfRsr] [C] [D] 0.00 Rise (in) = 18.001.00 6.00 0.00 = 14.0012.00 0.00 Crest Len (ft) Span (in) = 18.001.00 12.00 0.00 Crest El. (ft) = 363.25 363.75 0.00 0.00 = 1 0 Weir Coeff. = 3.333.33 3.33 3.33 No. Barrels 1 1 Weir Type Invert El. (ft) = 358.00361.50 362.75 0.00 = 1 Rect = 100.000.50 0.50 0.00 Multi-Stage = Yes No No No Length (ft) = 0.500.50 0.50 Slope (%) n/a N-Value = .013.013 .013 n/a Orifice Coeff. = 0.600.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Wet area) = n/a No = 0.00 Multi-Stage Yes Yes TW Elev. (ft)

1-Year

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

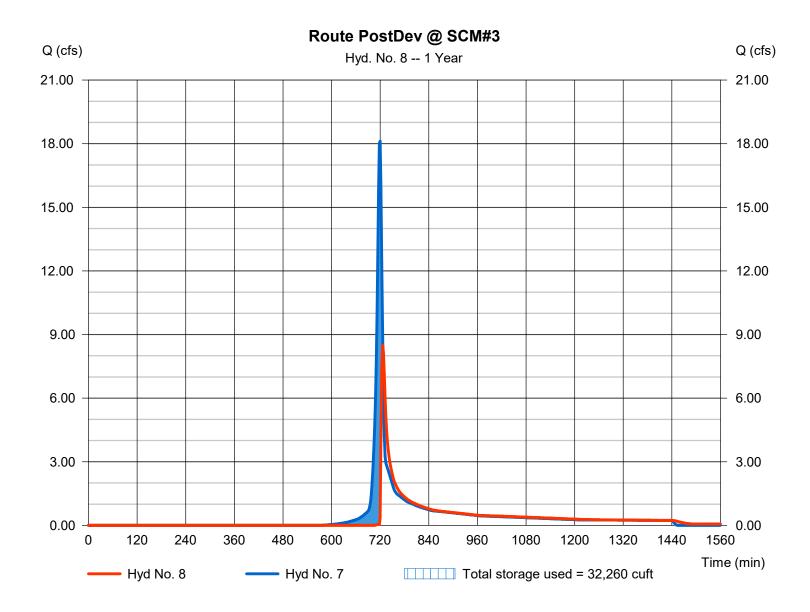

Tuesday, 01 / 28 / 2025

Hyd. No. 7

POST POD 2A #3 (to SCM #3)

Hydrograph type = SCS Runoff Peak discharge = 18.11 cfsStorm frequency Time to peak = 720 min = 1 yrsTime interval = 2 min Hyd. volume = 41,448 cuft Drainage area Curve number = 8.910 ac= 80.5= 1120 ftBasin Slope = 2.6 % Hydraulic length Tc method Time of conc. (Tc) = 7.30 min= User Total precip. = 3.00 inDistribution = Type II Storm duration Shape factor = 24 hrs = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Tuesday, 01 / 28 / 2025

Hyd. No. 8

Route PostDev @ SCM#3

Hydrograph type Peak discharge = 8.500 cfs= Reservoir Storm frequency Time to peak = 726 min = 1 yrsTime interval = 2 min Hyd. volume = 38,063 cuftInflow hyd. No. = 7 - POST POD 2A #3 (to SCMMax). Elevation = 363.13 ftMax. Storage Reservoir name = SCM #3 = 32,260 cuft

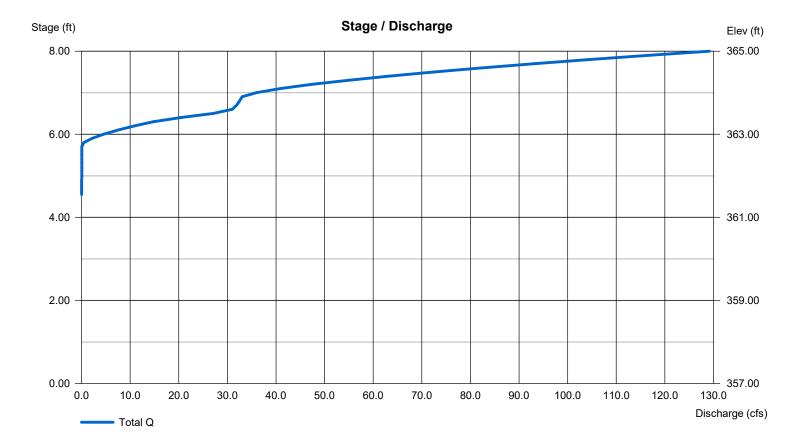
Storage Indication method used. Wet pond routing start elevation = 361.00 ft.

14

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Pond No. 3 - SCM #3

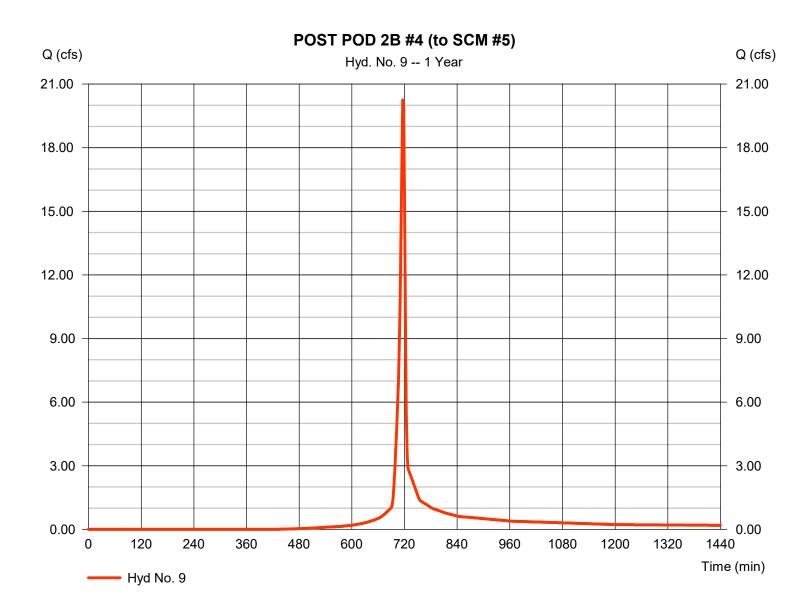

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 357.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	357.00	2,465	0	0
1.00	358.00	3,606	3,036	3,036
2.00	359.00	4,169	3,888	6,923
3.00	360.00	4,767	4,468	11,391
4.00	361.00	5,401	5,084	16,475
4.50	361.50	6,424	2,956	19,431
5.00	362.00	7,528	3,488	22,919
6.00	363.00	8,717	8,123	31,042
7.00	364.00	9,993	9,355	40,397
8.00	365.00	11,354	10,674	51,070

Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] = 24.00 1.50 6.00 0.00 = 22.00 24.00 0.00 0.00 Rise (in) Crest Len (ft) 42.00 = 24.00 1.50 = 363.25 363.90 0.00 0.00 Span (in) 0.00 Crest El. (ft) 3 No. Barrels = 1 1 0 Weir Coeff. = 3.333.33 3.33 3.33 Invert El. (ft) = 358.00361.50 362.75 0.00 Weir Type = 1 Rect Length (ft) = 0.000.00 0.50 0.00 Multi-Stage = Yes No No No Slope (%) = 0.000.00 0.50 n/a N-Value = .013 .013 .013 n/a = 0.600.60 0.60 = 0.000 (by Wet area) Orifice Coeff. 0.60 Exfil.(in/hr) Multi-Stage = n/aYes Yes No TW Elev. (ft) = 0.00


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

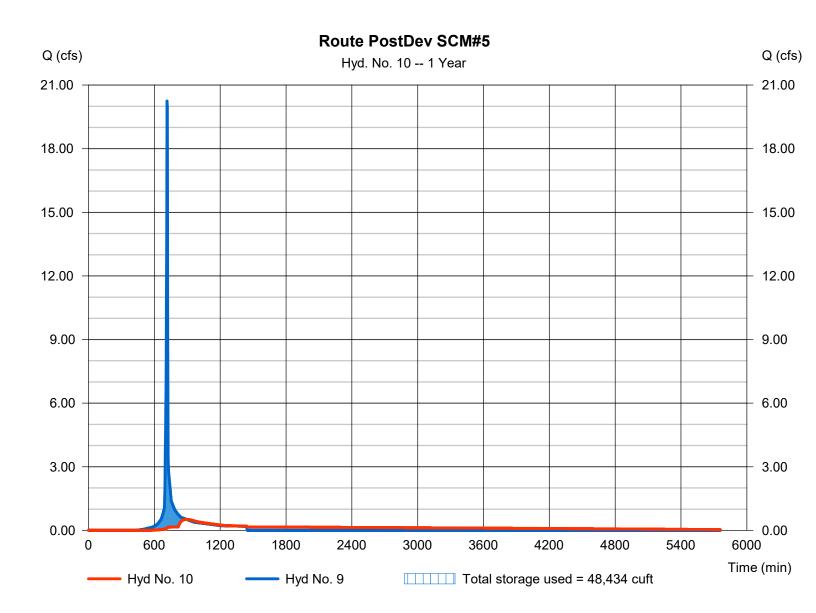
Tuesday, 01 / 28 / 2025

Hyd. No. 9

POST POD 2B #4 (to SCM #5)

Hydrograph type = SCS Runoff Peak discharge = 20.25 cfsStorm frequency = 1 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 41.192 cuft Drainage area = 6.960 acCurve number = 87 Basin Slope = 3.2 % Hydraulic length = 1270 ftTc method Time of conc. (Tc) = User $= 5.00 \, \text{min}$ Total precip. = 3.00 inDistribution = Type II Storm duration Shape factor = 24 hrs = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Tuesday, 01 / 28 / 2025

Hyd. No. 10

Route PostDev SCM#5

Hydrograph type Peak discharge = 0.518 cfs= Reservoir Storm frequency Time to peak = 894 min = 1 yrsTime interval = 2 min Hyd. volume = 39,576 cuft Inflow hyd. No. = 9 - POST POD 2B #4 (to SCMM/a)x. Elevation $= 350.05 \, \text{ft}$ Max. Storage Reservoir name = SCM #5 = 48,434 cuft

Storage Indication method used. Wet pond routing start elevation = 347.50 ft.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Pond No. 4 - SCM #5

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 344.00 ft

Stage / Storage Table

Culvert / Orifice Structures

= 0.60

= n/a

Orifice Coeff.

Multi-Stage

0.60

Yes

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	344.00	3,945	0	0
1.00	345.00	4,823	4,384	4,384
2.00	346.00	5,755	5,289	9,673
3.00	347.00	6,738	6,247	15,920
3.50	347.50	8,303	3,760	19,680
4.00	348.00	9,952	4,564	24,244
5.00	349.00	11,681	10,817	35,060
6.00	350.00	13,490	12,586	47,646
7.00	351.00	15,379	14,435	62,080
8.00	352.00	17,348	16,364	78,444

[A] [B] [C] [PrfRsr] [A] [B] [C] [D] = 24.00 2.00 6.00 0.00 = 14.00 24.00 0.00 0.00 Rise (in) Crest Len (ft) = 24.00 2.00 24.00 = 350.50 351.00 0.00 0.00 Span (in) 0.00 Crest El. (ft) No. Barrels = 1 1 3 0 Weir Coeff. = 3.333.33 3.33 3.33 Invert El. (ft) = 344.00347.50 350.00 0.00 Weir Type = 1 Rect Length (ft) = 100.00 0.50 0.50 0.00 Multi-Stage = Yes No No No Slope (%) = 0.500.50 0.50 n/a N-Value = .013 .013 .013 n/a

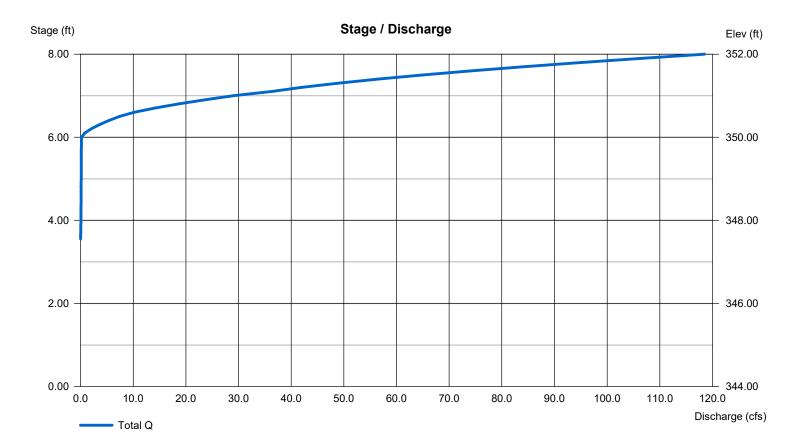
0.60

No

0.60

Yes

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

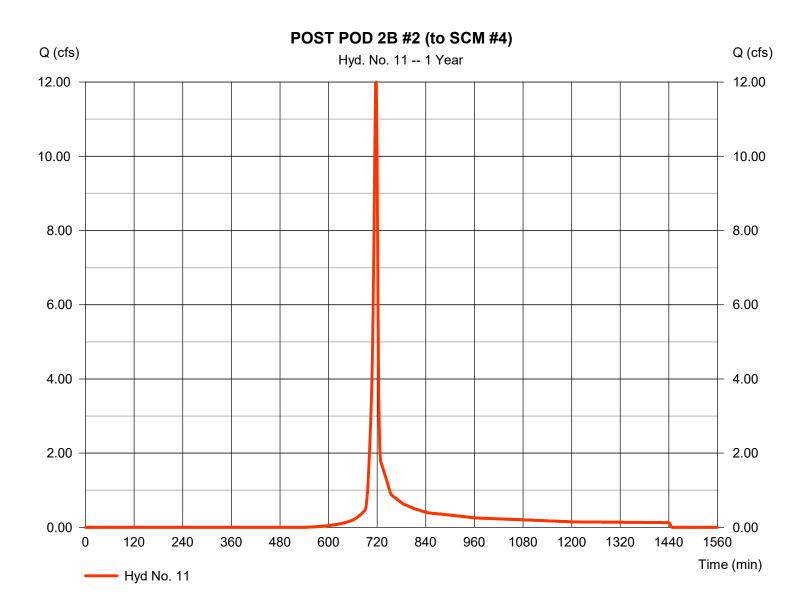

= 0.00

= 0.000 (by Wet area)

Weir Structures

Exfil.(in/hr)

TW Elev. (ft)


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

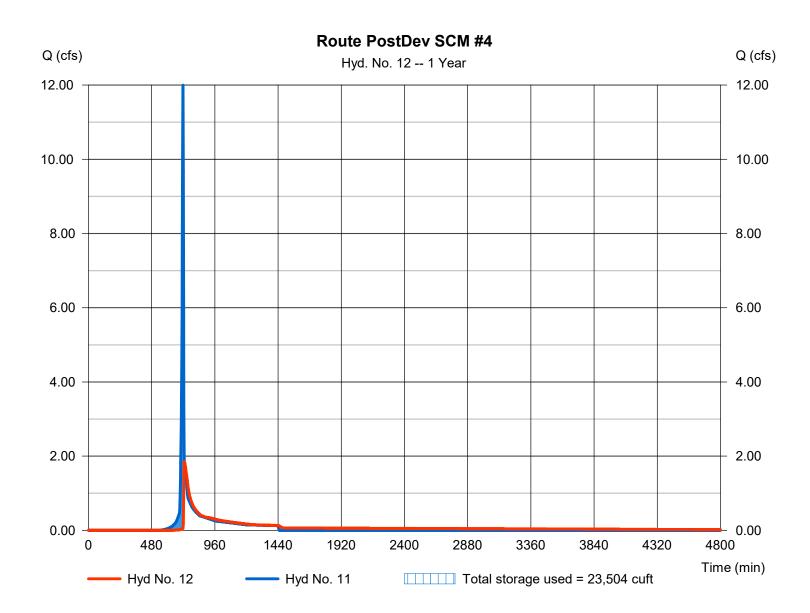
Tuesday, 01 / 28 / 2025

Hyd. No. 11

POST POD 2B #2 (to SCM #4)

Hydrograph type = SCS Runoff Peak discharge = 12.00 cfsStorm frequency Time to peak = 718 min = 1 yrsTime interval = 2 min Hyd. volume = 24,168 cuft Drainage area = 5.150 acCurve number = 82 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.00 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Tuesday, 01 / 28 / 2025

Hyd. No. 12

Route PostDev SCM #4

Hydrograph type Peak discharge = 1.855 cfs= Reservoir Storm frequency Time to peak = 728 min = 1 yrsTime interval = 2 min Hyd. volume = 23,766 cuft Inflow hyd. No. = 11 - POST POD 2B #2 (to SCNM#4) Elevation = 358.92 ft= SCM #4 Reservoir name Max. Storage = 23,504 cuft

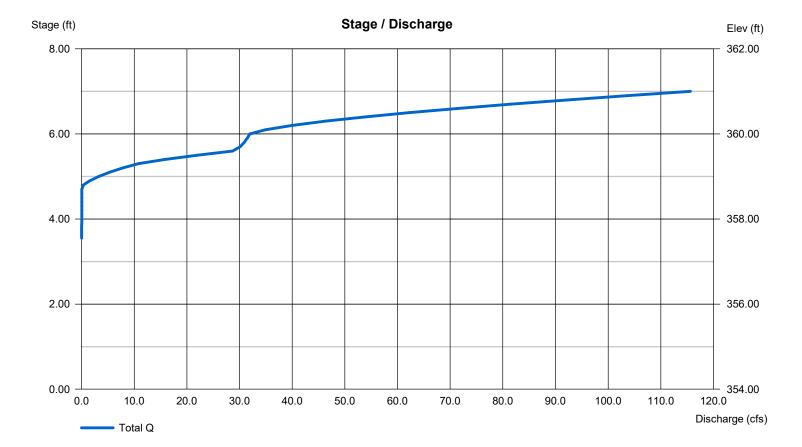
Storage Indication method used. Wet pond routing start elevation = 357.50 ft.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Pond No. 5 - SCM #4

Pond Data

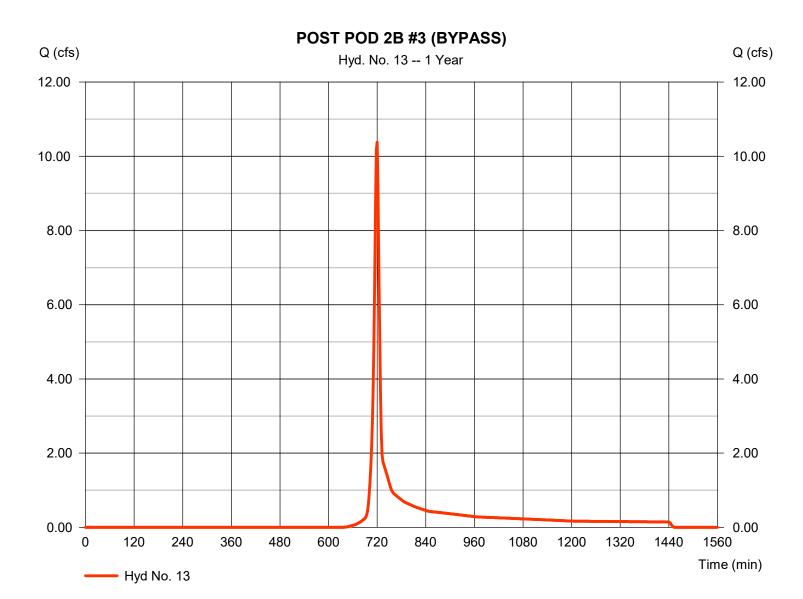

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 354.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	354.00	1,995	0	0
1.00	355.00	2,838	2,417	2,417
2.00	356.00	3,711	3,275	5,691
3.00	357.00	4,615	4,163	9,854
3.50	357.50	6,029	2,661	12,515
4.00	358.00	7,511	3,385	15,900
5.00	359.00	9,061	8,286	24,186
6.00	360.00	10,681	9,871	34,057
7.00	361.00	12,369	11,525	45,582

