

STORMWATER DRAINAGE REPORT

Prepared By:

American Engineering

4020 Westchase Boulevard, Suite 450 Raleigh, NC 27607 NCBELS #: C-3881

DATE: December 23rd, 2024

Prepared For:

Mitchell Mill Road Investors, LLC 105 Weston Estates Way Cary, NC 27513

All HGLs must stay within the pipe for 10-year events. There are several locations this is not the case currently. Please review and revise accordingly.

TABLE OF CONTENTS

REPORT

- I. SITE HISTORY
- II. PROJECT DESCRIPTION
- III. RESULTS SUMMARY
- IV. METHODOLOGY
- V. CONCLUSION

APPENDICES

- A. PROJECT MAPS AND DATA
 - 1. VICINITY MAP
 - 2. NRCS SOILS MAP
 - 3. USGS MAP
 - 4. FEMA FIRMETTE
 - 5. PRECIPITATION DATA
 - 6. GEOTECHNICAL REPORT

B. DRAINAGE AREA MAPS

1. POST-DEVELOPMENT INLET DRAINAGE AREA MAP

C. STORM CONVEYANCE CALCULATIONS

- 1. INLET C-VALUE CALCULATIONS
- 2. RIPRAP DISSIPATOR PAD CALCULATIONS
- 3. HYDRAFLOW EXPRESS CULVERT REPORT 10-YEAR
- 4. HYDRAFLOW EXPRESS CULVERT REPORT 25-YEAR
- 5. HYDRAFLOW EXPRESS CULVERT REPORT 100-YEAR
- 6. SPREAD CALCULATIONS BY LIMITED AREA (4 in/hr)
- 7. HYDRAFLOW STORM SEWER IDF CURVES
- 8. HYDRAFLOW STORM SEWERS REPORT AND PROFILES 10 YEAR
- 9. HYDRAFLOW STORM SEWERS REPORT AND PROFILES 25 YEAR

REPORT

I. SITE HISTORY

The existing parcel use is vacant. It is located west of Rolesville Road between Fowler Road and Mitchell Mill Road. The property totals 23.45 acres, PIN: 1767-17-5039. The parcel is bordered by a Bonafide Farm to the west, with new subdivisions being built along the eastern property boundary and northwest property corner. The parcel along the southern boundary is currently vacant. An existing pond located on the southeast portion of the property feeds a stream that runs north along the eastern property boundary. There is no FEMA flood plain on this site.

The soil on site predominately consists of Rawlings-Rion, 2 to 6 percent slopes (RgB), Rawlings-Rion 10 to 15 percent slopes (RgD), Helena sandy loam (HeB), and Chewacla and Wehadkee soils (ChA). The site also consists of a small portion of Wedowee-Saw (Wfb), and Altavista fine sandy loam (AaA) according to the US Department of Agriculture (USDA) NRCS soil report. More detailed soil information can be found in the project Geotechnical Report, see Appendix A.

The existing site is relatively hilly, with a high point on the southwest corner directing site drainage towards the northern property boundary. The contours on the site range from 390' to 355' above mean sea level.

II. PROJECT DESCRIPTION

The proposed development is a residential subdivision zoned parcel (R&PUD-CZ) that will consist of 95 townhomes. It is the fifth (5th) phase of a five (5) phase development, Kalas Falls. The northern entrance is connected to Kalas Falls Phase 3 and the southern entrance is connected to Kalas Falls Phase 2. The project will utilize an offsite, regional stormwater control measure (SCM) to the north of the property that is located on Kalas Falls Phase 3. This SCM (SCM #3B) has been designed to handle stormwater discharge from both Kalas Falls Phase 3 and Kalas Falls Phase 5. Kalas Falls Phase 3 is currently under review with the Town of Rolesville and Wake County.

III. RESULTS SUMMARY

Pipe Network

The stormwater conveyance on site is one system that will connect to the pipe system designed and constructed with Phase 3 of Kalas Falls. Stormwater pipe material is proposed to be reinforced concrete pipe (RCP) within the rights-of-way. RCP pipes on site range from 15" to 48" in diameter. Proposed public easements to allow for future access and maintenance of infrastructure can be seen in the Construction Drawings (CD) Plan set.

Modeling was performed in *Autodesk Hydrograph Storm Sewers* for the 10 and 25-year storm events, see Appendix C. The 10-year modeling ensured hydraulic grade lines (HGL) were maintained within the pipe networks, see Appendix C: Attachment 8. The 25-year modeling ensured HGL's were maintained within the structures, see Appendix C: Attachment 9. To accomplish modeling, inlet areas were delineated for each structure that is to accept overland flow, see Appendix B: Attachment 1. A uniform rational C-value of 0.59 was determined by implementing the post-development impervious area being conveyed to SCM's and the post-development total area being conveyed to SCM's, see Appendix C: Attachment 1. A uniform time of concentration of 10 minutes was used during modeling.

Energy Dissipation

Riprap dissipater pads have been sized for pipe outlets following NCDOT charts and methodology (see NCDOT Detail #876.02 in plan set) to reduce sediment erosion in areas where water is discharging to the surface, see Appendix C: Attachment 2. Flared-end sections or headwalls are proposed at the outlets of each system entering/exiting SCM's or proposed ditches. Class "B riprap is proposed at each of these outlets, determined by pipe size and exit velocity.

Inlet Spreads

Spreads were determined on site using a storm intensity of 4 in/hr, see Appendix C: Attachment 8. The method by Limited Area was used to calculate spread sizes and determine the max drainage area per structure based off several variables including road width, longitudinal slope, cross slope, and curb and gutter profile by implementing Manning's Equation. If the max drainage area exceeded the actual drainage area, then a double inlet was implemented in design. Max spreads for this project could not exceed 7.5-feet (5.5-foot half lane + 2-foot gutter).

Culvert Crossings

There are one culvert crossing within the Phase 5 project. The culverts are to be a 48" RCP pipe that will convey stormwater runoff underneath Graymont Oaks Dr. These 48" culvert conveys stormwater received from the north existing pond on site and the drainage area upstream.