Culvert / Orifice Structures Weir Structures [A] [A] [B] [B] [C] [PrfRsr] [C] [D] 1.50 0.00 = 24.006.00 0.00 = 22.00 24.00 0.00 Rise (in) Crest Len (ft) Span (in) = 24.001.50 30.00 0.00 Crest El. (ft) = 359.25 360.00 0.00 0.00 = 1 3 0 Weir Coeff. = 3.333.33 3.33 3.33 No. Barrels 1 Weir Type Invert El. (ft) = 354.00357.50 358.75 0.00 = 1 Rect = 100.000.00 0.50 0.00 Multi-Stage = Yes No No No Length (ft) = 0.500.00 0.50 Slope (%) n/a N-Value = .013.013 .013 n/a Orifice Coeff. = 0.600.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Wet area) = 0.00 = n/a No Multi-Stage Yes Yes TW Elev. (ft)

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

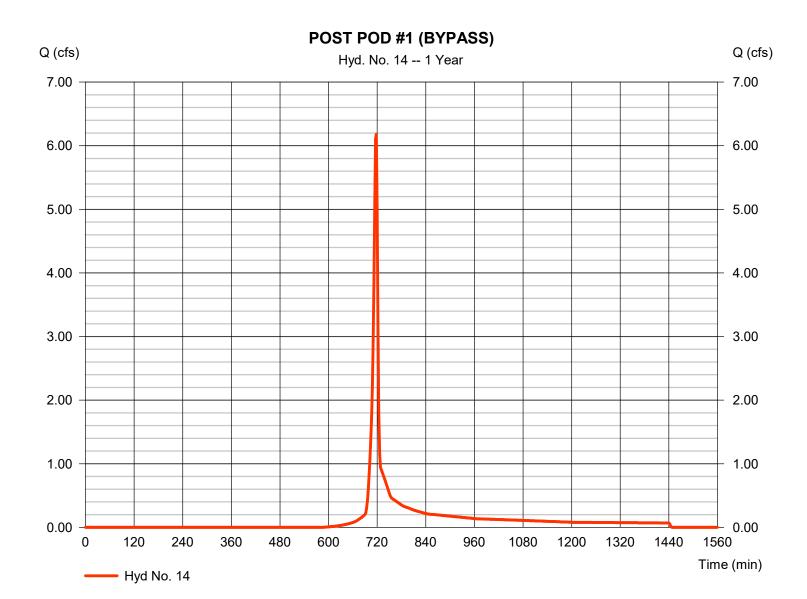

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 13

POST POD 2B #3 (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 10.38 cfsStorm frequency Time to peak = 720 min = 1 yrsTime interval = 2 min Hyd. volume = 23,909 cuft Drainage area Curve number = 6.350 ac= 76.4= 4170 ftBasin Slope = 1.3 % Hydraulic length Tc method Time of conc. (Tc) $= 7.00 \, \text{min}$ = User Total precip. = 3.00 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

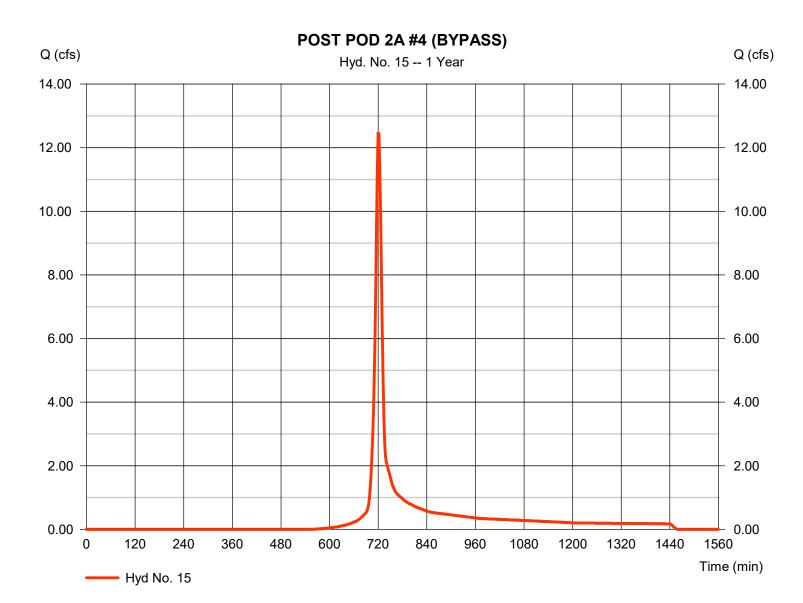

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 14

POST POD #1 (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 6.180 cfsStorm frequency Time to peak = 718 min = 1 yrsTime interval = 2 min Hyd. volume = 12,382 cuft Drainage area Curve number = 2.940 ac= 79.8Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.00 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

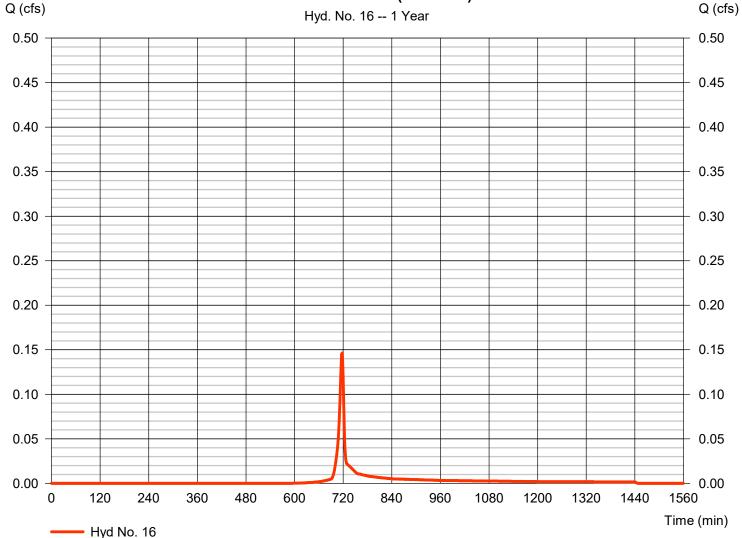
Tuesday, 01 / 28 / 2025

Hyd. No. 15

POST POD 2A #4 (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 12.46 cfsStorm frequency Time to peak = 720 min = 1 yrsTime interval = 2 min Hyd. volume = 32,499 cuftDrainage area Curve number = 6.450 ac= 81.5 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 12.50 min = User Total precip. = 3.00 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

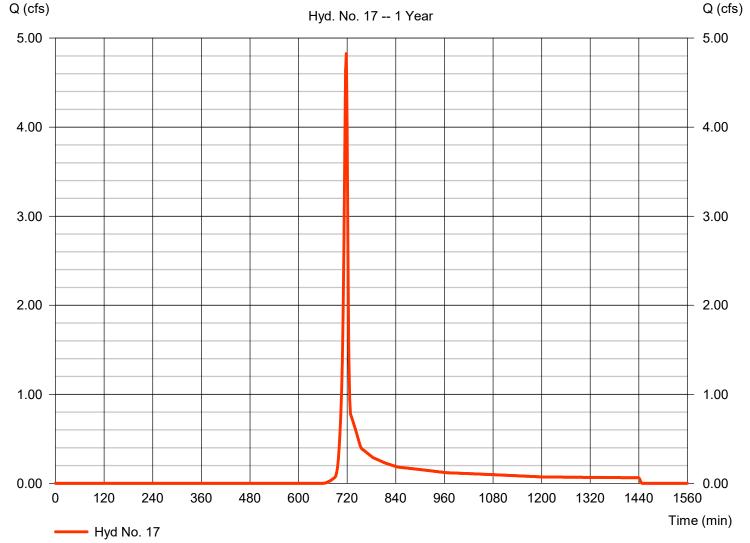

Tuesday, 01 / 28 / 2025

Hyd. No. 16

POST POD 2B #1 (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 0.146 cfsStorm frequency Time to peak = 718 min = 1 yrsTime interval = 2 min Hyd. volume = 293 cuft Drainage area Curve number = 0.070 ac= 79.7Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.00 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

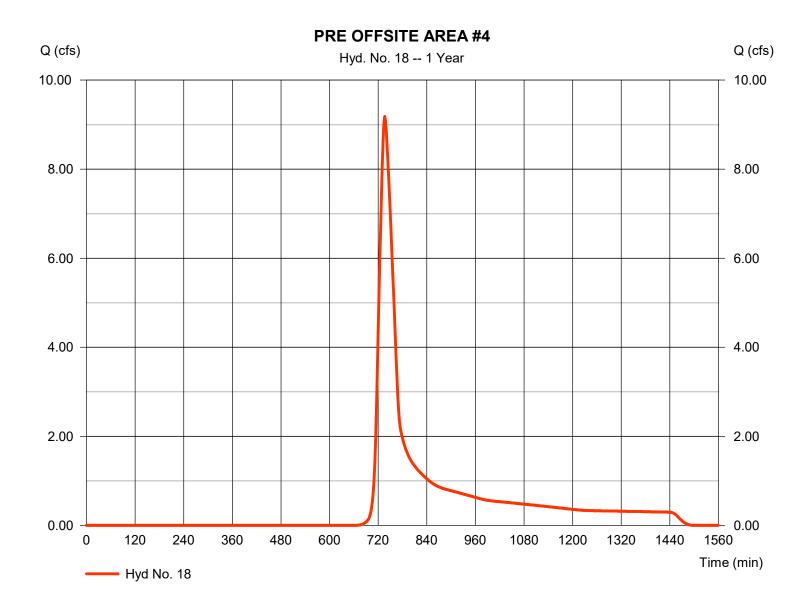
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Tuesday, 01 / 28 / 2025

Hyd. No. 17

PRE POD #1 OFFSITE AREA

Hydrograph type = SCS Runoff Peak discharge = 4.826 cfsStorm frequency = 1 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 9.705 cuft= 3.140 acCurve number = 74 Drainage area Basin Slope = 4.5 % Hydraulic length = 1030 ftTc method = KIRPICH Time of conc. (Tc) $= 5.38 \, \text{min}$ Total precip. Distribution = Type II = 3.00 inShape factor Storm duration = 24 hrs = 484

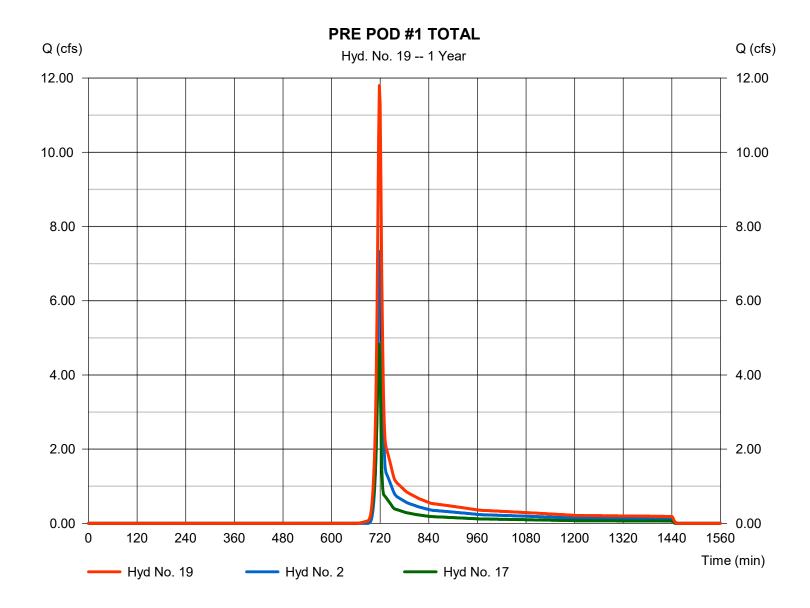

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 18

PRE OFFSITE AREA #4

Hydrograph type = SCS Runoff Peak discharge = 9.181 cfsStorm frequency = 1 yrsTime to peak = 736 min Time interval = 2 min Hyd. volume = 45,436 cuft Drainage area Curve number = 13.940 ac= 74 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 34.70 \, \text{min}$ = User Total precip. = 3.00 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

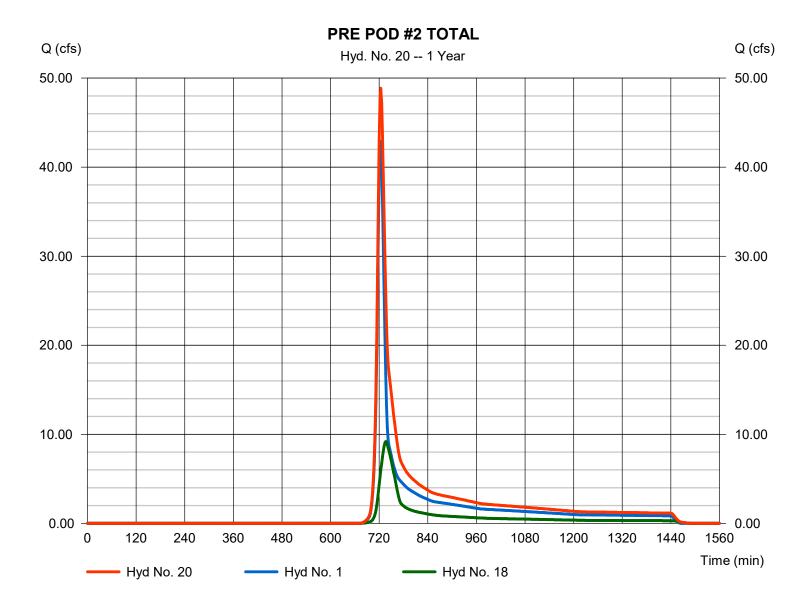

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 19

PRE POD #1 TOTAL

Hydrograph type = Combine Peak discharge = 11.80 cfsStorm frequency Time to peak = 1 yrs= 718 min Time interval = 2 min Hyd. volume = 27,315 cuft Inflow hyds. = 2, 17 Contrib. drain. area = 9.680 ac

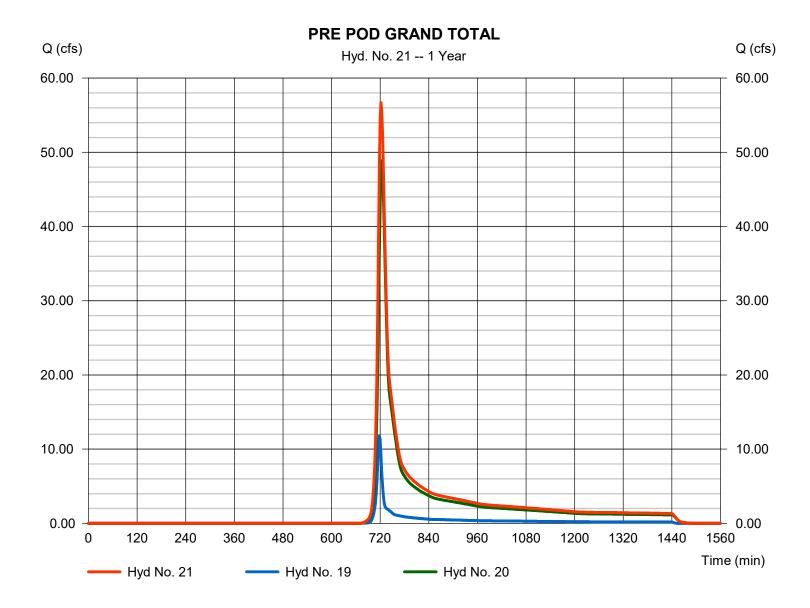

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 20

PRE POD #2 TOTAL

Hydrograph type = Combine Peak discharge = 48.86 cfsStorm frequency Time to peak = 1 yrs= 724 min Time interval = 2 min Hyd. volume = 173,564 cuft Inflow hyds. = 1, 18 Contrib. drain. area = 55.920 ac

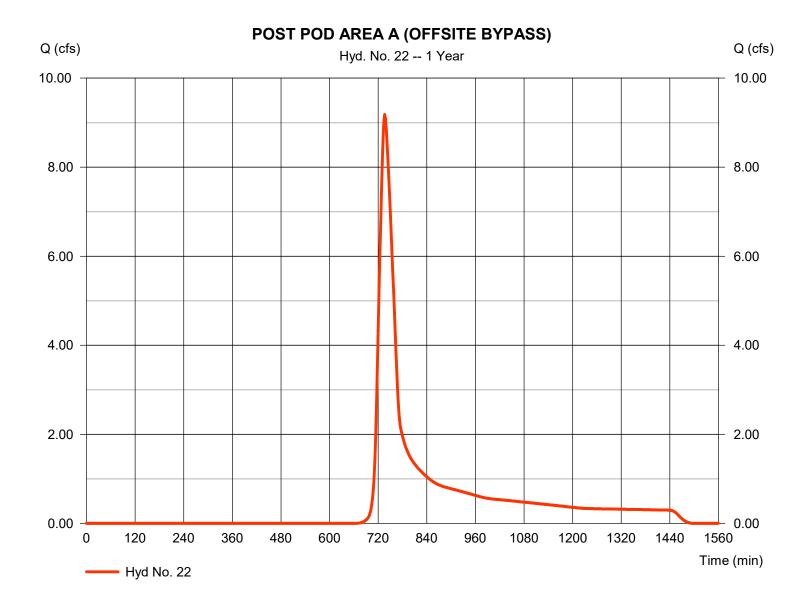

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 21

PRE POD GRAND TOTAL

Hydrograph type = Combine Peak discharge = 56.68 cfsStorm frequency Time to peak = 1 yrs= 722 min Time interval = 2 min Hyd. volume = 200,879 cuft Inflow hyds. = 19, 20Contrib. drain. area = 0.000 ac

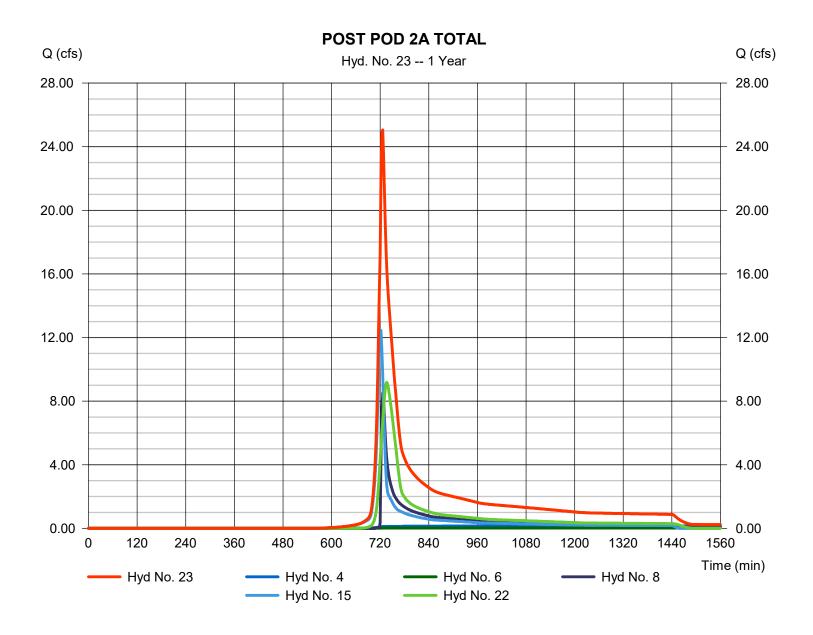

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 22

POST POD AREA A (OFFSITE BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 9.181 cfsStorm frequency Time to peak = 736 min = 1 yrsTime interval = 2 min Hyd. volume = 45,436 cuft Drainage area Curve number = 13.940 ac= 74 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 34.70 \, \text{min}$ = User Total precip. = 3.00 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