Autodesk Hydraflow Hydrograph Extension was used to determine the peaks flows for the 10-year, 25year, and 100-year storm events for each culvert, see Table 2: *Culvert Peak Flows*. This modeling can be seen in Appendix C. *Autodesk Hydraflow Express Extension* was used to model each culvert, by implementing peaks flows obtained from *Hydrographs*, ensuring that the 10-year hydraulic grade line remained in the pipe and the 100-year storm event does not over top the roadway, see Appendix C: Attachments 3-5.

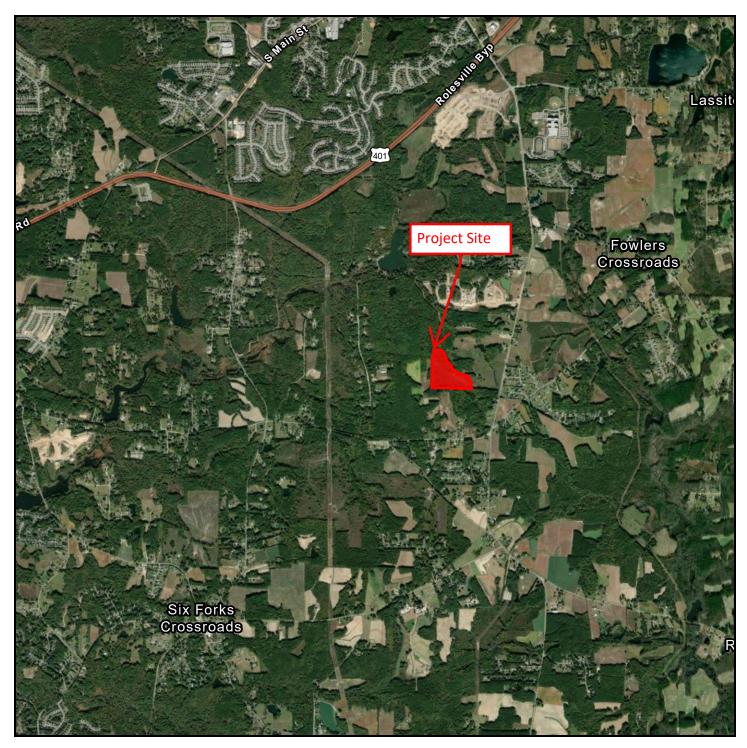
Culvert Label	Q ₁₀ (cfs)	Q ₂₅ (cfs)	Q ₁₀₀ (cfs)
Graymont Oaks Dr: 48"	90	90-150	150

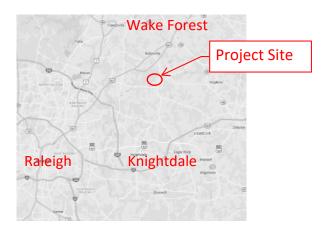
IV. METHODOLOGY

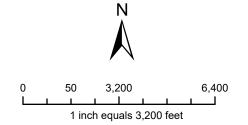
The stormwater design calculations are conducted using the following methods:

- Precipitation intensity and depths for the site were obtained from https://hdsc.nws.noaa.gov/pfds/pfds_map_cont.html?bkmrk=nc.
- Rational method was used to determined Q-values for inlet areas.
- The composite runoff coefficients (C-Value) were computed using the C-values from NCDEQ Stormwater Design Manual and are included in Appendix C: Attachments 1.
- Autodesk Hydrograph Storm Sewers Extension program was used to model storm pipes.
- Autodesk Hydraflow Express Extension program was used to model culverts.
- Riprap sizing for erosion and sediment control was determined using NCDOT standard detail #876.02 "*Guide for Rip Rap at Pipe Outlets*".

V. CONCLUSION


It is our professional opinion that the proposed stormwater design on site meets the requirements of the applicable Stormwater Rules and Regulations.


Kalas Falls Phase 5


APPENDIX A

PROJECT MAPS & DATA

Kalas Falls Phase 5 Vicinity Map

<u>Disclaimer</u> iMaps makes every effort to produce and publish the most current and accurate information possible. However, the maps are produced for information purposes, and are **NOT** surveys. No warranties, expressed or implied , are provided for the data therein, its use, or its interpretation.

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Wake County, North Carolina

Kalas Falls Phase 5

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

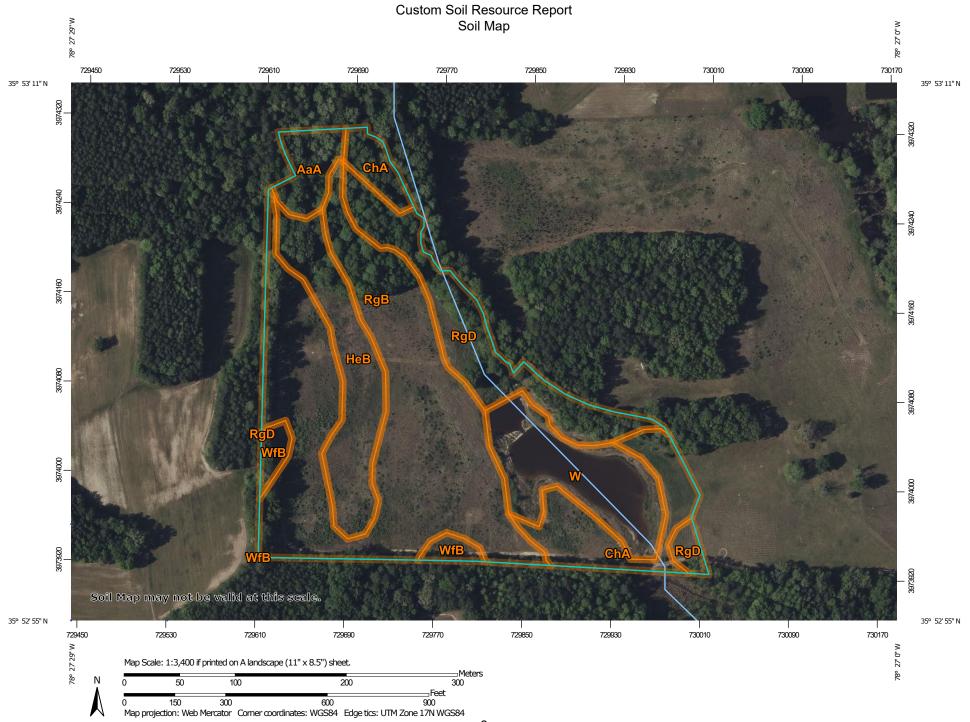
Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require


alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	
Wake County, North Carolina	
AaA—Altavista fine sandy loam, 0 to 4 percent slopes, rarely flooded	10
ChA—Chewacla and Wehadkee soils, 0 to 2 percent slopes,	
frequently flooded	11
HeB—Helena sandy loam, 2 to 6 percent slopes	12
RgB—Rawlings-Rion complex, 2 to 6 percent slopes	13
RgD—Rawlings-Rion complex, 10 to 15 percent slopes	15
W-Water	17
WfB—Wedowee-Saw complex, 2 to 6 percent slopes	17
References	20