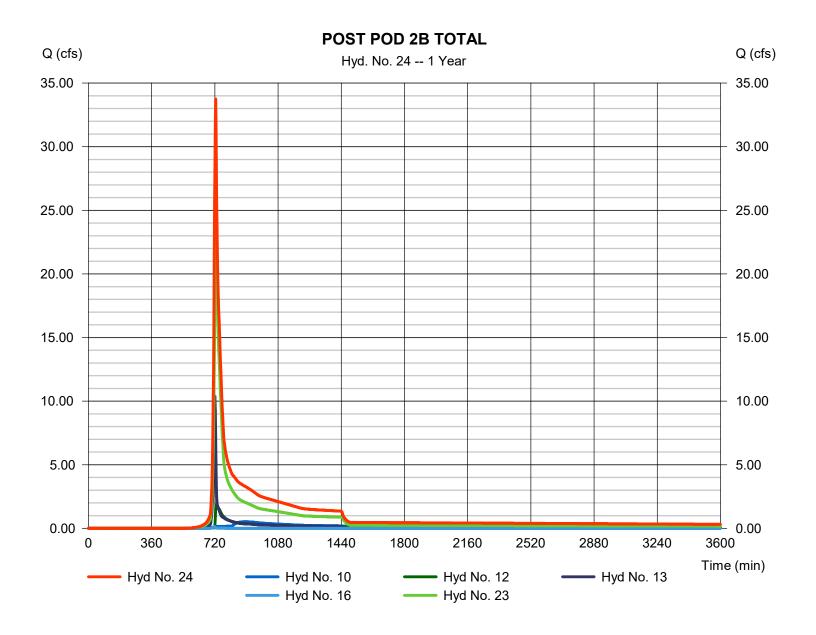
Tuesday, 01 / 28 / 2025

Hyd. No. 23

POST POD 2A TOTAL

Hydrograph type = Combine Peak discharge = 25.06 cfsStorm frequency Time to peak = 1 yrs= 726 min Time interval = 2 min Hyd. volume = 158,403 cuft Inflow hyds. Contrib. drain. area = 20.390 ac= 4, 6, 8, 15, 22

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Tuesday, 01 / 28 / 2025

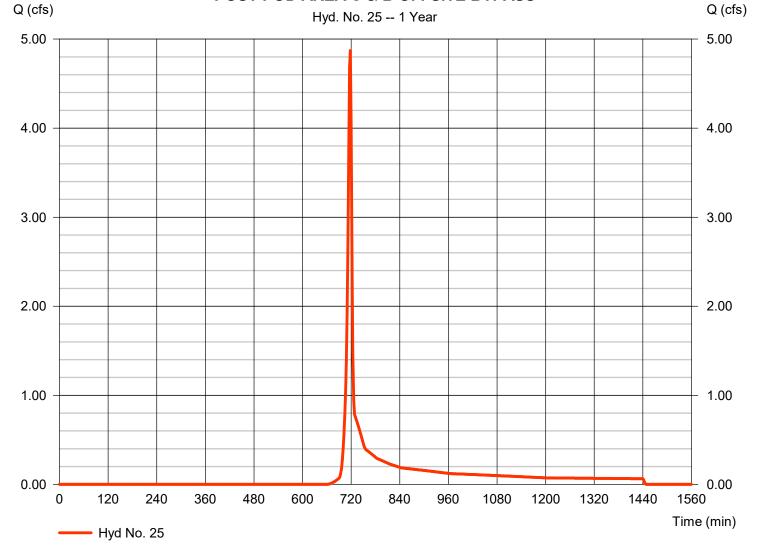
Hyd. No. 24

POST POD 2B TOTAL

Hydrograph type = Combine Peak discharge = 33.77 cfsStorm frequency Time to peak = 1 yrs= 724 min Time interval = 2 min Hyd. volume = 245,947 cuft

Inflow hyds. = 10, 12, 13, 16, 23 Contrib. drain. area = 6.420 ac

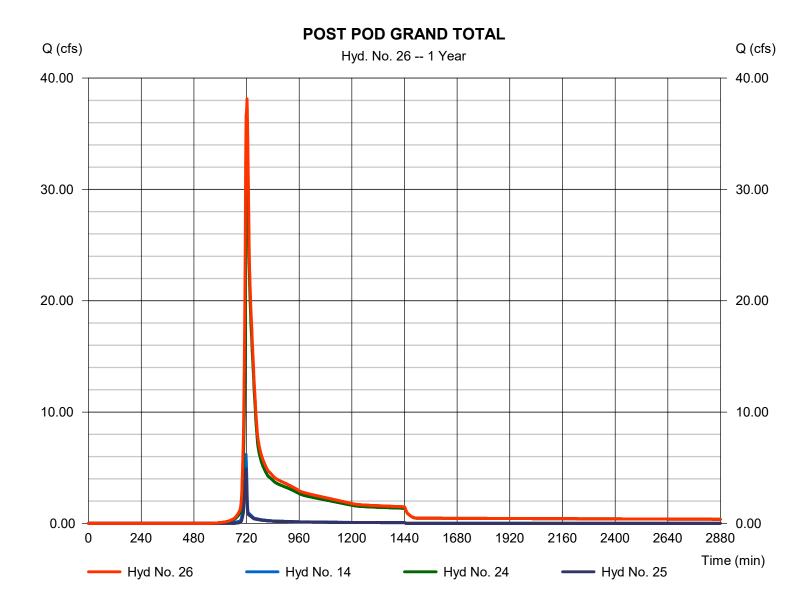
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Tuesday, 01 / 28 / 2025

Hyd. No. 25

POST POD AREA C & B OFFSITE BYPASS

Hydrograph type = SCS Runoff Peak discharge = 4.872 cfsStorm frequency Time to peak = 718 min = 1 yrsTime interval = 2 min Hyd. volume = 9.798 cuft Curve number Drainage area = 3.170 ac= 74 Basin Slope = 4.5 % Hydraulic length = 1030 ftTc method = KIRPICH Time of conc. (Tc) $= 5.38 \, \text{min}$ Total precip. Distribution = Type II = 3.00 inShape factor Storm duration = 24 hrs = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 26

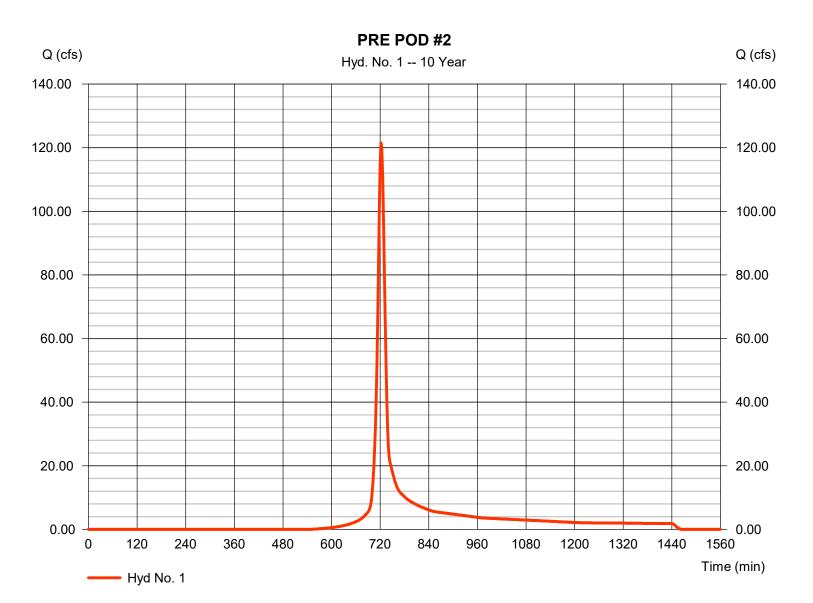
POST POD GRAND TOTAL

Hydrograph type = Combine Peak discharge = 38.14 cfsStorm frequency Time to peak = 1 yrs= 722 min Time interval = 2 min Hyd. volume = 268,127 cuft Inflow hyds. = 14, 24, 25 Contrib. drain. area = 6.110 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	121.51	2	722	342,397				PRE POD #2
2	SCS Runoff	21.78	2	720	49,838				PRE POD #1
3	SCS Runoff	46.46	2	718	106,942				POST POD 2A #1 (to SCM #1)
4	Reservoir	8.862	2	730	95,674	3	366.31	97,125	PostDev Thru SCM#1
5	SCS Runoff	8.879	2	718	20,389				POST POD 2A #2 (to SCM #2)
6	Reservoir	0.351	2	828	15,360	5	362.95	29,016	Route PostDev SCM #2
7	SCS Runoff	41.60	2	718	95,623				POST POD 2A #3 (to SCM #3)
8	Reservoir	32.74	2	722	92,231	7	363.84	38,946	Route PostDev @ SCM#3
9	SCS Runoff	40.48	2	716	84,940				POST POD 2B #4 (to SCM #5)
10	Reservoir	20.07	2	722	83,282	9	350.83	59,623	Route PostDev SCM#5
11	SCS Runoff	26.51	2	716	54,278				POST POD 2B #2 (to SCM #4)
12	Reservoir	22.73	2	720	53,866	11	359.51	29,228	Route PostDev SCM #4
13	SCS Runoff	26.07	2	718	59,630				POST POD 2B #3 (BYPASS)
14	SCS Runoff	14.23	2	716	28,934				POST POD #1 (BYPASS)
15	SCS Runoff	28.30	2	720	73,639				POST POD 2A #4 (BYPASS)
16	SCS Runoff	0.338	2	716	687				POST POD 2B #1 (BYPASS)
17	SCS Runoff	12.60	2	718	25,435				PRE POD #1 OFFSITE AREA
18	SCS Runoff	25.99	2	736	119,076				PRE OFFSITE AREA #4
19	Combine	34.24	2	718	75,272	2, 17,			PRE POD #1 TOTAL
20	Combine	138.98	2	724	461,473	1, 18,			PRE POD #2 TOTAL
21	Combine	163.83	2	722	536,745	19, 20			PRE POD GRAND TOTAL
22	SCS Runoff	25.99	2	736	119,076				POST POD AREA A (OFFSITE BYP
23	Combine	81.61	2	724	395,979	4, 6, 8,			POST POD 2A TOTAL
24	Combine	141.81	2	720	593,444	15, 22 10, 12, 13,			POST POD 2B TOTAL
25	SCS Runoff	12.72	2	718	25,678	16, 23			POST POD AREA C & B OFFSITE B
26	Combine	163.19	2	720	648,056	14, 24, 25			POST POD GRAND TOTAL
202	250124 SCM	Modeling.	gpw		Return F	Period: 10 Y	'ear	Tuesday, 0	01 / 28 / 2025

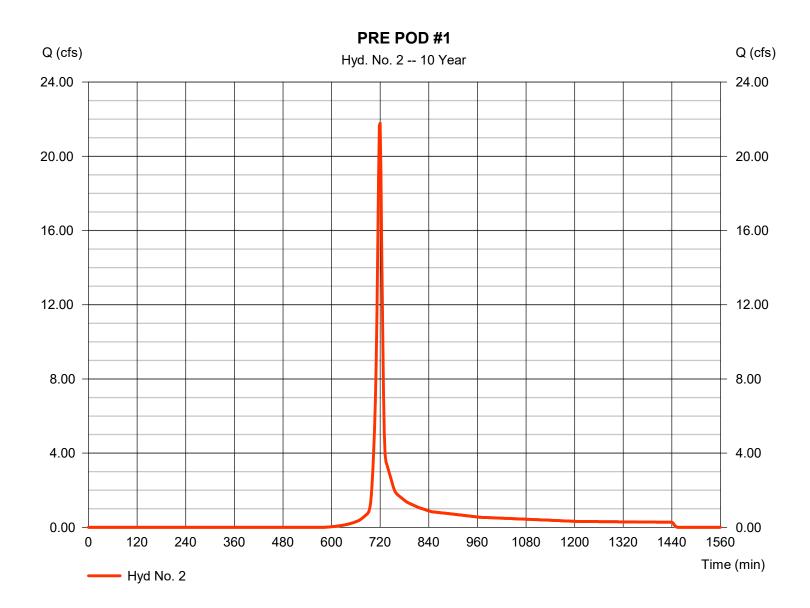

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 1

PRE POD #2

Hydrograph type = SCS Runoff Peak discharge = 121.51 cfsStorm frequency = 10 yrsTime to peak = 722 min Time interval = 2 min Hyd. volume = 342.397 cuft Drainage area Curve number = 41.980 ac= 73.1 Basin Slope = 1.4 % Hydraulic length $= 4320 \, \text{ft}$ Tc method Time of conc. (Tc) = 14.00 min = User Total precip. = 5.02 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

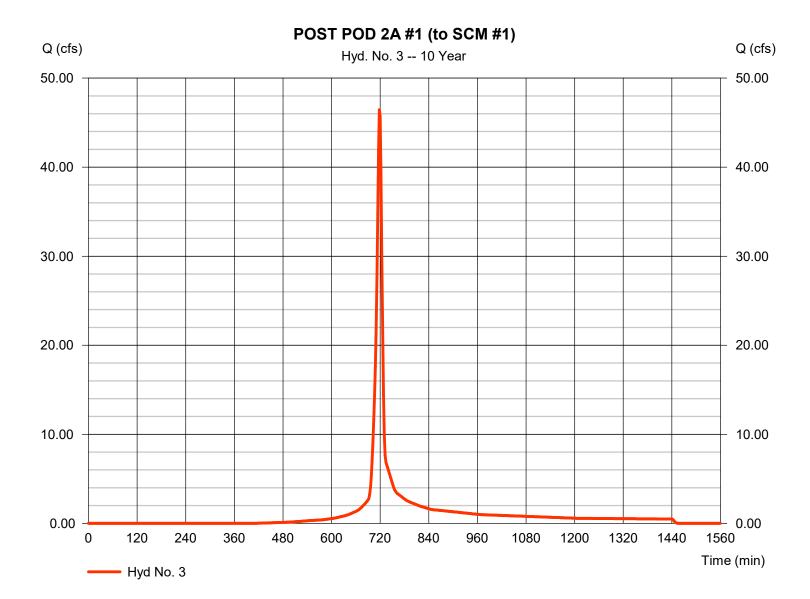

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 2

PRE POD #1

Hydrograph type = SCS Runoff Peak discharge = 21.78 cfsStorm frequency = 10 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 49,838 cuft Drainage area Curve number = 6.540 ac= 70.6= 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 6.70 \, \text{min}$ = User Total precip. = 5.02 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

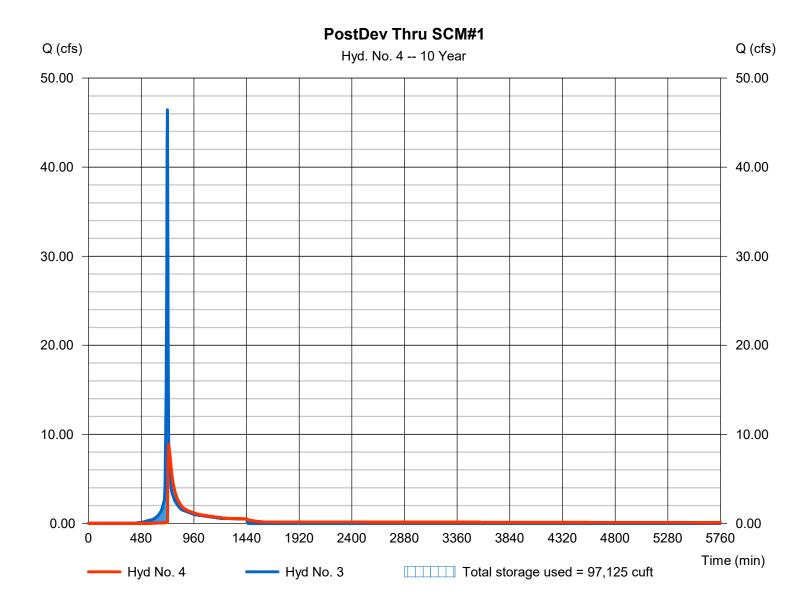
Tuesday, 01 / 28 / 2025

Hyd. No. 3

POST POD 2A #1 (to SCM #1)

Hydrograph type = SCS Runoff Peak discharge = 46.46 cfsStorm frequency = 10 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 106.942 cuft Curve number Drainage area = 9.780 ac= 81.1 Basin Slope = 2.4 % Hydraulic length = 1000 ftTc method Time of conc. (Tc) = User $= 6.60 \, \text{min}$ Total precip. = 5.02 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

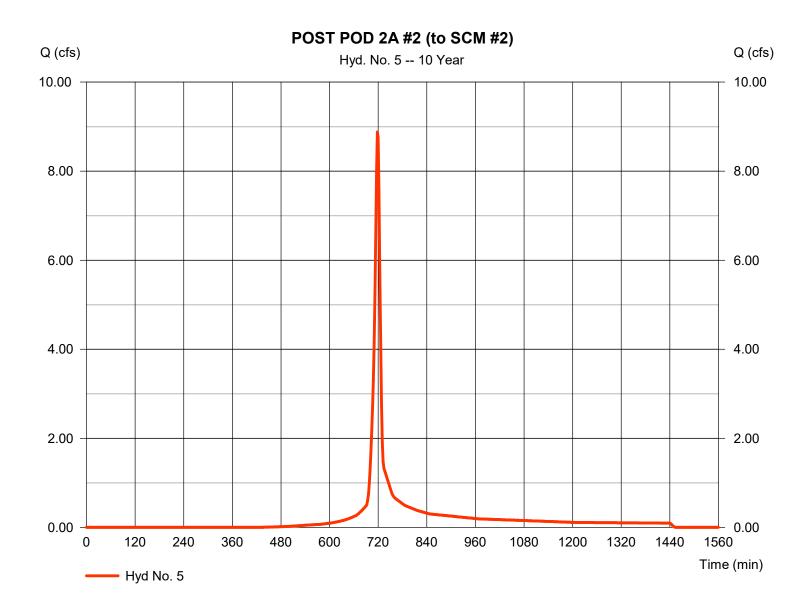

Tuesday, 01 / 28 / 2025

Hyd. No. 4

PostDev Thru SCM#1

Hydrograph type Peak discharge = 8.862 cfs= Reservoir Storm frequency = 10 yrsTime to peak = 730 min Time interval = 2 min Hyd. volume = 95,674 cuft = 3 - POST POD 2A #1 (to SCMMax). Elevation Inflow hyd. No. $= 366.31 \, \text{ft}$ Reservoir name = SCM #1 Max. Storage = 97,125 cuft

Storage Indication method used. Wet pond routing start elevation = 363.50 ft.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

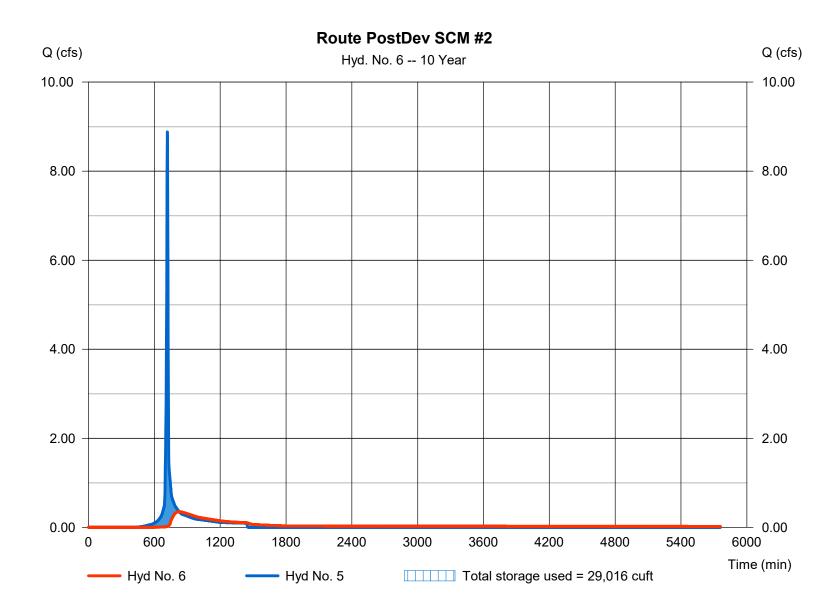
Tuesday, 01 / 28 / 2025

Hyd. No. 5

POST POD 2A #2 (to SCM #2)

Hydrograph type = SCS Runoff Peak discharge = 8.879 cfsStorm frequency = 10 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 20.389 cuft Curve number Drainage area = 1.930 ac= 80 Basin Slope = 0.5 %Hydraulic length = 450 ftTc method = KIRPICH Time of conc. (Tc) $= 6.62 \, \text{min}$ Total precip. Distribution = Type II = 5.02 inShape factor Storm duration = 24 hrs = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

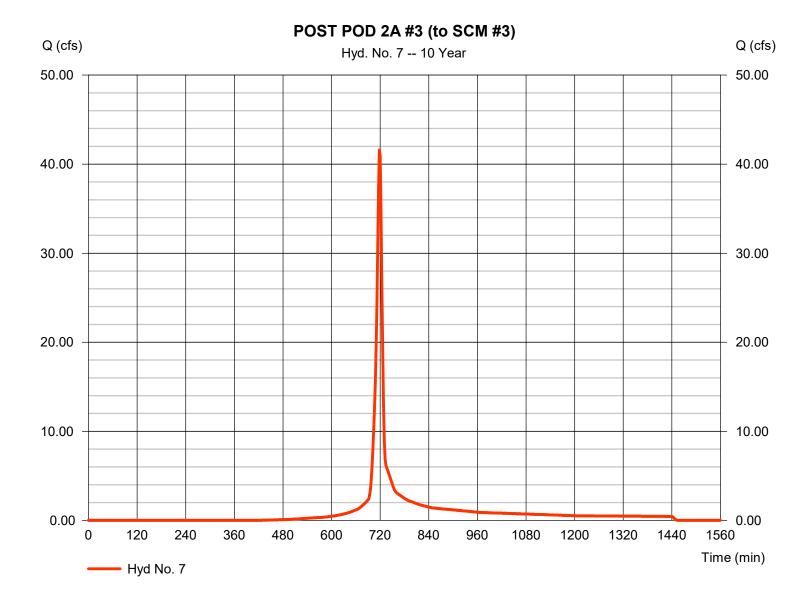

Tuesday, 01 / 28 / 2025

Hyd. No. 6

Route PostDev SCM #2

Hydrograph type Peak discharge = 0.351 cfs= Reservoir Storm frequency = 10 yrsTime to peak = 828 min Time interval = 2 min Hyd. volume = 15,360 cuftInflow hyd. No. = 5 - POST POD 2A #2 (to SCMM/2)x. Elevation $= 362.95 \, \text{ft}$ Max. Storage Reservoir name = SCM #2 = 29,016 cuft

Storage Indication method used. Wet pond routing start elevation = 361.50 ft.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

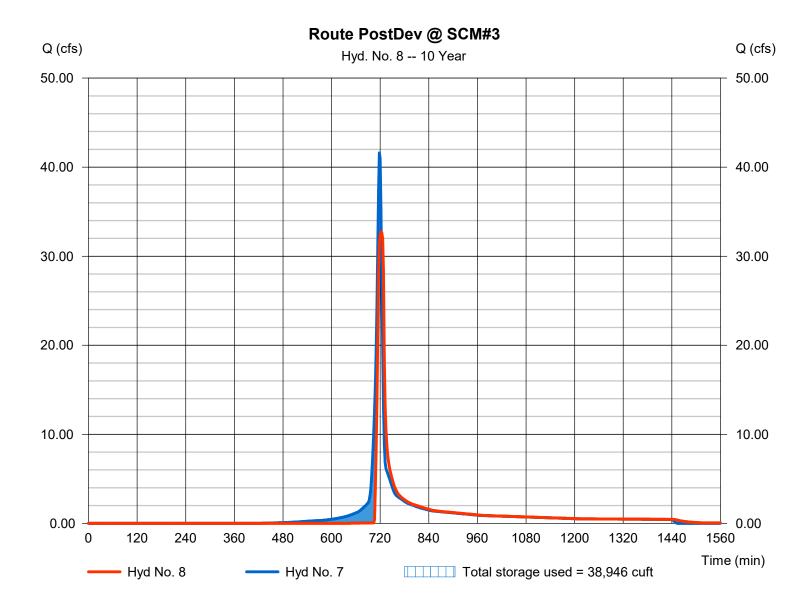
Tuesday, 01 / 28 / 2025

Hyd. No. 7

POST POD 2A #3 (to SCM #3)

Hydrograph type = SCS Runoff Peak discharge = 41.60 cfsStorm frequency = 10 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 95.623 cuft Curve number Drainage area = 8.910 ac= 80.5Basin Slope = 2.6 % Hydraulic length = 1120 ftTc method Time of conc. (Tc) = 7.30 min= User Total precip. = 5.02 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

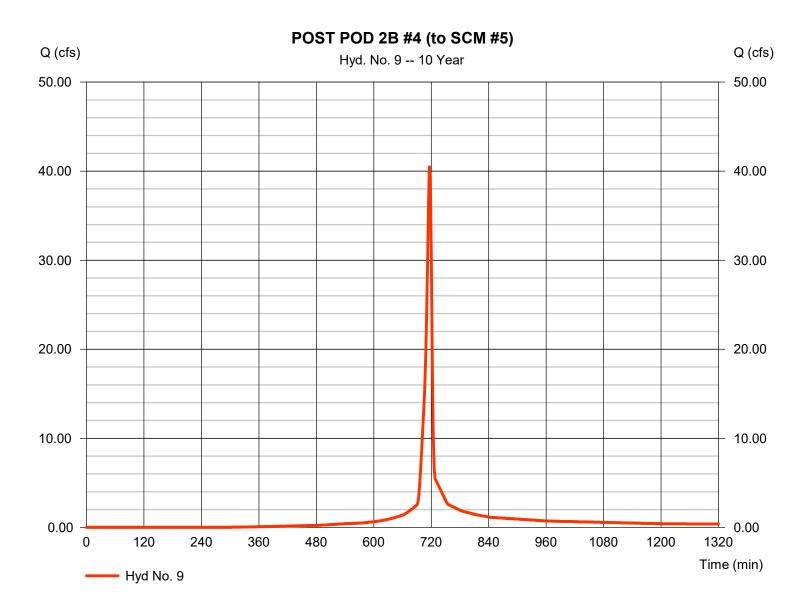

Tuesday, 01 / 28 / 2025

Hyd. No. 8

Route PostDev @ SCM#3

Hydrograph type Peak discharge = 32.74 cfs= Reservoir Storm frequency = 10 yrsTime to peak = 722 min Time interval = 2 min Hyd. volume = 92.231 cuft = 7 - POST POD 2A #3 (to SCMMax). Elevation Inflow hyd. No. = 363.84 ftReservoir name = SCM #3 Max. Storage = 38,946 cuft

Storage Indication method used. Wet pond routing start elevation = 361.00 ft.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

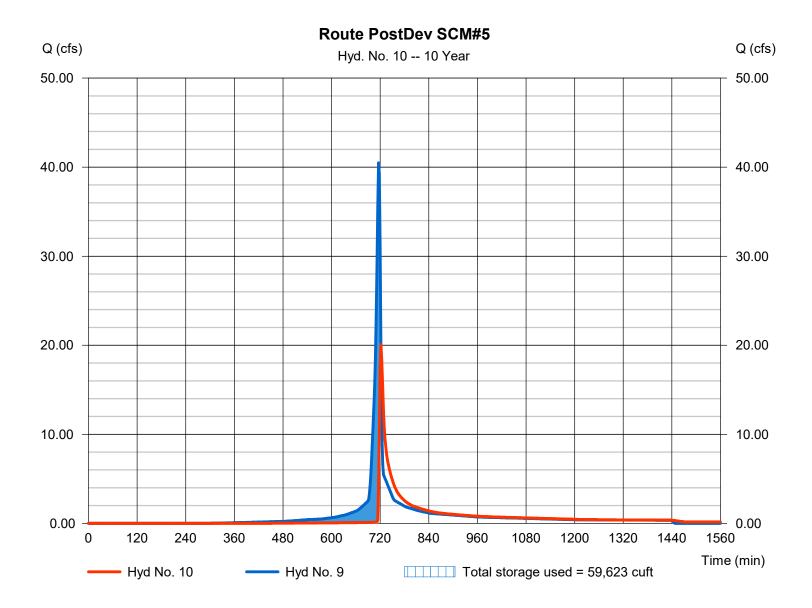
Tuesday, 01 / 28 / 2025

Hyd. No. 9

POST POD 2B #4 (to SCM #5)

Hydrograph type = SCS Runoff Peak discharge = 40.48 cfsStorm frequency = 10 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 84.940 cuft Curve number Drainage area = 6.960 ac= 87 Basin Slope = 3.2 % Hydraulic length = 1270 ftTc method Time of conc. (Tc) = User $= 5.00 \, \text{min}$ Total precip. = 5.02 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

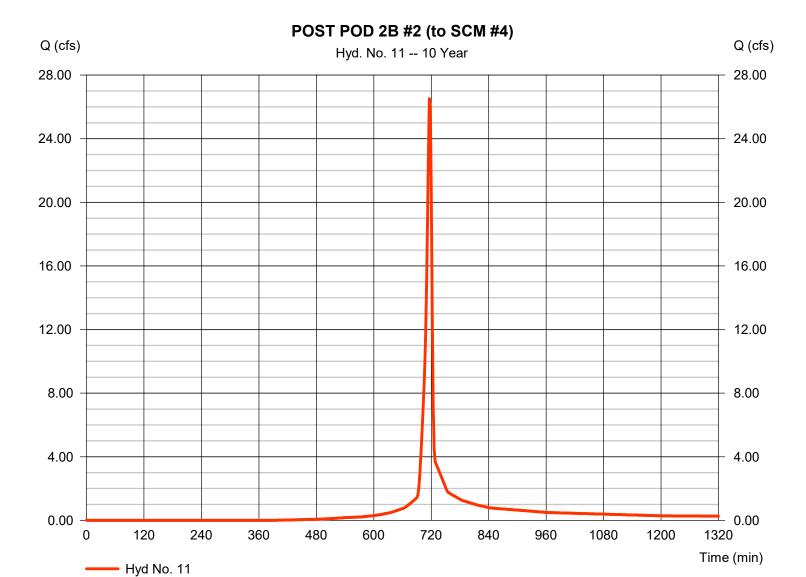

Tuesday, 01 / 28 / 2025

Hyd. No. 10

Route PostDev SCM#5

Hydrograph type Peak discharge = 20.07 cfs= Reservoir Storm frequency = 10 yrsTime to peak = 722 min Time interval = 2 min Hyd. volume = 83.282 cuft = 9 - POST POD 2B #4 (to SCMM/a)x. Elevation Inflow hyd. No. = 350.83 ftMax. Storage Reservoir name = SCM #5 = 59,623 cuft

Storage Indication method used. Wet pond routing start elevation = 347.50 ft.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

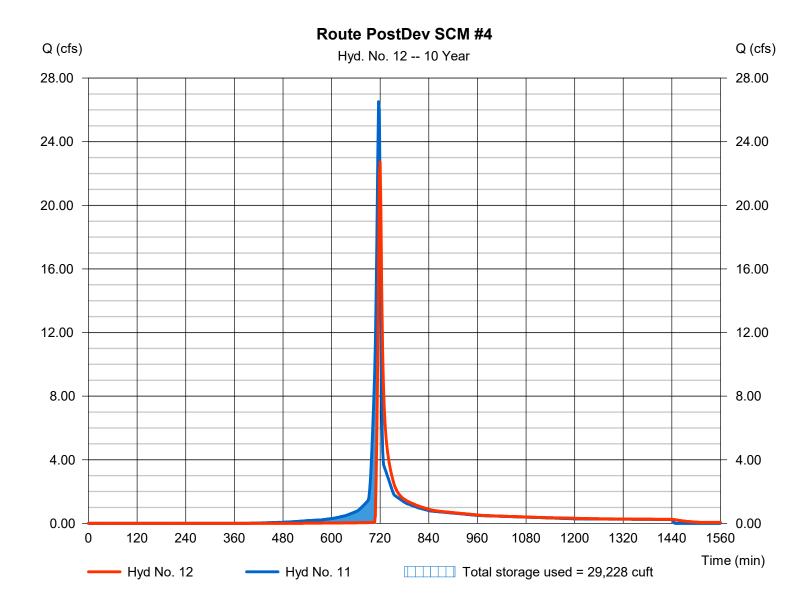
Tuesday, 01 / 28 / 2025

Hyd. No. 11

POST POD 2B #2 (to SCM #4)

Hydrograph type = SCS Runoff Peak discharge = 26.51 cfsStorm frequency = 10 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 54,278 cuft Curve number Drainage area = 5.150 ac= 82 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.02 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

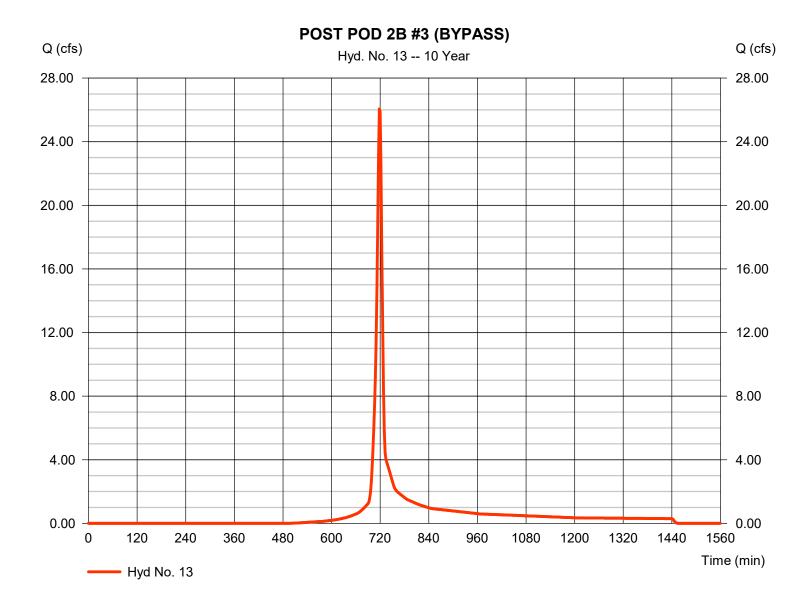

Tuesday, 01 / 28 / 2025

Hyd. No. 12

Route PostDev SCM #4

Hydrograph type Peak discharge = 22.73 cfs= Reservoir Storm frequency = 10 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 53,866 cuft = 11 - POST POD 2B #2 (to SCNM#4) Elevation Inflow hyd. No. $= 359.51 \, \text{ft}$ Max. Storage Reservoir name = SCM #4 = 29,228 cuft

Storage Indication method used. Wet pond routing start elevation = 357.50 ft.

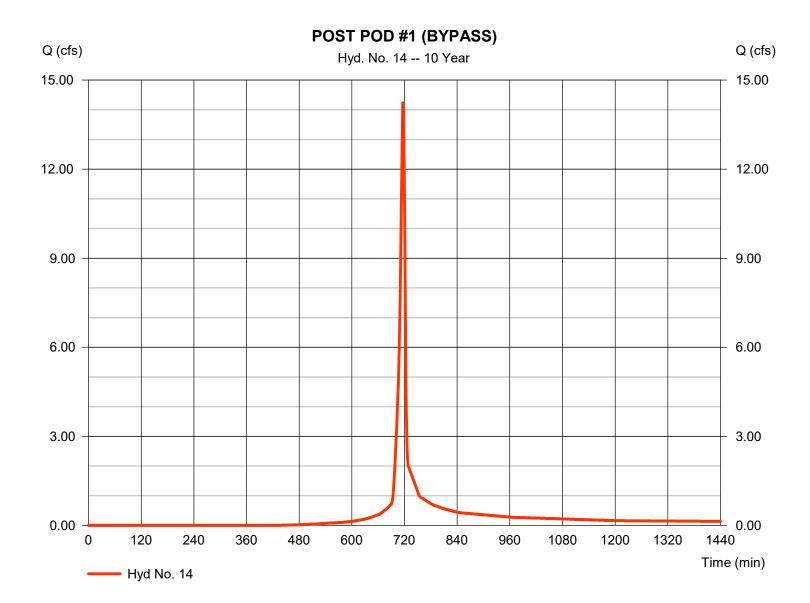

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 13

POST POD 2B #3 (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 26.07 cfsStorm frequency = 10 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 59.630 cuftCurve number Drainage area = 6.350 ac= 76.4Basin Slope = 1.3 % Hydraulic length = 4170 ftTc method Time of conc. (Tc) $= 7.00 \, \text{min}$ = User Total precip. = 5.02 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

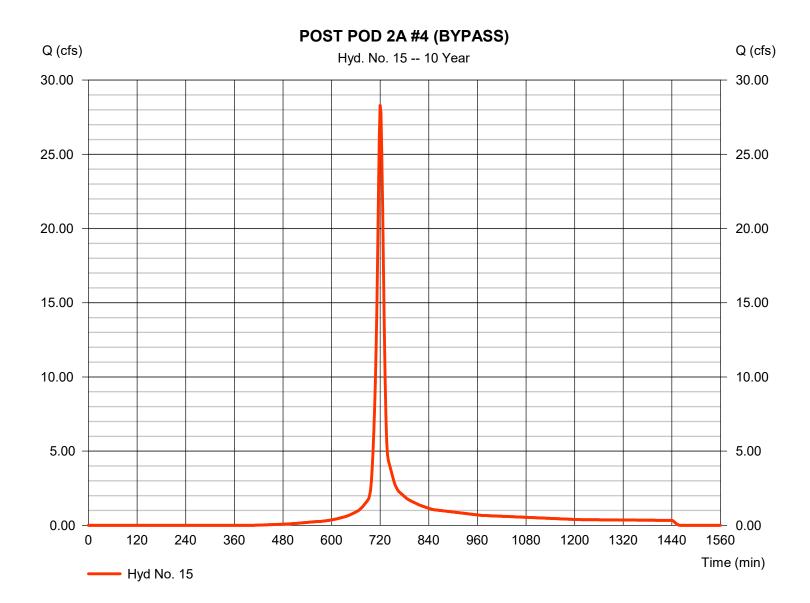

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 14

POST POD #1 (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 14.23 cfsStorm frequency = 10 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 28,934 cuft Curve number Drainage area = 2.940 ac= 79.8= 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.02 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

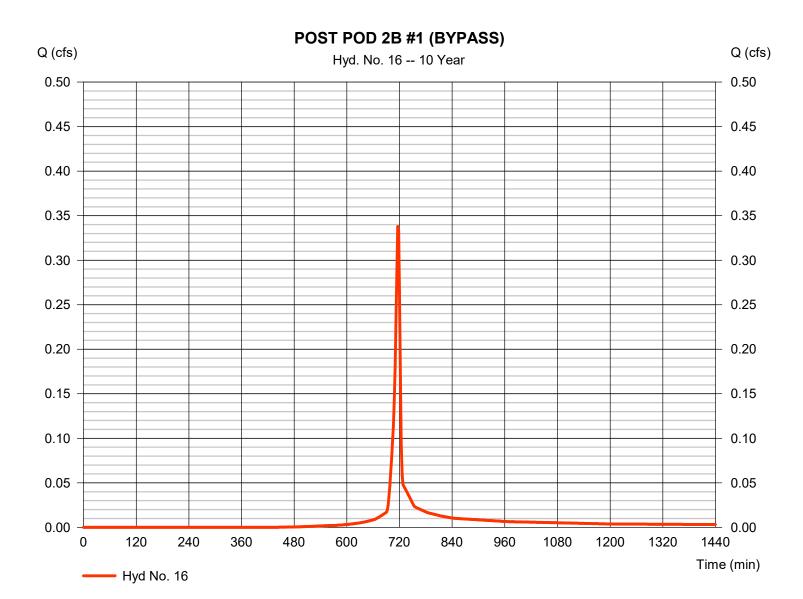

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 15

POST POD 2A #4 (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 28.30 cfsStorm frequency = 10 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 73,639 cuftCurve number Drainage area = 6.450 ac= 81.5 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 12.50 min = User Total precip. = 5.02 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