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP L	EGEND)	MAP INFORMATION			
Area of In	Area of Interest (AOI)		Spoil Area	The soil surveys that comprise your AOI were mapped at			
	Area of Interest (AOI)	۵	Stony Spot	1:24,000.			
Soils		0	Very Stony Spot	Warning: Soil Map may not be valid at this scale.			
	Soil Map Unit Polygons	\$2	Wet Spot				
~	Soil Map Unit Lines		Other	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil			
	Soil Map Unit Points		Special Line Features	line placement. The maps do not show the small areas of			
•	Point Features Blowout	Water Fea	atures	contrasting soils that could have been shown at a more detailed scale.			
္		~	Streams and Canals	State.			
	Borrow Pit	Transport	ation	Please rely on the bar scale on each map sheet for map			
×	Clay Spot	•••	Rails	measurements.			
\diamond	Closed Depression	~	Interstate Highways	Source of Map: Natural Resources Conservation Service			
X	Gravel Pit	~	US Routes	Web Soil Survey URL:			
000	Gravelly Spot	\sim	Major Roads	Coordinate System: Web Mercator (EPSG:3857)			
٥	Landfill	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator			
A.	Lava Flow	Backgrou	nd Aerial Photography	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the			
عله	Marsh or swamp	No.		Albers equal-area conic projection, should be used if more			
R	Mine or Quarry			accurate calculations of distance or area are required.			
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as			
0	Perennial Water			of the version date(s) listed below.			
\vee	Rock Outcrop			Soil Survey Area: Wake County, North Carolina			
+	Saline Spot			Survey Area Data: Version 25, Oct 2, 2023			
÷.	Sandy Spot			Soil map units are labeled (as space allows) for map scales			
-	Severely Eroded Spot			1:50,000 or larger.			
ô	Sinkhole			Date(s) aerial images were photographed: Apr 24, 2022–May			
à	Slide or Slip			9, 2022			
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.			

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
AaA	Altavista fine sandy loam, 0 to 4 percent slopes, rarely flooded	0.9	3.7%		
ChA	Chewacla and Wehadkee soils, 0 to 2 percent slopes, frequently flooded	2.5	10.8%		
HeB	Helena sandy loam, 2 to 6 percent slopes	2.9	12.2%		
RgB	Rawlings-Rion complex, 2 to 6 percent slopes	10.5	44.5%		
RgD	Rawlings-Rion complex, 10 to 15 percent slopes	3.3	14.1%		
W	Water	2.9	12.5%		
WfB Wedowee-Saw complex, 2 to 6 percent slopes		0.5	2.3%		
Totals for Area of Interest		23.5	100.0%		

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit

descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Wake County, North Carolina

AaA—Altavista fine sandy loam, 0 to 4 percent slopes, rarely flooded

Map Unit Setting

National map unit symbol: 2xh95 Elevation: 70 to 560 feet Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F Frost-free period: 200 to 250 days Farmland classification: All areas are prime farmland

Map Unit Composition

Altavista, rarely flooded, and similar soils: 95 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Altavista, Rarely Flooded

Setting

Landform: Stream terraces Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Old loamy alluvium derived from igneous and metamorphic rock

Typical profile

Ap - 0 to 8 inches: fine sandy loam
E - 8 to 12 inches: fine sandy loam
BE - 12 to 15 inches: sandy clay loam
Bt - 15 to 35 inches: clay loam
BC - 35 to 42 inches: sandy loam
C - 42 to 80 inches: coarse sandy loam

Properties and qualities

Slope: 0 to 4 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: About 18 to 30 inches
Frequency of flooding: Rare
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 8.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: C Ecological site: F136XY660NC - High terraces, very rare Inundation Hydric soil rating: No

Minor Components

Roanoke, occasionally flooded, undrained

Percent of map unit: 2 percent Landform: Stream terraces Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: Yes

ChA—Chewacla and Wehadkee soils, 0 to 2 percent slopes, frequently flooded

Map Unit Setting

National map unit symbol: 2qwpj Elevation: 70 to 560 feet Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F Frost-free period: 200 to 250 days Farmland classification: Prime farmland if drained and either protected from flooding or not frequently flooded during the growing season

Map Unit Composition

Chewacla, frequently flooded, and similar soils: 50 percent *Wehadkee, frequently flooded, and similar soils:* 45 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Chewacla, Frequently Flooded

Setting

Landform: Flood plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Linear Parent material: Loamy alluvium derived from igneous and metamorphic rock

Typical profile

A - 0 to 4 inches: loam Bw1 - 4 to 26 inches: silty clay loam Bw2 - 26 to 38 inches: loam Bw3 - 38 to 60 inches: clay loam C - 60 to 80 inches: loam

Properties and qualities

Slope: 0 to 2 percent *Depth to restrictive feature:* More than 80 inches *Drainage class:* Somewhat poorly drained

Custom Soil Resource Report

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: About 6 to 24 inches Frequency of flooding: Frequent

Frequency of ponding: None

Available water supply, 0 to 60 inches: High (about 10.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: B/D Ecological site: F136XY610GA - Flood plain forest, wet Hydric soil rating: No

Description of Wehadkee, Frequently Flooded

Setting

Landform: Flood plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Linear Parent material: Loamy alluvium derived from igneous and metamorphic rock

Typical profile

A - 0 to 7 inches: silt loam Bg - 7 to 49 inches: clay loam Cg - 49 to 80 inches: clay loam

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 1.98 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: Frequent
Frequency of ponding: None
Available water supply, 0 to 60 inches: High (about 11.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6w Hydrologic Soil Group: B/D Ecological site: F136XY600NC - Flood plain forest, very wet Hydric soil rating: Yes

HeB—Helena sandy loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2qqgq

Elevation: 70 to 560 feet *Mean annual precipitation:* 39 to 47 inches *Mean annual air temperature:* 55 to 63 degrees F *Frost-free period:* 200 to 250 days *Farmland classification:* All areas are prime farmland

Map Unit Composition

Helena and similar soils: 92 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Helena

Setting

Landform: Interfluves Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from granite and gneiss

Typical profile

Ap - 0 to 12 inches: sandy loam BE - 12 to 19 inches: sandy clay loam Bt1 - 19 to 39 inches: clay Bt2 - 39 to 43 inches: clay loam BCg - 43 to 46 inches: clay loam C - 46 to 80 inches: sandy loam

Properties and qualities

Slope: 2 to 6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 18 to 30 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 8.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: D Ecological site: F136XY810SC - Acidic upland forest, seasonally wet Hydric soil rating: No

RgB—Rawlings-Rion complex, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2xhb9 Elevation: 70 to 560 feet Mean annual precipitation: 39 to 47 inches *Mean annual air temperature:* 55 to 63 degrees F *Frost-free period:* 200 to 250 days *Farmland classification:* Farmland of statewide importance

Map Unit Composition

Rawlings and similar soils: 55 percent *Rion and similar soils:* 35 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Rawlings

Setting

Landform: Interfluves Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from granite

Typical profile

Ap - 0 to 8 inches: sandy loam Bt - 8 to 20 inches: sandy clay loam C - 20 to 40 inches: gravelly sandy loam R - 40 to 80 inches: bedrock

Properties and qualities

Slope: 2 to 6 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: C Ecological site: F136XY830NC - Acidic upland forest, depth restriction, dry-moist Hydric soil rating: No

Description of Rion

Setting

Landform: Interfluves Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Saprolite derived from granite and gneiss

Typical profile

Ap - 0 to 8 inches: sandy loam *Bt1 - 8 to 17 inches:* sandy clay loam *Bt2 - 17 to 38 inches:* sandy loam C - 38 to 80 inches: sandy loam

Properties and qualities

Slope: 2 to 6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 7.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: B Ecological site: F136XY820GA - Acidic upland forest, moist Hydric soil rating: No

RgD—Rawlings-Rion complex, 10 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2xhb8 Elevation: 70 to 560 feet Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F Frost-free period: 200 to 250 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Rawlings and similar soils: 55 percent *Rion and similar soils:* 35 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Rawlings

Setting

Landform: Interfluves Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from granite

Typical profile

Ap - 0 to 8 inches: sandy loam Bt - 8 to 20 inches: sandy clay loam C - 20 to 40 inches: gravelly sandy loam R - 40 to 80 inches: bedrock

Properties and qualities

Slope: 10 to 15 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: C Ecological site: F136XY830NC - Acidic upland forest, depth restriction, dry-moist Hydric soil rating: No

Description of Rion

Setting

Landform: Interfluves Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Saprolite derived from granite and gneiss

Typical profile

Ap - 0 to 8 inches: sandy loam Bt1 - 8 to 17 inches: sandy clay loam Bt2 - 17 to 38 inches: sandy loam C - 38 to 80 inches: sandy loam

Properties and qualities

Slope: 10 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 7.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: F136XY820GA - Acidic upland forest, moist Hydric soil rating: No

W-Water

Map Unit Setting

National map unit symbol: 2qqjv Elevation: 70 to 450 feet Mean annual precipitation: 39 to 51 inches Mean annual air temperature: 55 to 63 degrees F Frost-free period: 200 to 250 days Farmland classification: Not prime farmland

Map Unit Composition

Water: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Water

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydric soil rating: No

WfB—Wedowee-Saw complex, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2xn42 Elevation: 70 to 560 feet Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F Frost-free period: 200 to 250 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Wedowee and similar soils: 60 percent Saw and similar soils: 35 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wedowee

Setting

Landform: Interfluves Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex *Parent material:* Saprolite residuum weathered from granite and gneiss and/or saprolite residuum weathered from schist

Typical profile

Ap - 0 to 4 inches: sandy loam E - 4 to 7 inches: sandy loam BC - 23 to 35 inches: clay loam C - 35 to 80 inches: sandy clay loam

Properties and qualities

Slope: 2 to 6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 6.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: B Ecological site: F136XY820GA - Acidic upland forest, moist Hydric soil rating: No

Description of Saw

Setting

Landform: Interfluves Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from granite and gneiss

Typical profile

Ap - 0 to 8 inches: sandy loam Bt - 8 to 20 inches: clay BC - 20 to 26 inches: sandy clay loam C - 26 to 29 inches: sandy loam R - 29 to 80 inches: bedrock

Properties and qualities

Slope: 2 to 6 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.01 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e

Custom Soil Resource Report

Hydrologic Soil Group: C *Ecological site:* F136XY830NC - Acidic upland forest, depth restriction, dry-moist *Hydric soil rating:* No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

ROLESVILLE QUADRANGLE NORTH CAROLINA 7.5-MINUTE TOPO



Produced by the United States Geological Survey North American Datum of 1983 (NAD83) World Geodetic System of 1984 (WGS84). Projection and 1 000-meter grid:Universal Transverse Mercator, Zone 175 Data is provided by The National Map (TNM), is the best available at the time of map generation, and includes data content from supporting themes of Elevation, Hydrography, Geographic Names, Boundaries, Transportation, Structures, Land Cover, and Orthoimagery. Refer to associated Federal Geographic Data Committee (FGDC) Metadata for additional source data information.

This map is not a legal document. Boundaries may be generalized for this map scale. Private lands within government reservations may not be shown. Obtain permission before entering private lands. Temporal changes may have occurred since these data were collected and some data may no longer represent actual surface conditions.