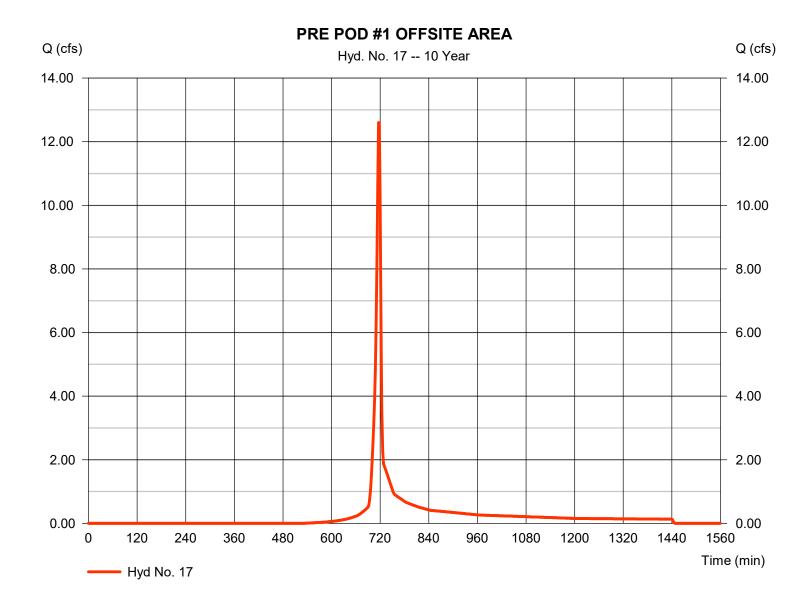

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 16

POST POD 2B #1 (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 0.338 cfsStorm frequency = 10 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 687 cuft Curve number Drainage area = 0.070 ac= 79.7Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.02 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

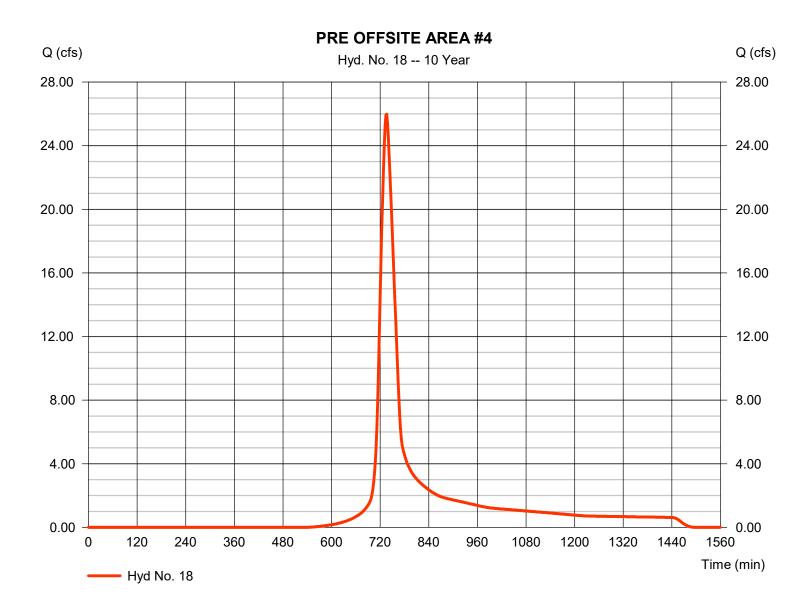

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 17

PRE POD #1 OFFSITE AREA

Hydrograph type = SCS Runoff Peak discharge = 12.60 cfsStorm frequency = 10 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 25.435 cuft Drainage area = 3.140 acCurve number = 74 Basin Slope = 4.5 % Hydraulic length = 1030 ftTc method = KIRPICH Time of conc. (Tc) $= 5.38 \, \text{min}$ Total precip. Distribution = Type II = 5.02 inShape factor Storm duration = 24 hrs = 484

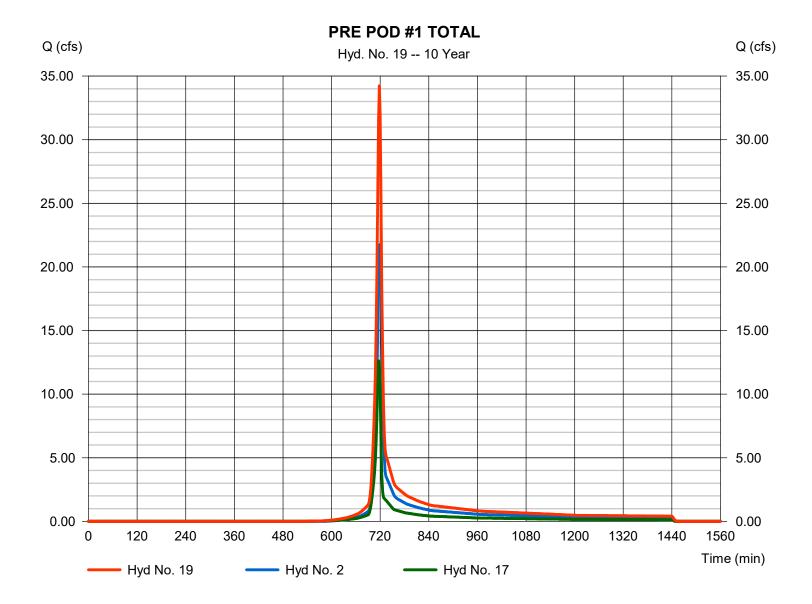

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 18

PRE OFFSITE AREA #4

Hydrograph type = SCS Runoff Peak discharge = 25.99 cfsStorm frequency = 10 yrsTime to peak = 736 min Time interval = 2 min Hyd. volume = 119,076 cuft Drainage area Curve number = 13.940 ac= 74 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) = 34.70 min = User Total precip. = 5.02 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

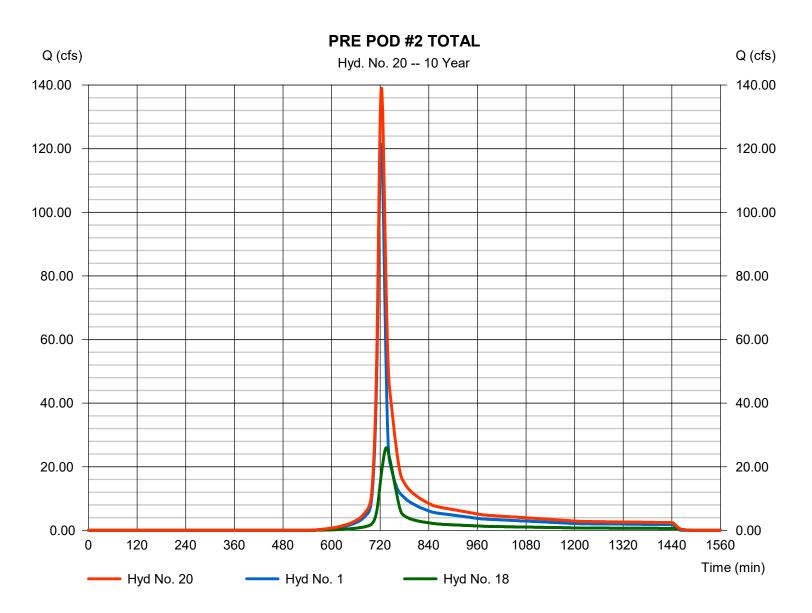

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 19

PRE POD #1 TOTAL

Hydrograph type = Combine Peak discharge = 34.24 cfsStorm frequency Time to peak = 10 yrs= 718 min Time interval = 2 min Hyd. volume = 75,272 cuft Inflow hyds. = 2, 17 Contrib. drain. area = 9.680 ac

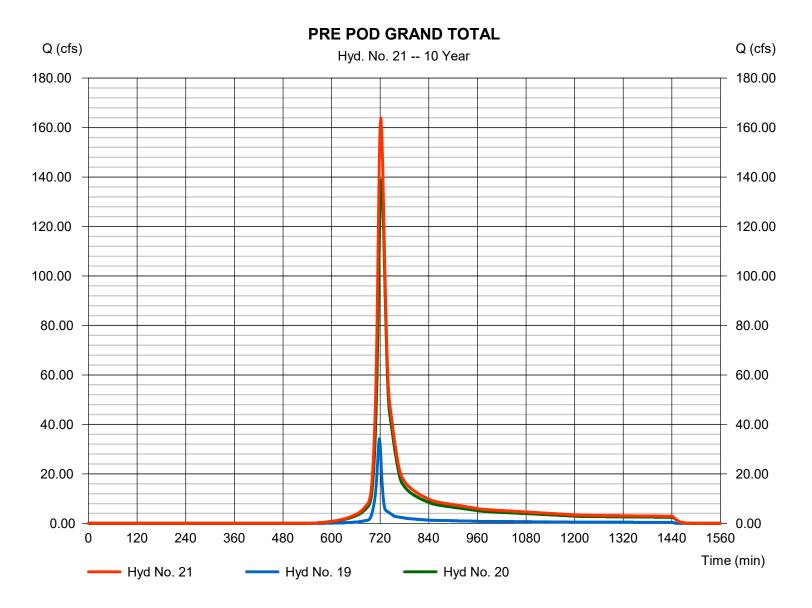

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 20

PRE POD #2 TOTAL

Hydrograph type = Combine Peak discharge = 138.98 cfsStorm frequency Time to peak = 10 yrs= 724 min Time interval = 2 min Hyd. volume = 461,473 cuft Inflow hyds. = 1, 18 Contrib. drain. area = 55.920 ac

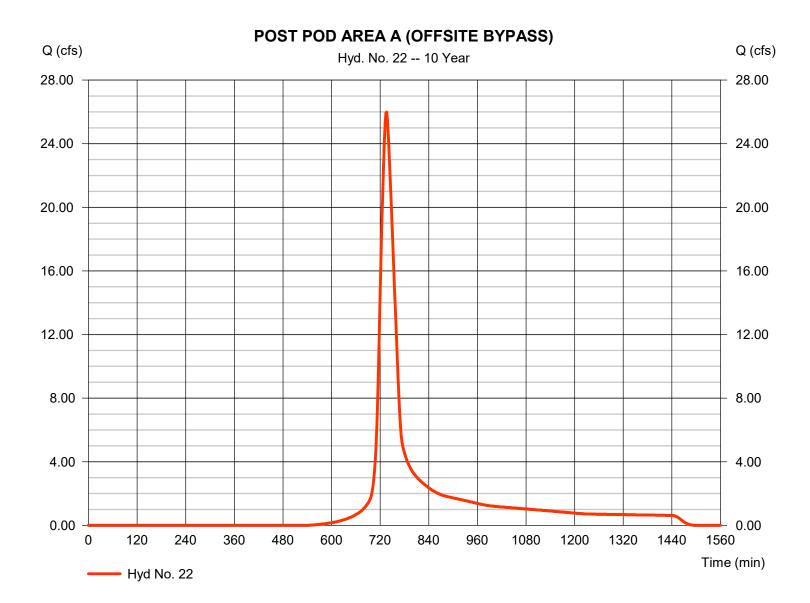

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 21

PRE POD GRAND TOTAL

Hydrograph type = Combine Peak discharge = 163.83 cfsStorm frequency Time to peak = 10 yrs= 722 min Time interval = 2 min Hyd. volume = 536,745 cuft Inflow hyds. Contrib. drain. area = 19, 20= 0.000 ac

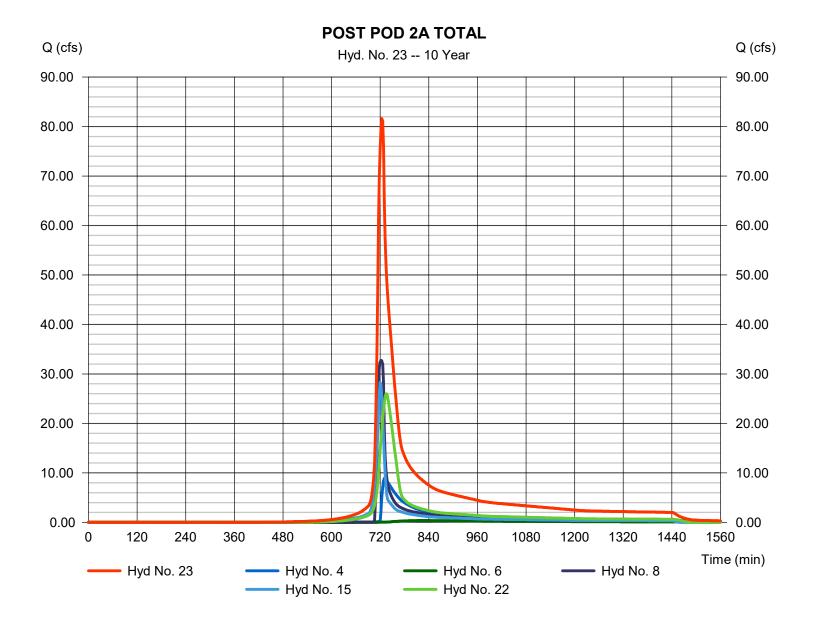

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 22

POST POD AREA A (OFFSITE BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 25.99 cfsStorm frequency = 10 yrsTime to peak = 736 min Time interval = 2 min Hyd. volume = 119,076 cuft Curve number Drainage area = 13.940 ac= 74 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) = 34.70 min = User Total precip. = 5.02 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

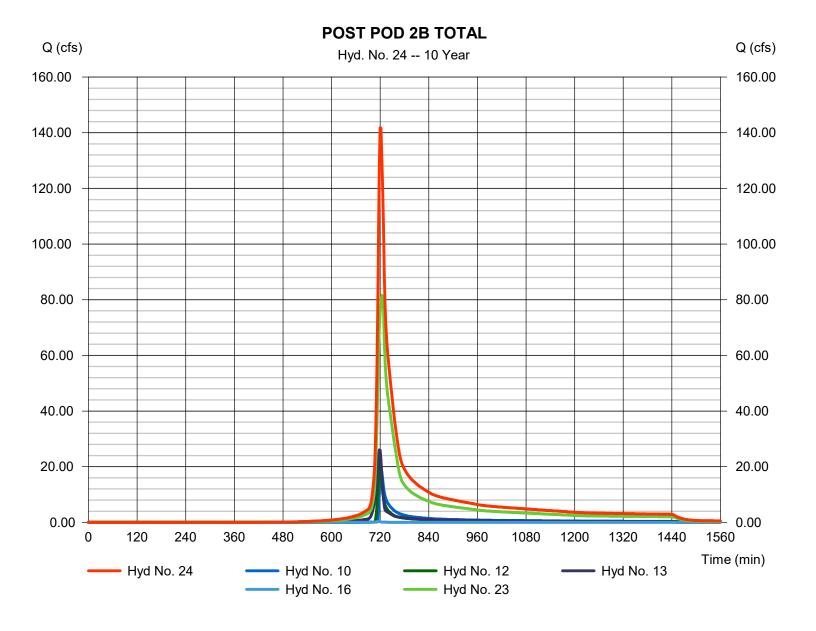
Tuesday, 01 / 28 / 2025

Hyd. No. 23

POST POD 2A TOTAL

Hydrograph type = Combine Peak discharge = 81.61 cfsStorm frequency Time to peak = 10 yrs= 724 min Time interval = 2 min Hyd. volume = 395,979 cuft Inflow hyds. Contrib. drain. area = 20.390 ac= 4, 6, 8, 15, 22

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

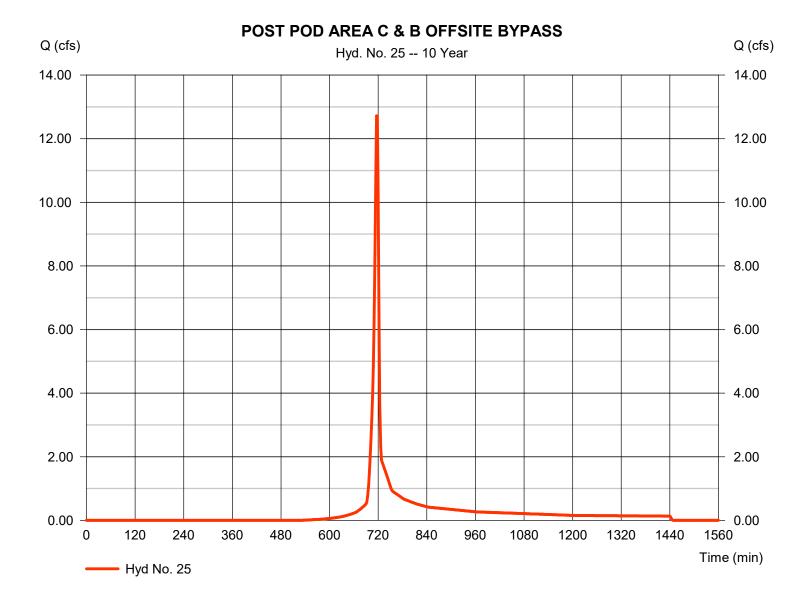

Tuesday, 01 / 28 / 2025

Hyd. No. 24

POST POD 2B TOTAL

Hydrograph type = Combine Peak discharge = 141.81 cfsStorm frequency Time to peak = 10 yrs= 720 min Time interval = 2 min Hyd. volume = 593.444 cuft

Inflow hyds. = 10, 12, 13, 16, 23 Contrib. drain. area = 6.420 ac

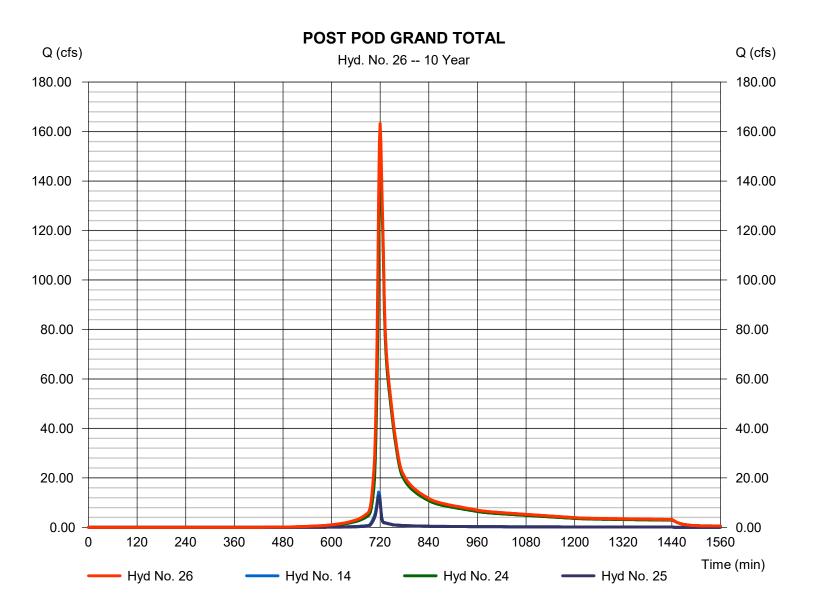

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 25

POST POD AREA C & B OFFSITE BYPASS

Hydrograph type = SCS Runoff Peak discharge = 12.72 cfsStorm frequency = 10 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 25.678 cuft Drainage area Curve number = 3.170 ac= 74 Basin Slope = 4.5 % Hydraulic length = 1030 ftTc method = KIRPICH Time of conc. (Tc) $= 5.38 \, \text{min}$ Total precip. Distribution = Type II = 5.02 inStorm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 26