Learn About The National Map: https://nationalmap.gov

ADJOINING QUADRANGLES

ouisbu

Bunn West

Zebulor

ALAS 5 SITE

1

K K

2.3.3.2

FLOOD HAZARD INFORMATION

SEE FIS REPORT FOR ZONE DESCRIPTIONS AND INDEX MAP FOR FIRM PANEL LAYOUT THE INFORMATION DEPICTED ON THIS MAP AND SUPPORTING DOCUMENTATION ARE ALSO AVAILABLE IN DIGITAL FORMAT AT HTTPS://FRIS.NC.GOV/FRIS HTTPS://MSC.FEMA.GOV

Without Base Flood Elevation (BFE) With BFE or Depth Zone AE, AO, AH, VE, AR

Regulatory Floodway HAZARD AREAS

0.2% Annual Chance Flood Hazard, Areas of 1% Annual Chance Flood with Average Depth Less Than One Foot or With Drainage Areas of Less Than One Square Mile Zone X

OTHER AREAS OF FLOOD HAZARD

Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee See Notes Zone X

Areas Determined to be Outside the 0.2% Annual Chance Floodplain Zone X

Channel, Culvert, or Storm Sewer

GENERAL STRUCTURES

Levee, Dike, or Floodwall -18:2— Cross Sections with 1% Annual Chance 012-Water Surface Elevation (BFE) (8) - - - - Coastal Transect ---- Coastal Transect Baseline Profile Baseline Hydrographic Feature

Limit of Study OTHER

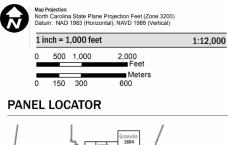
NOTES TO USERS

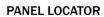
For information and questions about this map, available products associated with this FIRM including historic versions of this FIRM, how to order products or the National Flood Insurance Program in general, please call the FIRM Map Information acXanage at 1.377-EHM-MAP (1-877-338-2627) or visit the FEMA Map Service Center website at https://msc.fema.gov.An.accompanying Flood Insurance Study report, Letter of Map Revision (CUMR) or Letter of Map.Amendment (CUAN) revising portions of this parel, and digital versions of this FIRM may be available to the Map Dervice Center.

Communities annexing land on adjacent FIRM panels must obtain a current copy of the adjacent panel as well as the current FIRM Index. These may be ordered directly from the Map Service Center at the number listed above.

For community and countywide map dates refer to the Flood Insurance Study report for this jurisdiction

To determine if flood insurance is available in the community, contact your Insurance agent or call the National Flood Insurance Program at 1-800-638-6620.


digital FLOOD database and in the recimical support was reasons (result) ACCREDITED LEVEE NOTES TO USERS: If an accredited levee note appears on this panel check with to obtain more information, such as the estimated level of protection provided (which may exci community to obtain more information, such as the estimated level of protection provided (which may exci for areas on this panel. To nitigate flood rink in residual rink areas, property owners and residents are an to consider flood insurance and floodprofing or other protective measures. For more information on flood interneted parties should visit the FEMA Website at https://www.fema.gov/national.flood-insurance.progra


interested parties should visit the FENA Website at https://www.fema.gov/national-linod-insurance-program PROVISION-LIN-LA CRCED/TED LEVEE NOTES TO USERS 14 a Provisionally Accretisted Levee (PAL) note spease on this panel, check with your local community to obtain more information, such as the stimulet lavel of protection provided (which may exceed the 1-percent-annual-chance level) and Emergency Action Plan, on the levee system(s) shown as providing protection for areas on this panel. To maintain accreditation, the levee owner community is required to submit the data and documentation necessary data and documentation of the AIP regulations. If the community or owner does not provide the necessary data and documentation of the data may revise the flood hazard and risk information for this area to reflect de-accreditation of the levee system. To disk risk and risk information for this area to reflect de-accreditation of the levee as flood risk in residual risk areas, provide mergence and the resident same encouraged to cossider. The regulation area and flood risk in residual risk areas, promote maintain on nood resumance, interested parties should visit the FENA Vebart at thtps://www.filem.gov/instance.iteo/flood insurance.program.

LIMIT OF MODERATE WAVE ACTION NOTES TO USERS: For some coastal flooding zones the AE Zone category has been divided by a Limit of Moderate Wave Action (LIMWA). The LIMWA represents the approximate landward limit of the 15-hoot breaking wave. The effects of wave hazards between the VE Zone and the LIMWA (or between the shoreline and the LIMWA for areas where VE Zones are not identified) will be similar to, but less severe man those in the VE Zone.

- Limit of Moderate Wave Action (LiMWA)

SCALE

NOAA Atlas 14, Volume 2, Version 3 Location name: Wake Forest, North Carolina, USA* Latitude: 35.8876°, Longitude: -78.4479° Elevation: 396 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

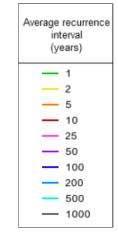
NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹										
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.85 (4.44-5.30)	5.63 (5.16-6.14)	6.41 (5.87-7.00)	7.20 (6.59-7.86)	7.99 (7.28-8.72)	8.64 (7.82-9.41)	9.20 (8.29-10.0)	9.71 (8.70-10.6)	10.3 (9.12-11.2)	10.8 (9.49-11.8)
10-min	3.87	4.50	5.13	5.76	6.37	6.88	7.31	7.69	8.12	8.48
	(3.55-4.24)	(4.12-4.91)	(4.70-5.60)	(5.27-6.28)	(5.80-6.95)	(6.23-7.49)	(6.59-7.97)	(6.89-8.39)	(7.22-8.87)	(7.48-9.29)
15-min	3.22 (2.95-3.53)	3.77 (3.46-4.12)	4.33 (3.96-4.72)	4.86 (4.44-5.30)	5.38 (4.90-5.87)	5.80 (5.26-6.33)	6.16 (5.55-6.71)	6.47 (5.80-7.06)	6.81 (6.06-7.44)	7.10 (6.26-7.77)
30-min	2.21 (2.02-2.42)	2.60 (2.39-2.85)	3.07 (2.82-3.35)	3.52 (3.22-3.84)	3.99 (3.63-4.35)	4.37 (3.96-4.76)	4.72 (4.25-5.14)	5.04 (4.51-5.50)	5.42 (4.82-5.92)	5.75 (5.07-6.29)
60-min	1.38	1.63	1.97	2.29	2.66	2.96	3.25	3.53	3.89	4.20
	(1.26-1.51)	(1.50-1.78)	(1.80-2.15)	(2.10-2.50)	(2.42-2.90)	(2.68-3.23)	(2.93-3.54)	(3.16-3.86)	(3.46-4.25)	(3.70-4.59)
2-hr	0.805	0.958	1.17	1.38	1.62	1.83	2.04	2.25	2.53	2.78
	(0.732-0.889)	(0.874-1.05)	(1.06-1.28)	(1.25-1.51)	(1.46-1.77)	(1.65-2.00)	(1.82-2.23)	(2.00-2.46)	(2.22-2.77)	(2.41-3.04)
3-hr	0.568	0.676	0.828	0.981	1.17	1.33	1.50	1.67	1.90	2.12
	(0.516-0.630)	(0.617-0.746)	(0.753-0.913)	(0.890-1.08)	(1.05-1.28)	(1.19-1.46)	(1.33-1.64)	(1.47-1.83)	(1.66-2.09)	(1.82-2.32)
6-hr	0.341	0.407	0.498	0.591	0.706	0.810	0.914	1.02	1.17	1.31
	(0.311-0.377)	(0.372-0.448)	(0.454-0.548)	(0.538-0.649)	(0.638-0.773)	(0.727-0.885)	(0.814-0.998)	(0.903-1.12)	(1.02-1.28)	(1.13-1.43)
12-hr	0.200	0.238	0.293	0.350	0.420	0.486	0.552	0.623	0.721	0.813
	(0.183-0.220)	(0.219-0.261)	(0.268-0.322)	(0.319-0.383)	(0.381-0.459)	(0.436-0.529)	(0.491-0.600)	(0.548-0.677)	(0.624-0.784)	(0.693-0.884)
24-hr	0.119	0.144	0.181	0.211	0.251	0.284	0.318	0.353	0.402	0.441
	(0.110-0.128)	(0.134-0.155)	(0.168-0.195)	(0.195-0.227)	(0.232-0.271)	(0.262-0.306)	(0.292-0.343)	(0.323-0.381)	(0.365-0.434)	(0.399-0.478)
2-day	0.069	0.083	0.103	0.120	0.142	0.160	0.179	0.198	0.225	0.246
	(0.064-0.074)	(0.077-0.089)	(0.096-0.111)	(0.111-0.129)	(0.132-0.153)	(0.148-0.173)	(0.164-0.193)	(0.181-0.214)	(0.204-0.243)	(0.222-0.266)
3-day	0.048	0.058	0.073	0.084	0.099	0.112	0.125	0.138	0.156	0.171
	(0.045-0.052)	(0.054-0.063)	(0.068-0.078)	(0.078-0.090)	(0.092-0.107)	(0.103-0.120)	(0.115-0.134)	(0.126-0.148)	(0.142-0.168)	(0.154-0.184)
4-day	0.038	0.046	0.057	0.066	0.078	0.087	0.097	0.108	0.122	0.133
	(0.036-0.041)	(0.043-0.049)	(0.053-0.061)	(0.061-0.070)	(0.072-0.083)	(0.081-0.094)	(0.090-0.104)	(0.099-0.115)	(0.111-0.131)	(0.121-0.143)
7-day	0.025	0.030	0.037	0.042	0.050	0.056	0.062	0.068	0.077	0.084
	(0.024-0.027)	(0.028-0.032)	(0.035-0.040)	(0.040-0.045)	(0.046-0.053)	(0.052-0.060)	(0.057-0.066)	(0.063-0.073)	(0.070-0.083)	(0.076-0.090)
10-day	0.020	0.024	0.029	0.033	0.038	0.042	0.047	0.051	0.057	0.062
	(0.019-0.021)	(0.022-0.025)	(0.027-0.031)	(0.031-0.035)	(0.036-0.041)	(0.039-0.045)	(0.043-0.050)	(0.047-0.055)	(0.052-0.061)	(0.056-0.066)
20-day	0.013	0.016	0.019	0.021	0.024	0.027	0.029	0.032	0.036	0.038
	(0.012-0.014)	(0.015-0.017)	(0.018-0.020)	(0.020-0.023)	(0.023-0.026)	(0.025-0.029)	(0.027-0.031)	(0.030-0.034)	(0.033-0.038)	(0.035-0.041)
30-day	0.011	0.013	0.015	0.017	0.019	0.021	0.023	0.024	0.027	0.029
	(0.010-0.012)	(0.012-0.014)	(0.014-0.016)	(0.016-0.018)	(0.018-0.020)	(0.020-0.022)	(0.021-0.024)	(0.023-0.026)	(0.025-0.029)	(0.026-0.031)
45-day	0.009	0.011	0.012	0.014	0.015	0.017	0.018	0.019	0.021	0.022
	(0.009-0.010)	(0.010-0.011)	(0.012-0.013)	(0.013-0.015)	(0.015-0.016)	(0.016-0.018)	(0.017-0.019)	(0.018-0.020)	(0.019-0.022)	(0.021-0.023)
60-day	0.008	0.010	0.011	0.012	0.013	0.014	0.015	0.016	0.018	0.019
	(0.008-0.009)	(0.009-0.010)	(0.010-0.012)	(0.011-0.013)	(0.013-0.014)	(0.014-0.015)	(0.015-0.016)	(0.015-0.017)	(0.017-0.019)	(0.017-0.020)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

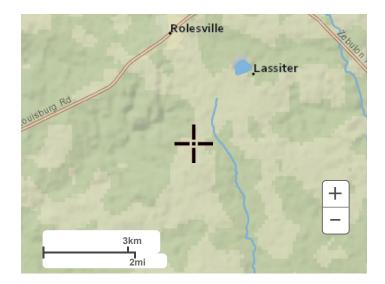
Back to Top

PF graphical

10¹ Precipitation intensity (in/hr) 10⁰ 10^{-1} 10-2 60-min . - Pri-Duration 2-day 3-day 4-day 7-day . 10-day . 45-day -60-day -10-min 15-min 30-min 2-hr 3-hr 24-hr 20-day 30-day 5-min 10¹ Precipitation intensity (in/hr) 10⁰ 10⁻¹ 10-2 1 2 5 10 25 50 100 200 500 1000 Average recurrence interval (years)

Duration					
5-min	2-day				
- 10-min	— 3-day				
15-min	— 4-day				
30-min	— 7-day				
60-min	— 10-day				
— 2-hr	— 20-day				
— 3-hr	— 30-day				
— 6-hr	— 45-day				
- 12-hr	- 60-day				
24-hr					