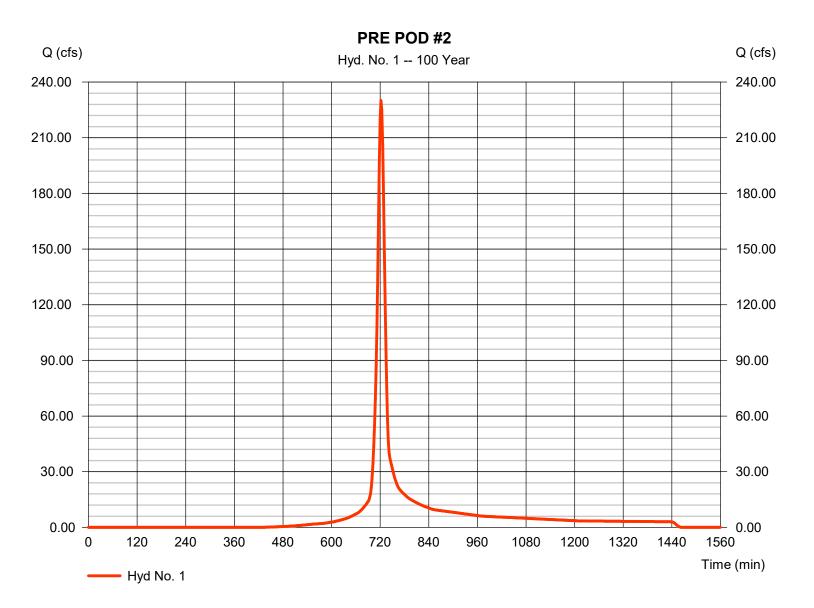
POST POD GRAND TOTAL

Hydrograph type = Combine Peak discharge = 163.19 cfsStorm frequency Time to peak = 10 yrs= 720 min Time interval = 2 min Hyd. volume = 648,056 cuft Inflow hyds. = 14, 24, 25Contrib. drain. area = 6.110 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

230.07 noff 42.19 noff 79.27 oir 62.03 noff 15.34 oir 4.791 noff 66.10 noff 64.88 oir 53.87 noff 44.64 oir 32.45 noff 46.98 noff 24.53 noff 48.23	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	722 718 718 722 718 728 718 720 716 720 716 720	645,677 96,618 186,237 174,892 35,875 30,791 167,459 164,065 140,335 138,645 93,742	3 5 7 	367.05 363.42 364.43	114,076 34,158 44,996	PRE POD #2 PRE POD #1 POST POD 2A #1 (to SCM #1) PostDev Thru SCM#1 POST POD 2A #2 (to SCM #2) Route PostDev SCM #2 POST POD 2A #3 (to SCM #3) Route PostDev @ SCM#3
nnoff 79.27 bir 62.03 nnoff 15.34 bir 4.791 nnoff 71.45 bir 66.10 nnoff 64.88 bir 53.87 nnoff 44.64 bir 32.45 nnoff 46.98 nnoff 24.53	2 2 2 2 2 2 2 2 2 2 2	718 722 718 728 718 720 716 720 716	186,237 174,892 35,875 30,791 167,459 164,065 140,335 138,645	5 7	367.05 363.42 364.43	114,076 34,158	POST POD 2A #1 (to SCM #1) PostDev Thru SCM#1 POST POD 2A #2 (to SCM #2) Route PostDev SCM #2 POST POD 2A #3 (to SCM #3) Route PostDev @ SCM#3
oir 62.03 noff 15.34 oir 4.791 noff 71.45 oir 66.10 noff 64.88 oir 53.87 noff 44.64 oir 32.45 noff 46.98 noff 24.53	2 2 2 2 2 2 2 2 2 2	722 718 728 718 720 716 720 716	174,892 35,875 30,791 167,459 164,065 140,335 138,645	3 5 7	367.05 363.42 364.43	114,076 34,158 	PostDev Thru SCM#1 POST POD 2A #2 (to SCM #2) Route PostDev SCM #2 POST POD 2A #3 (to SCM #3) Route PostDev @ SCM#3
inoff 15.34 4.791 2007 4.791 2007 66.10 2008 64.88 2007 64.88 2007 44.64 2007 44.64 2007 46.98 24.53	2 2 2 2 2 2 2 2 2	718 728 718 720 716 720 716	35,875 30,791 167,459 164,065 140,335 138,645	5 7	363.42 364.43	34,158 	POST POD 2A #2 (to SCM #2) Route PostDev SCM #2 POST POD 2A #3 (to SCM #3) Route PostDev @ SCM#3
oir 4.791 71.45 oir 66.10 noff 64.88 oir 53.87 noff 44.64 oir 32.45 noff 46.98 noff 24.53	2 2 2 2 2 2 2 2	728 718 720 716 720 716	30,791 167,459 164,065 140,335 138,645	5 7 	364.43 	34,158	Route PostDev SCM #2 POST POD 2A #3 (to SCM #3) Route PostDev @ SCM#3
noff 71.45 oir 66.10 noff 64.88 oir 53.87 noff 44.64 oir 32.45 noff 46.98 noff 24.53	2 2 2 2 2 2	718 720 716 720 716	167,459 164,065 140,335 138,645	7	364.43 		POST POD 2A #3 (to SCM #3) Route PostDev @ SCM#3
oir 66.10 noff 64.88 oir 53.87 noff 44.64 oir 32.45 noff 46.98 noff 24.53	2 2 2 2 2	720 716 720 716	164,065 140,335 138,645	7			Route PostDev @ SCM#3
53.87 sinoff 44.64 sir 32.45 snoff 46.98 snoff 24.53	2 2 2	716 720 716	140,335 138,645			44,996	
53.87 noff 44.64 oir 32.45 noff 46.98 noff 24.53	2 2 2	720 716	138,645				DOST DOD OD #4 (to SOM #5)
anoff 44.64 sir 32.45 anoff 46.98 anoff 24.53	2 2	716		9	054.05		POST POD 2B #4 (to SCM #5)
oir 32.45 noff 46.98 noff 24.53	2		93,742		351.37	68,087	Route PostDev SCM#5
noff 46.98 noff 24.53		720					POST POD 2B #2 (to SCM #4)
noff 24.53	2		93,325	11	360.02	34,250	Route PostDev SCM #4
		718	108,660				POST POD 2B #3 (BYPASS)
noff 48.23	2	716	51,006				POST POD #1 (BYPASS)
	2	720	127,766				POST POD 2A #4 (BYPASS)
noff 0.583	2	716	1,212				POST POD 2B #1 (BYPASS)
noff 23.29	2	716	47,506				PRE POD #1 OFFSITE AREA
noff 49.11	2	734	222,406				PRE OFFSITE AREA #4
e 65.08	2	718	144,124	2, 17,			PRE POD #1 TOTAL
e 263.30	2	722	868,083	1, 18,			PRE POD #2 TOTAL
e 310.97	2	722	1,012,207	19, 20			PRE POD GRAND TOTAL
noff 49.11	2	734	222,406				POST POD AREA A (OFFSITE BYP
e 209.01	2	722	719,920	4, 6, 8,			POST POD 2A TOTAL
e 330.13	2	720	1,061,761	10, 12, 13,			POST POD 2B TOTAL
noff 23.52	2	716	47,960	16, 23 			POST POD AREA C & B OFFSITE B
e 367.29	2	720	1,160,727	14, 24, 25			POST POD GRAND TOTAL
nc e e	off 49.11 209.01 330.13	off 49.11 2 209.01 2 330.13 2 off 23.52 2	off 49.11 2 734 209.01 2 722 330.13 2 720 off 23.52 2 716	off 49.11 2 734 222,406 209.01 2 722 719,920 330.13 2 720 1,061,761 off 23.52 2 716 47,960	off 49.11 2 734 222,406 209.01 2 722 719,920 4, 6, 8, 15, 22 330.13 2 720 1,061,761 16, 23 off 23.52 2 716 47,960	off 49.11 2 734 222,406	off 49.11 2 734 222,406

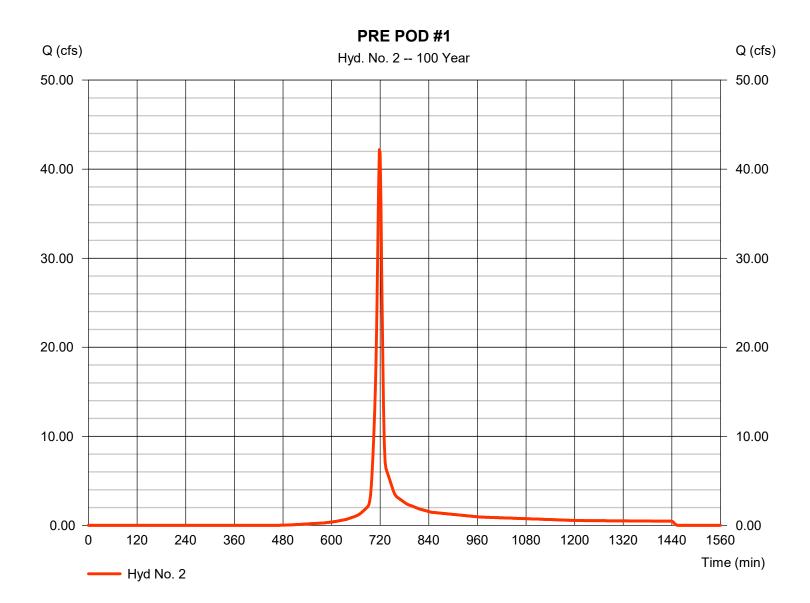

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 1

PRE POD #2

Hydrograph type = SCS Runoff Peak discharge = 230.07 cfsStorm frequency = 100 yrsTime to peak = 722 min = 645,677 cuft Time interval = 2 min Hyd. volume Drainage area = 41.980 ac Curve number = 73.1 Basin Slope = 1.4 % Hydraulic length $= 4320 \, \text{ft}$ Tc method Time of conc. (Tc) = 14.00 min = User Total precip. = 7.46 inDistribution = Type II Storm duration Shape factor = 24 hrs = 484

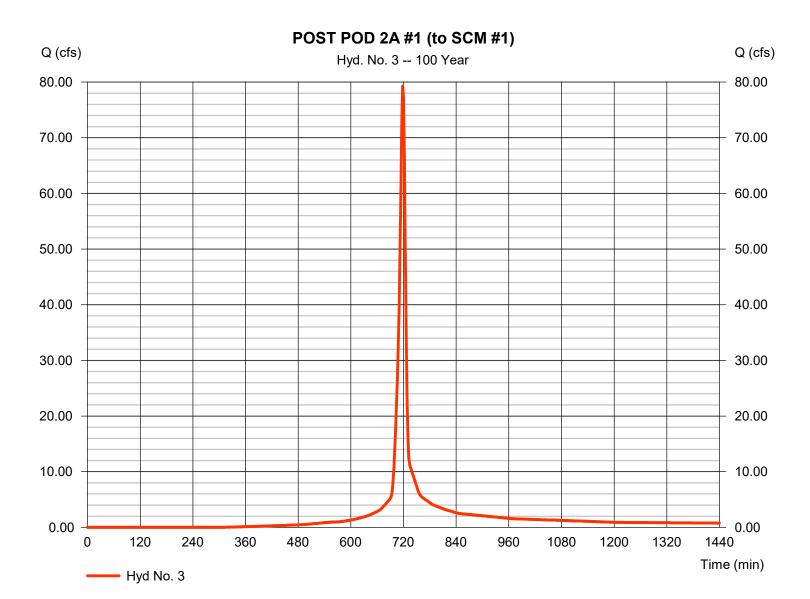

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 2

PRE POD #1

Hydrograph type = SCS Runoff Peak discharge = 42.19 cfsStorm frequency = 100 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 96,618 cuft Drainage area Curve number = 6.540 ac= 70.6Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 6.70 \, \text{min}$ = User Total precip. = 7.46 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

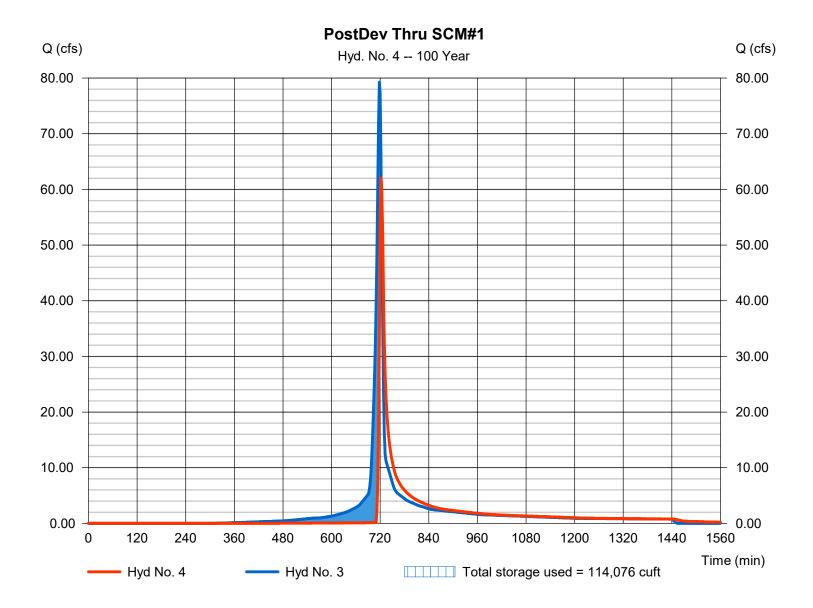
Tuesday, 01 / 28 / 2025

Hyd. No. 3

POST POD 2A #1 (to SCM #1)

Hydrograph type = SCS Runoff Peak discharge = 79.27 cfsStorm frequency = 100 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 186.237 cuft Drainage area = 9.780 acCurve number = 81.1 Basin Slope = 2.4 % Hydraulic length = 1000 ftTc method Time of conc. (Tc) = User $= 6.60 \, \text{min}$ Total precip. = 7.46 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

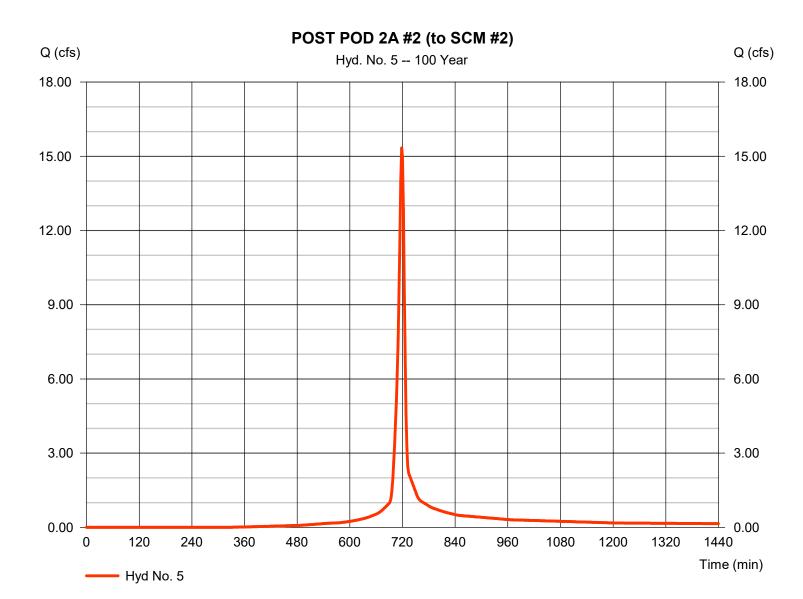

Tuesday, 01 / 28 / 2025

Hyd. No. 4

PostDev Thru SCM#1

Hydrograph type Peak discharge = 62.03 cfs= Reservoir Storm frequency = 100 yrsTime to peak = 722 min Time interval = 2 min Hyd. volume = 174,892 cuft = 3 - POST POD 2A #1 (to SCMMax). Elevation Inflow hyd. No. $= 367.05 \, \text{ft}$ Max. Storage Reservoir name = SCM #1 = 114,076 cuft

Storage Indication method used. Wet pond routing start elevation = 363.50 ft.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

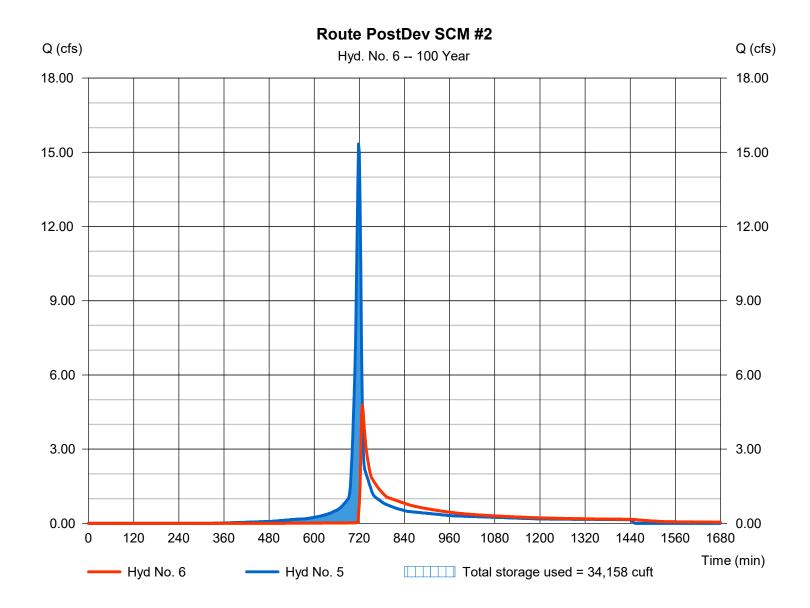
Tuesday, 01 / 28 / 2025

Hyd. No. 5

POST POD 2A #2 (to SCM #2)

Hydrograph type = SCS Runoff Peak discharge = 15.34 cfsStorm frequency = 100 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 35.875 cuft Drainage area Curve number = 1.930 ac= 80 Basin Slope = 0.5 %Hydraulic length = 450 ftTc method = KIRPICH Time of conc. (Tc) $= 6.62 \, \text{min}$ Total precip. = 7.46 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

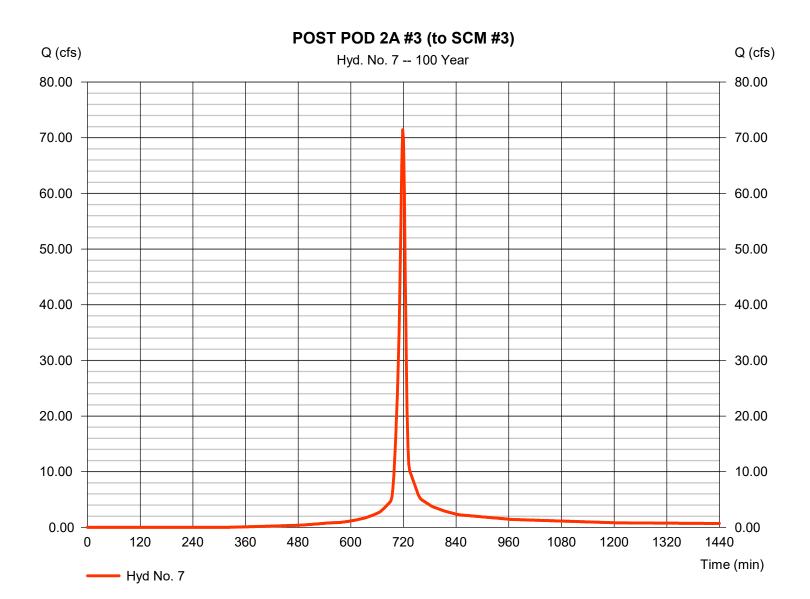

Tuesday, 01 / 28 / 2025

Hyd. No. 6

Route PostDev SCM #2

Hydrograph type Peak discharge = 4.791 cfs= Reservoir Storm frequency = 100 yrsTime to peak = 728 min Time interval = 2 min Hyd. volume = 30,791 cuft= 5 - POST POD 2A #2 (to SCMM/2)x. Elevation Inflow hyd. No. = 363.42 ftMax. Storage Reservoir name = SCM #2 = 34,158 cuft