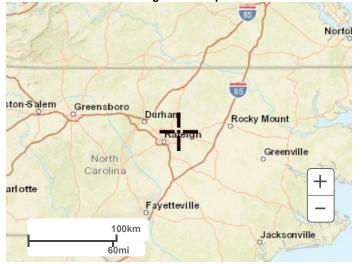
NOAA Atlas 14, Volume 2, Version 3

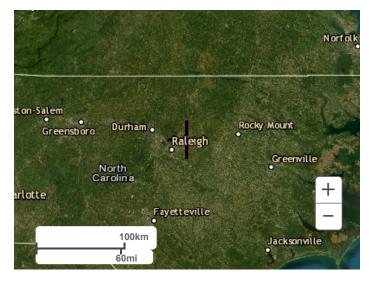

Created (GMT): Tue Nov 12 22:22:08 2024

Back to Top

Maps & aerials

Small scale terrain


PDS-based intensity-duration-frequency (IDF) curves Latitude: 35.8876°, Longitude: -78.4479°


Large scale terrain

Large scale map

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

ECS Southeast, LLP

Preliminary Geotechnical Engineering Report

Kalas Falls Residential Development

1832 Rolesville Road Rolesville, North Carolina

ECS Project Number 06:24735

March 11, 2022

"Setting the Standard for Service"

March 11, 2022

Ms. Julie Spencer D.R. Horton 2000 Aerial Center Parkway Suite 110-A Morrisville, North Carolina 27560

ECS Project No. 06:24735

Reference: Preliminary Geotechnical Engineering Report Kalas Falls Residential Development 1832 Rolesville Road Rolesville, North Carolina

Dear Ms. Spencer:

ECS Southeast, LLP (ECS) has completed the preliminary subsurface exploration, laboratory testing, and geotechnical engineering analyses for the above-referenced project. Our services were performed in general accordance with our agreed to scope of work. This report presents our understanding of the geotechnical aspects of the project, the results of the field exploration conducted, and our preliminary geotechnical design and construction recommendations for the project.

It has been our pleasure to be of service to you during this phase of this project. We would appreciate the opportunity to remain involved during the continuation of the design phase, and we would like to provide our services during construction phase operations as well to verify subsurface conditions assumed for this report. Should you have any questions concerning the information contained in this report, or if we can be of further assistance to you, please contact us.

Respectfully submitted,

ECS Southeast, LLP

Gumnar H. Goslin Geotechnical Staff Project Manager <u>gqoslin@ecslimited.com</u>

Matthew B. Olsen, P.E. Vice President, Principal Engineer molesen@ecslimited.com

TABLE OF CONTENTS

EXE	CUT	IVE SUN	MMARY	.1
1.0		INTRO	DUCTION	.3
2.0		PROJEC	T INFORMATION	.3
	2.1	SITE	INFORMATION	.4
	2.2	PRO	POSED CONSTRUCTION	.4
3.0		FIELD E	XPLORATION AND LABORATORY TESTING	.5
	3.1	SUBS	SURFACE CHARACTERIZATION	5
	3.2	GRO	UNDWATER OBSERVATIONS	.8
	3.3	LABO	DRATORY TESTING	.8
4.0		PRELIN	IINARY RECOMMENDATIONS	.9
	4.1	BUIL	DING/STRUCTURE DESIGN	.9
	4.2	SUB	GRADE PREPARATION	.9
		4.2.1	Stripping and Grubbing	.9
		4.2.2	Proofrolling	.9
	4.3	EAR	THWORK OPERATIONS	10
		4.3.1	Engineered Fill Materials	10
		4.3.2	Existing Fill	12
		4.3.3	Expansive Soil	12
		4.3.4	Compaction	13
	4.4	PAVI	EMENTS	14
		4.4.1	Pavement Sections	14
5.0		ADDITI	ONAL GEOTECHNICAL SERVICES	14
6.0		CLOSIN	G	14

APPENDICES

Appendix A – Diagrams & Reports

- Site Location Diagram
- Boring Location Diagram

Appendix B – Field Operations

- Reference Notes for Boring Logs
- Subsurface Exploration Procedure: Standard Penetration Testing (SPT)
- Boring Logs

Appendix C – Laboratory Testing

- Laboratory Test Results Summary
- Grain Size Analysis
- Plasticity Chart
- Moisture-Density Relationship Curves
- CBR Test Results

EXECUTIVE SUMMARY

This executive summary is intended as a very brief overview of the primary geotechnical conditions that are expected to affect design and construction. Information gleaned from the executive summary should not be utilized in lieu of reading the entire geotechnical report.

- Elastic SILT (MH) and Fat CLAY (CH) are present at the site in localized areas. These are potentially expansive soils per the current North Carolina Building Code and local practice. Based on laboratory testing and our experience, these soils have a medium to high potential for expansion (i.e., shrink-swell) and are considered to be expansive. We recommend that the mitigation measures given in this report be implemented to reduce the potential for structure or pavement distress (cracking, excessive deformation) as a result of volumetric changes in potentially expansive soils due to variations in its moisture content. Mitigation options include a 1 foot separation distance under footings, floor slabs and pavements and chemical (lime) stabilization. Additional soil sampling and laboratory testing should be performed during the design phase of the project to further evaluate the potentially expansive soils.
- The site is underlain by foliated to massive intrusive granitic rock in a geologic area known for shallow partially weathered rock (WR) and hard competent rock.
- Most of the borings (29 of 53) encountered PWR and/or hard competent rock at depths of 1 to 10 feet below the existing ground surface.
- Based upon the assumed grades, we anticipate that ripping, hammering, and/or blasting of partially weathered rock and rock will be required across the majority of the site to achieve design site, foundation, and underground utility grades.
- Existing fill was encountered in Boring B-08. The SPT boring N-values indicate that the existing fill was probably not thoroughly and adequately compacted. The existing fill should be evaluated at the time of construction by proofrolling, excavation of test pits, hand auger borings, and/or construction excavations. If the existing fill is very soft to soft and/or contains excessive inert debris or excessive organic materials, it should not be used to support foundations, floor slabs, or pavements, and it should be undercut and replaced with engineered fill consisting of suitable materials.
- Based on 14 of the soil test borings, we anticipate undercutting of very soft to soft or very loose near-surface natural soils could be necessary in numerous areas across the site during mass grading, depending on design grades. If site earthwork is performed during the typically cooler, wetter months of the year, additional undercutting is anticipated due to excessively wet unstable soils.
- We anticipate that most of the soils encountered in the borings within the anticipated excavation depths will be suitable for use as engineered fill. For areas with ripped or blasted rock, these materials can be included in engineered fills in accordance with report recommendations.