Storage Indication method used. Wet pond routing start elevation = 361.50 ft.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

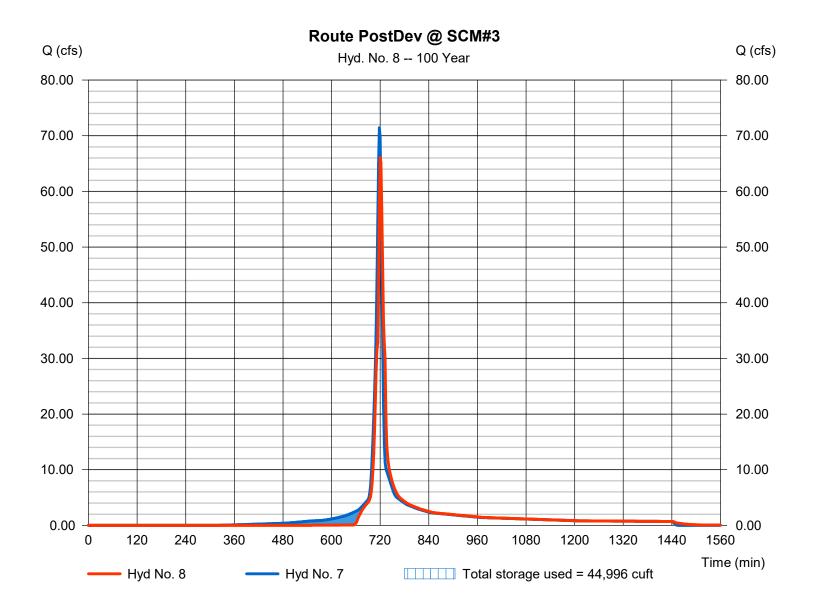
Tuesday, 01 / 28 / 2025

Hyd. No. 7

POST POD 2A #3 (to SCM #3)

Hydrograph type = SCS Runoff Peak discharge = 71.45 cfsStorm frequency = 100 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 167.459 cuft Drainage area Curve number = 8.910 ac= 80.5= 2.6 % = 1120 ftBasin Slope Hydraulic length Tc method Time of conc. (Tc) = 7.30 min= User Total precip. = 7.46 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Tuesday, 01 / 28 / 2025

Hyd. No. 8

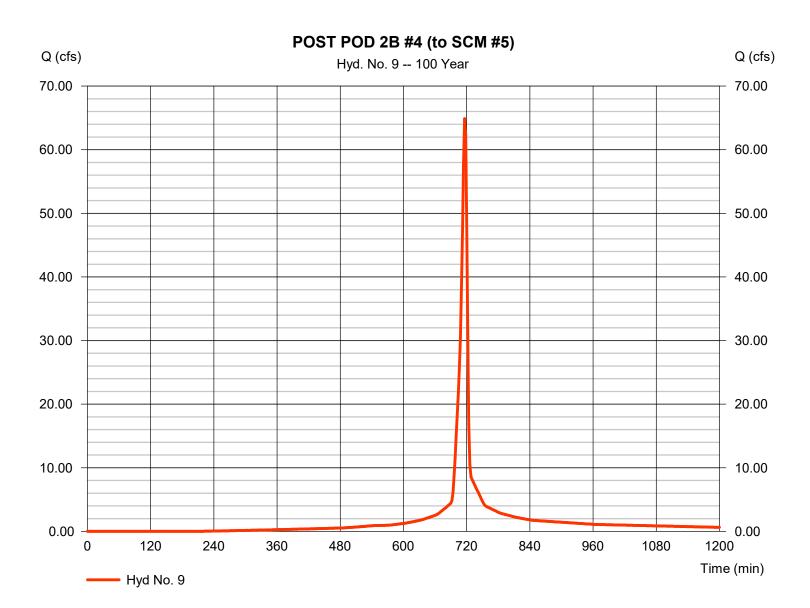
Route PostDev @ SCM#3

Hydrograph type Peak discharge = 66.10 cfs= Reservoir Storm frequency = 100 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 164,065 cuft = 7 - POST POD 2A #3 (to SCMMax). Elevation Inflow hyd. No. = 364.43 ftMax. Storage Reservoir name = SCM #3 = 44,996 cuft

Storage Indication method used. Wet pond routing start elevation = 361.00 ft.

71

Hydrograph Report


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

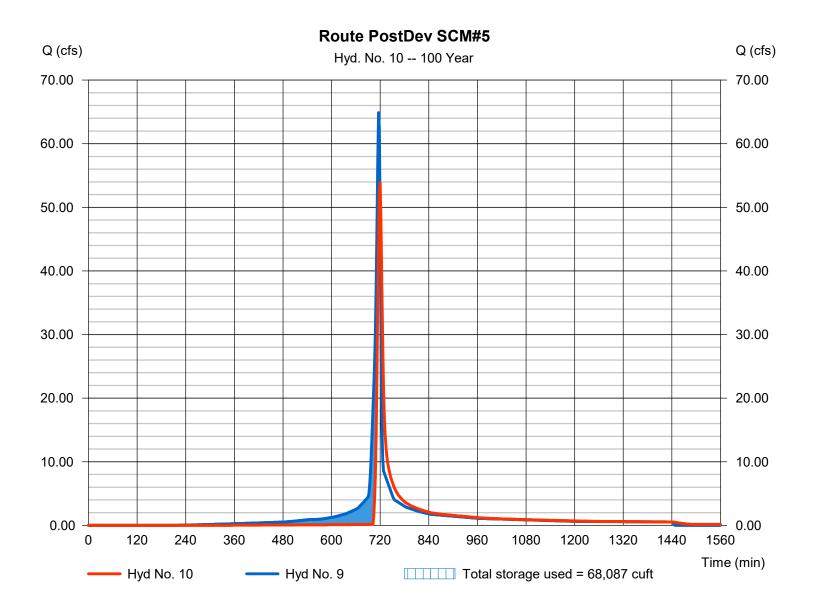
Tuesday, 01 / 28 / 2025

Hyd. No. 9

POST POD 2B #4 (to SCM #5)

Hydrograph type = SCS Runoff Peak discharge = 64.88 cfsStorm frequency = 100 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 140,335 cuftDrainage area = 6.960 acCurve number = 87 Basin Slope = 3.2 % Hydraulic length = 1270 ftTc method Time of conc. (Tc) = User $= 5.00 \, \text{min}$ Total precip. = 7.46 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

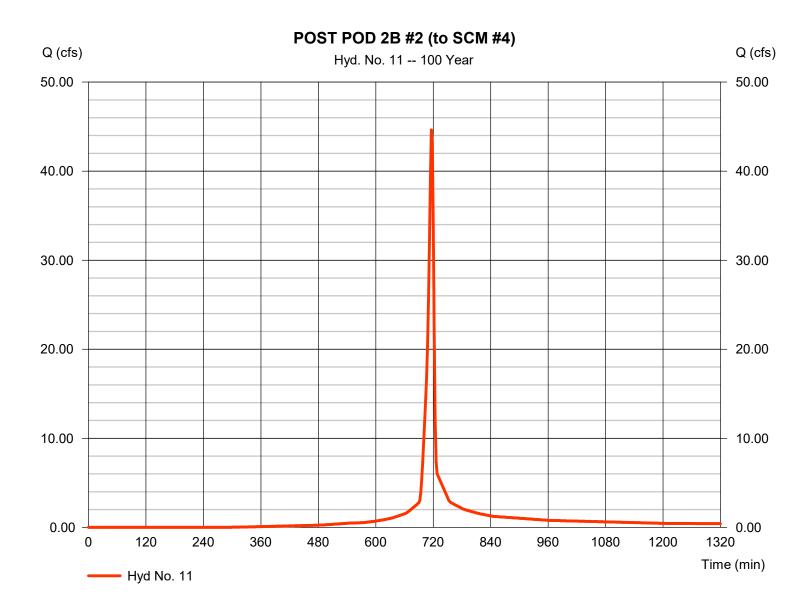

Tuesday, 01 / 28 / 2025

Hyd. No. 10

Route PostDev SCM#5

Hydrograph type Peak discharge = 53.87 cfs= Reservoir Storm frequency = 100 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 138,645 cuft Inflow hyd. No. = 9 - POST POD 2B #4 (to SCMM/a)x. Elevation = 351.37 ftMax. Storage Reservoir name = SCM #5 = 68,087 cuft

Storage Indication method used. Wet pond routing start elevation = 347.50 ft.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

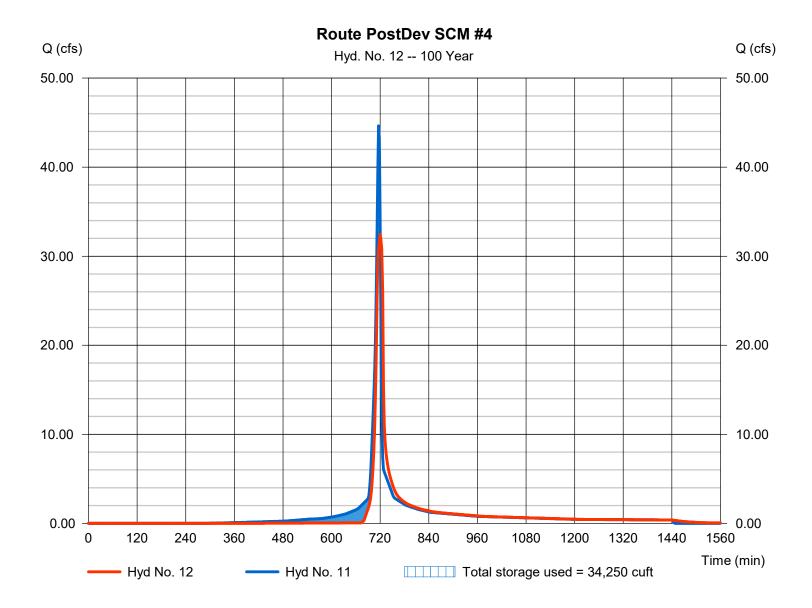
Tuesday, 01 / 28 / 2025

Hyd. No. 11

POST POD 2B #2 (to SCM #4)

Hydrograph type = SCS Runoff Peak discharge = 44.64 cfsStorm frequency = 100 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 93,742 cuft = 5.150 acCurve number Drainage area = 82 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.46 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

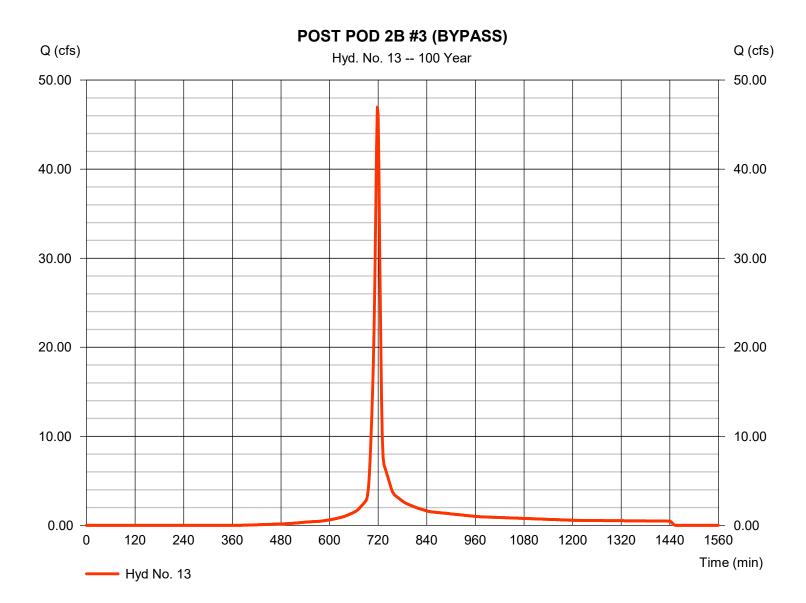

Tuesday, 01 / 28 / 2025

Hyd. No. 12

Route PostDev SCM #4

Hydrograph type Peak discharge = 32.45 cfs= Reservoir Storm frequency = 100 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 93,325 cuft = 11 - POST POD 2B #2 (to SCNM#4) Elevation Inflow hyd. No. = 360.02 ftReservoir name = SCM #4 Max. Storage = 34,250 cuft

Storage Indication method used. Wet pond routing start elevation = 357.50 ft.

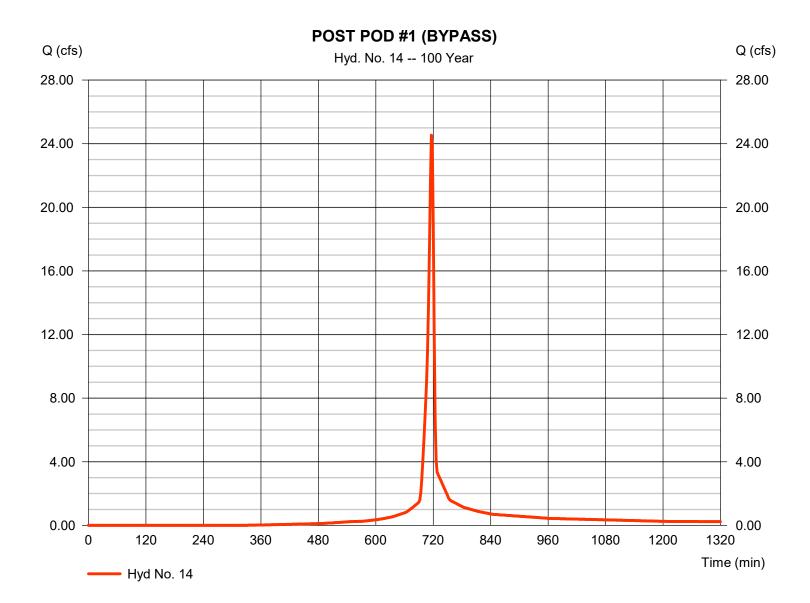

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 13

POST POD 2B #3 (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 46.98 cfsStorm frequency = 100 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 108.660 cuft = 6.350 acCurve number Drainage area = 76.4Basin Slope = 1.3 % Hydraulic length = 4170 ftTc method Time of conc. (Tc) $= 7.00 \, \text{min}$ = User Total precip. = 7.46 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

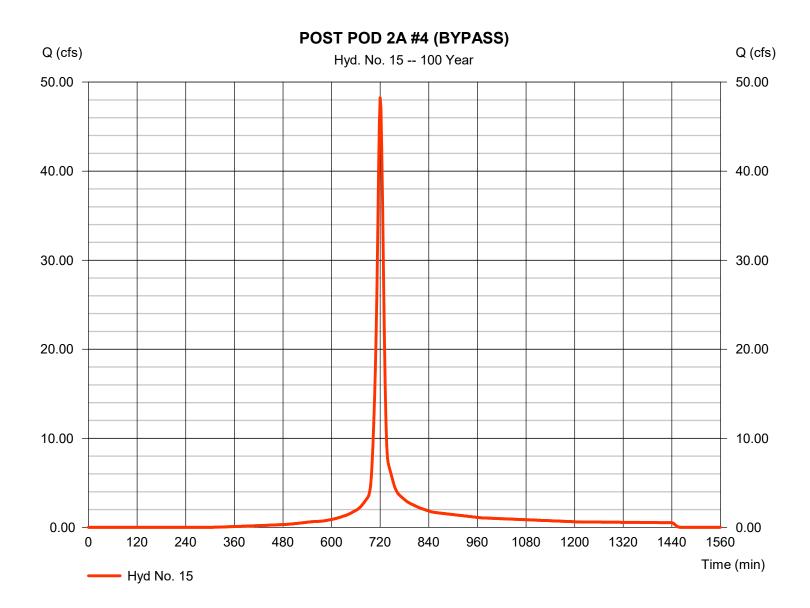

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 14

POST POD #1 (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 24.53 cfsStorm frequency = 100 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 51,006 cuftDrainage area Curve number = 2.940 ac= 79.8Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.46 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

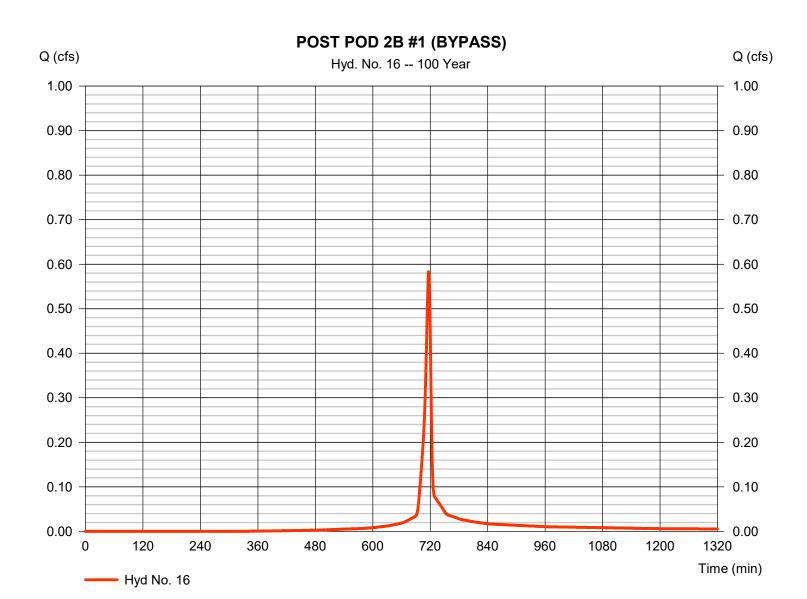

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 15

POST POD 2A #4 (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 48.23 cfsStorm frequency = 100 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 127,766 cuft Curve number Drainage area = 6.450 ac= 81.5 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 12.50 min = User Total precip. = 7.46 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

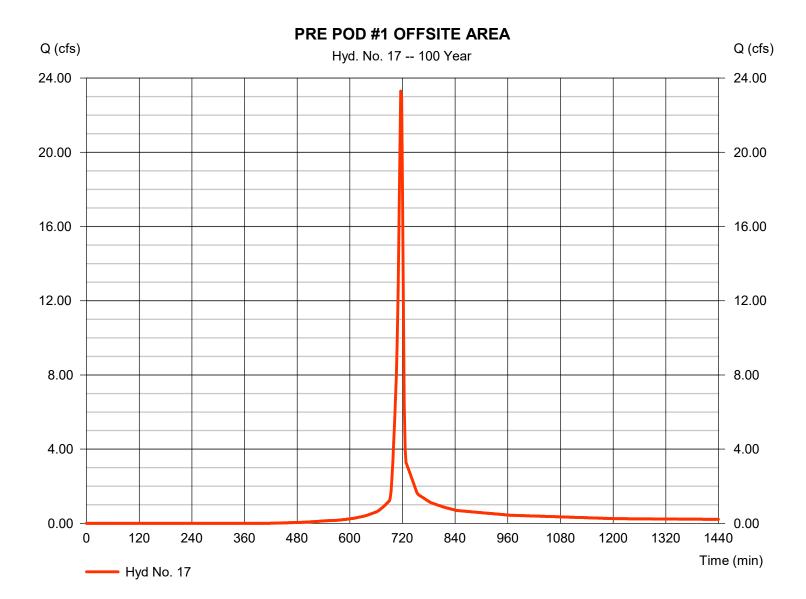

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 16

POST POD 2B #1 (BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 0.583 cfsStorm frequency = 100 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 1,212 cuft Curve number Drainage area = 0.070 ac= 79.7Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.46 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

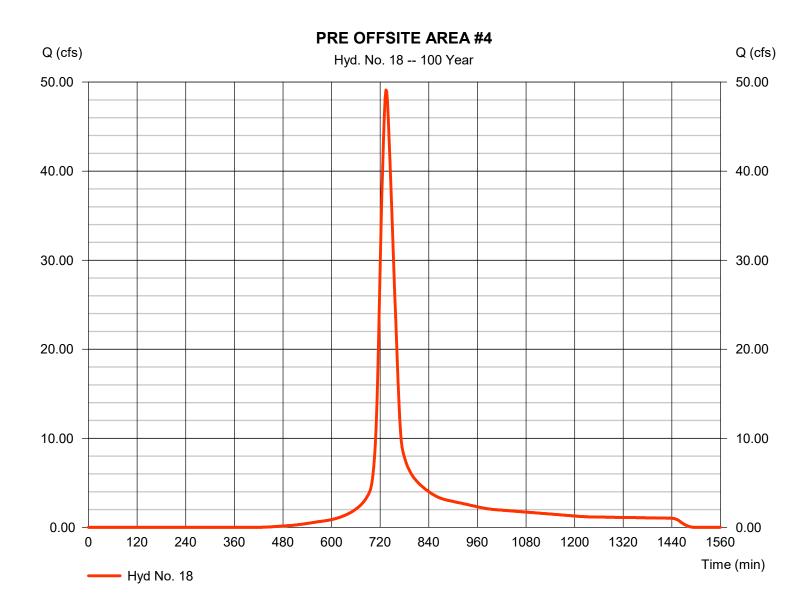

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 17

PRE POD #1 OFFSITE AREA

Hydrograph type = SCS Runoff Peak discharge = 23.29 cfsStorm frequency = 100 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 47.506 cuft Drainage area = 3.140 acCurve number = 74 Basin Slope = 4.5 % Hydraulic length = 1030 ftTc method = KIRPICH Time of conc. (Tc) $= 5.38 \, \text{min}$ Total precip. = 7.46 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

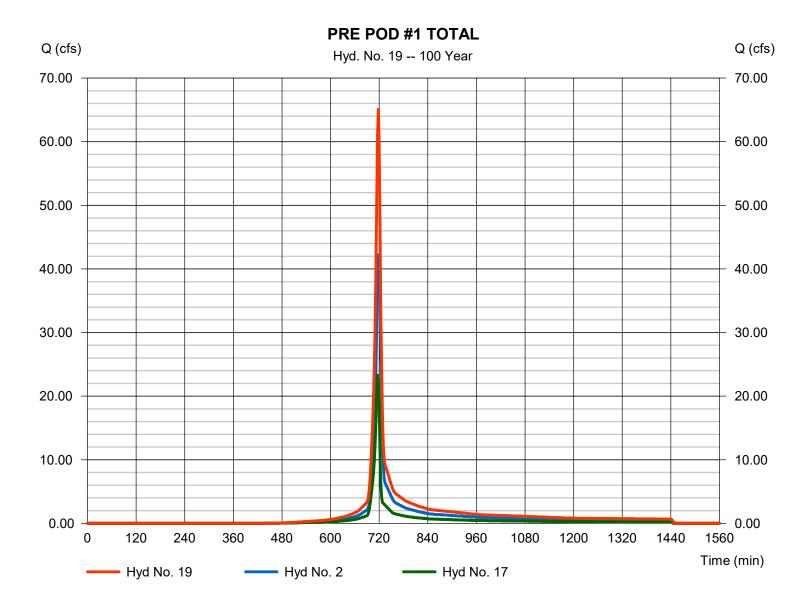

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 18

PRE OFFSITE AREA #4

Hydrograph type = SCS Runoff Peak discharge = 49.11 cfsStorm frequency = 100 yrsTime to peak = 734 min Time interval = 2 min Hyd. volume = 222.406 cuft Drainage area Curve number = 13.940 ac= 74 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) = 34.70 min = User Total precip. = 7.46 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

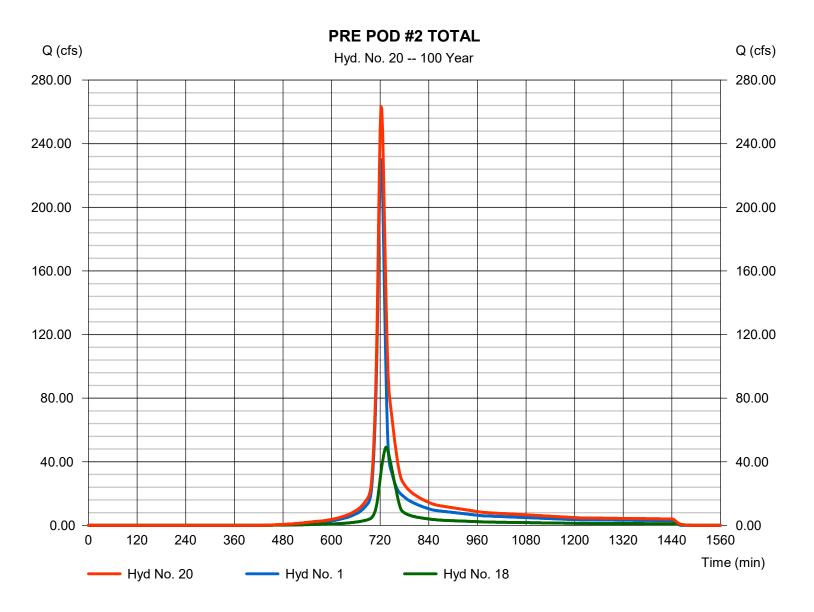

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 19

PRE POD #1 TOTAL

Hydrograph type = Combine Peak discharge = 65.08 cfsStorm frequency Time to peak = 100 yrs= 718 min Time interval = 2 min Hyd. volume = 144,124 cuft Inflow hyds. = 2, 17 Contrib. drain. area = 9.680 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 20

PRE POD #2 TOTAL

Hydrograph type = Combine Peak discharge = 263.30 cfsStorm frequency Time to peak = 100 yrs= 722 min Time interval = 2 min Hyd. volume = 868,083 cuft Inflow hyds. = 1, 18 Contrib. drain. area = 55.920 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

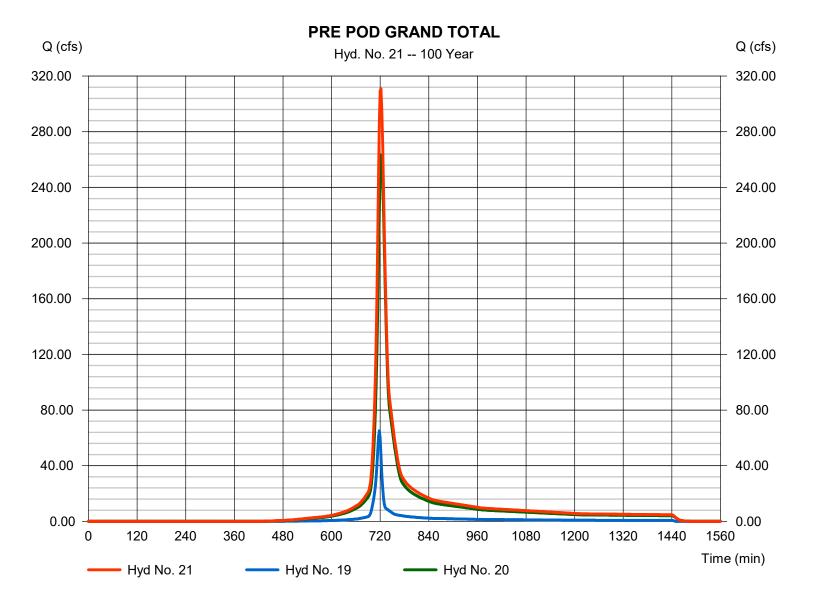
Tuesday, 01 / 28 / 2025

= 310.97 cfs

= 722 min

Hyd. No. 21

PRE POD GRAND TOTAL

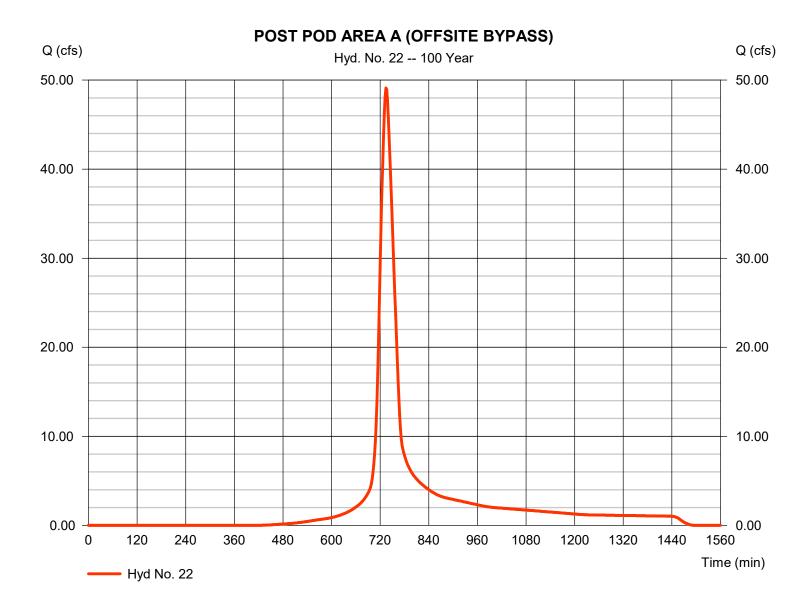

Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 2 min

Hyd. volume = 1,012,207 cuft

Peak discharge

Time to peak

Inflow hyds. = 19, 20 Contrib. drain. area = 0.000 ac

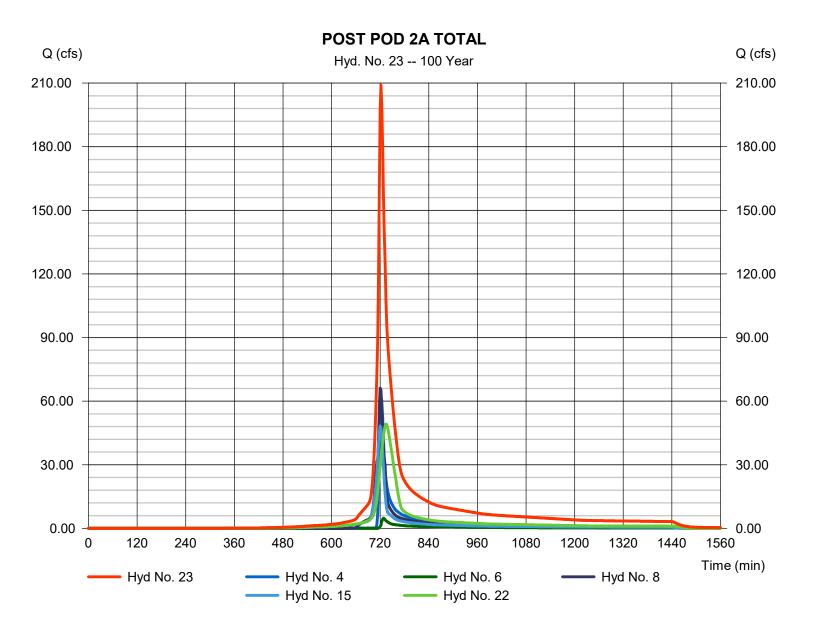

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 22

POST POD AREA A (OFFSITE BYPASS)

Hydrograph type = SCS Runoff Peak discharge = 49.11 cfsStorm frequency = 100 yrsTime to peak = 734 min Time interval = 2 min Hyd. volume = 222.406 cuft Curve number Drainage area = 13.940 ac= 74 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) = 34.70 min = User Total precip. = 7.46 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 23

POST POD 2A TOTAL

Hydrograph type = Combine Peak discharge = 209.01 cfsStorm frequency Time to peak = 100 yrs= 722 min Time interval = 2 min Hyd. volume = 719,920 cuft Inflow hyds. Contrib. drain. area = 20.390 ac= 4, 6, 8, 15, 22

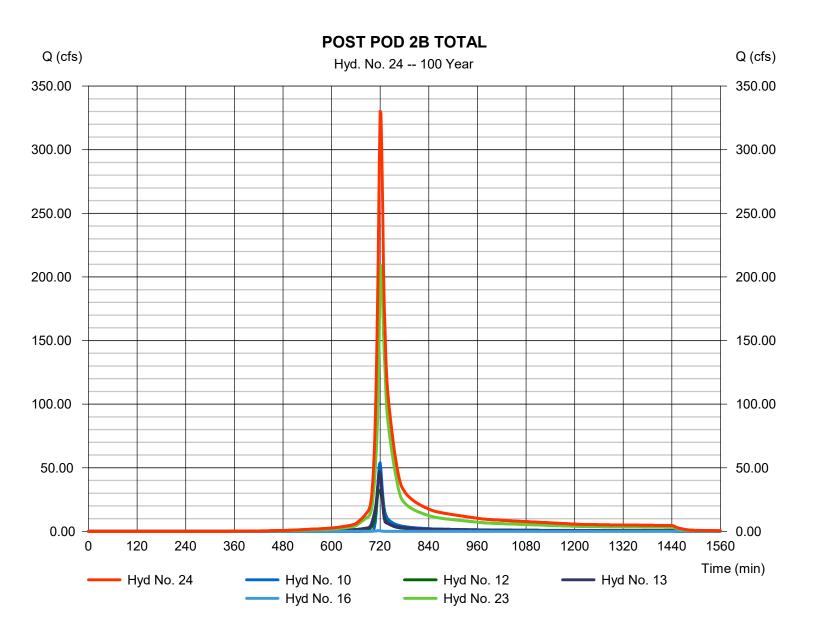
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Hyd. No. 24

POST POD 2B TOTAL

Hydrograph type = Combine Storm frequency = 100 yrs

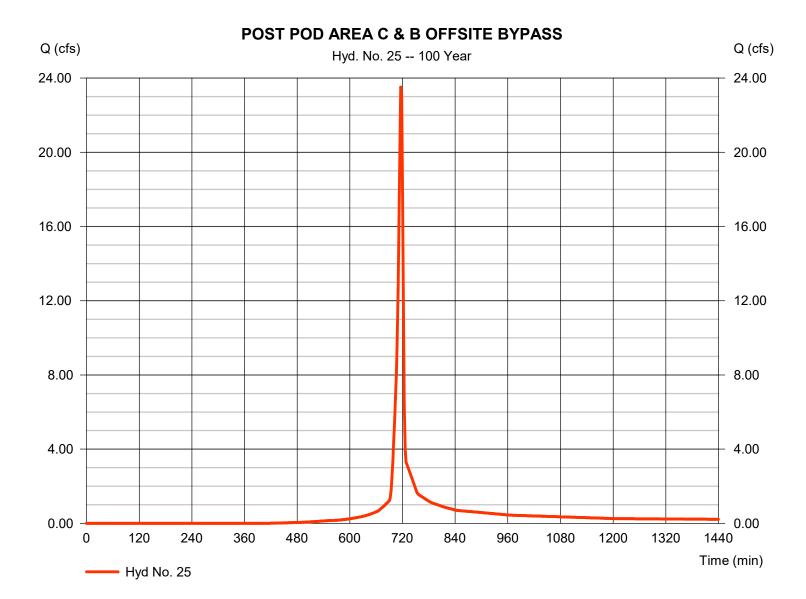

Time interval = 2 min

Inflow hyds. = 10, 12, 13, 16, 23

Peak discharge = 330.13 cfs Time to peak = 720 min = 1.061.761 cuff

Hyd. volume = 1,061,761 cuft

Contrib. drain. area = 6.420 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

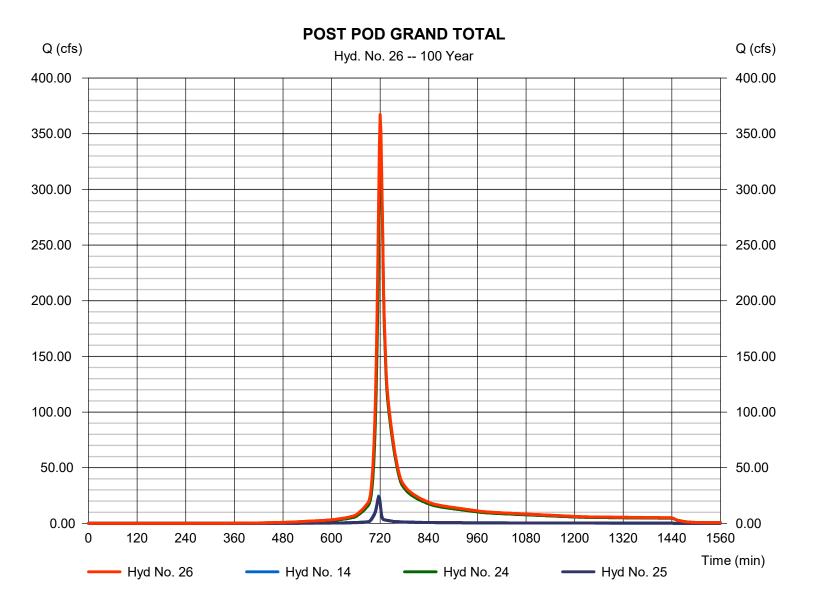
Tuesday, 01 / 28 / 2025

Hyd. No. 25

POST POD AREA C & B OFFSITE BYPASS

Hydrograph type = SCS Runoff Peak discharge = 23.52 cfsStorm frequency = 100 yrsTime to peak = 716 min Time interval = 2 min Hyd. volume = 47.960 cuftDrainage area = 3.170 acCurve number = 74 Basin Slope = 4.5 % Hydraulic length = 1030 ftTc method = KIRPICH Time of conc. (Tc) $= 5.38 \, \text{min}$ Total precip. = 7.46 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Tuesday, 01 / 28 / 2025

Hyd. No. 26

POST POD GRAND TOTAL

Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 2 min Inflow hyds. = 14, 24, 25 Peak discharge = 367.29 cfs Time to peak = 720 min Hyd. volume = 1,160,727 cuft

Contrib. drain. area = 6.110 ac

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Tuesday, 01 / 28 / 2025

Return Period	Intensity-Du	Duration-Frequency Equation Coefficients (FHA)							
(Yrs)	В	D	E	(N/A)					
1	0.0000	0.0000	0.0000						
2	69.0305	12.5000	0.8674						
3	0.0000	0.0000	0.0000						
5	0.0000	0.0000	0.0000						
10	74.0861	12.5000	0.8066						
25	62.8559	11.0000	0.7384						
50	56.0596	9.9000	0.6909						
100	53.0414	9.3000	0.6596						

File name: 20241113 Moody IDF.IDF

Intensity = B / (Tc + D)^E

Return		Intensity Values (in/hr)										
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	5.76	4.64	3.89	3.37	2.98	2.67	2.42	2.22	2.05	1.91	1.79	1.68
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10	7.36	6.01	5.11	4.47	3.98	3.60	3.29	3.04	2.82	2.64	2.48	2.34
25	8.11	6.64	5.67	4.98	4.46	4.05	3.72	3.45	3.22	3.02	2.85	2.70
50	8.67	7.10	6.08	5.36	4.82	4.39	4.05	3.76	3.52	3.32	3.14	2.98
100	9.17	7.53	6.47	5.72	5.15	4.71	4.35	4.06	3.81	3.59	3.40	3.24

Tc = time in minutes. Values may exceed 60.

Precip. file name: F:\Kalas Assemblage\Raleigh-Wake County 24Hr Rain.pcp

	Rainfall Precipitation Table (in)										
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr			
SCS 24-hour	3.00	3.45	0.00	4.33	5.02	5.96	6.80	7.46			
SCS 6-Hr	2.05	2.46	0.00	3.04	3.55	0.00	0.00	5.32			
Huff-1st	0.00	0.00	0.00	2.75	0.00	5.38	6.50	0.00			
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Custom	0.00	0.00	0.00	2.80	0.00	5.25	6.00	0.00			