- Most of the borings were dry to their termination depths. Some of the borings encountered groundwater at depths between 3 and 16 feet. The Web Soil Survey Report indicates that the seasonal high water table is generally more than 6 feet deep in the upland areas, which make up the majority of the site. The seasonal high water table is as shallow as 1 to 2 feet in the lower areas of the site near the drainage features. Once a preliminary grading plan has been prepared, it should be provided to ECS for review and comment regarding the potential need for temporary and/or permanent dewatering of the groundwater at the site.
- Lightly loaded 1- to 3-story wood-framed residential structures (column loads less than 50 kips and wall loads less than 5 kips per foot) can be supported by shallow foundations and floor slabs bearing on undisturbed natural soils or new engineered fill.
- Additional subsurface explorations consisting of additional seismic refraction testing, soil test borings, and/or test pits should be performed to obtain additional data to estimate quantities of rip rock, mass blast rock, and trench blast rock for the proposed site grading.
- This is a preliminary report, and it should not be used for final design or for construction.

1.0 INTRODUCTION

The purpose of this study was to provide preliminary geotechnical information for the design and construction of a new subdivision with 455 single-family homes, streets, stormwater control measures, and underground utilities, including an off-site sanitary sewer outfall line for D.R. Horton. The recommendations developed for this report are based on project information supplied by Ms. Julie Spencer with D.R. Horton.

Our services were provided in accordance with our Proposal No. 06:22970, dated November 22, 2021, as authorized by Jonathan Cooper with D.R. Horton on November 30, 2021, which includes our Terms and Conditions of Service.

This report contains the procedures and results of our subsurface exploration and laboratory testing programs, review of existing site conditions, engineering analyses, and preliminary recommendations for development of the project.

2.0 PROJECT INFORMATION

This report is based on the following sources of information:

- Emails between Ms. Julie Spencer and Mr. Jonathan Cooper with D.R. Horton and Mr. Santhosh Mahavadi with ECS between November 5 and November 8, 2021.
- General site plans titled "Development Essentials Brochure" prepared by American Engineering dated April 21, 2020.
- Overall Phase Plan for Kalas Falls, prepared by American Engineering, dated September 19, 2019.
- Kalas Property Traffic Impact Analysis Report, prepared by Stantec, prepare for Mitchel Mill Road Investors, LLC, dated January 16, 2016.
- Report of Subsurface Exploration, Dam @ Rolesville Road ant Mitchel Mill Road, prepared by GeoTechnologies, prepared for Withers & Ravenel, dated April 28, 2016.
- Report titled "Difficult Excavation Potential, Kalas Tract Sewer", prepared by GeoTechnologies, prepared for Mitchell Mill Investors, LLC, dated July 12, 2016.
- Report titled "Difficult Excavation Potential & Dam Embankment Impact, Kalas Tract Sewer MH-1 to MH-3", prepared by GeoTechnologies, prepared for Mitchell Mill Investors, LLC, dated November 8, 2016.
- Drawings titled "Construction Phase 1 for Kalas Falls", prepared by American Engineering, dated June 28, 2021.
- Drawings titled "Construction Phase 2 for Kalas Falls", prepared by American Engineering, dated July 22, 2021.
- Drawings titled "Construction Phase 3 for Kalas Falls", prepared by American Engineering, dated August 17, 2021.
- Preliminary site plan drawings prepared by American Engineering, dated September 19, 2019.
- Google Earth aerial photos dated between December 1985 and March 2021.
- Site and topographic information obtained from the Wake County GIS website.
- United States Geologic Survey Quadrangle Map (Google Earth overlay .kmz file).

2.1 SITE INFORMATION

The site is located at 1832 Rolesville Road in Rolesville, North Carolina, at the approximate location shown in the following figure.

Figure 2.1.1. Site Location

The property is currently undeveloped and mostly wooded, with some open fields. The site generally slopes downward to the north and to the south from the central portion of the site. Four ponds and numerous creeks were observed on site. Numerous rock outcrops and boulders were found in the western portion of the site. A stream was observed in the central portion of the site leading to an approximate 10-foot-tall waterfall northwestern portion of the site.

2.2 PROPOSED CONSTRUCTION

The project involves constructing a new subdivision with 455 single-family homes, streets, stormwater control measures, and underground utilities, included an off-site sanitary sewer outfall line.

We assume that the proposed houses will be 2 to 3-story, wood-framed structures with slab-ongrade ground floors or crawl spaces. Design foundation loads have not been provided to us. We assume maximum unfactored loads will be less than or equal to the following:

- Maximum Wall Load = 3 kips per foot
- Maximum Ground Floor Slab Load = 150 pounds per square foot (psf)

The structural engineer should verify these assumptions and notify ECS if the actual unfactored foundation design loads exceed or are significantly less than this assumed value.

The grading plans provided to us indicates that maximum cuts in the pavement areas will be approximately 10 feet, with maximum cuts of approximately 15 feet in some of the SCM areas. Maximum fill depths will be approximately 10 feet. Water lines will be approximately 4 feet below the finished grades along the streets and sanitary sewer lines will be approximately 10 to 15 feet below the finished grades along the streets.

3.0 FIELD EXPLORATION AND LABORATORY TESTING

Our exploration procedures are explained in greater detail in Appendix B including the insert titled Subsurface Exploration Procedure: Standard Penetration Testing (SPT). Our scope of work included drilling 50 borings. Our borings were located with a handheld GPS unit and their approximate locations are shown on the Boring Location Diagram in Appendix A.

3.1 SUBSURFACE CHARACTERIZATION

The subsurface conditions encountered were generally consistent with published geological mapping. The following sections provide generalized characterizations of the soil and rock strata. Please refer to the boring logs in Appendix B.

The site is located within the Piedmont physiographic province. The Piedmont is characterized by residual overburden soils weathered in place from the underlying igneous and metamorphic rock. The topography and relief of the Piedmont uplands have developed from differential weathering of the bedrock. Because of the continued chemical and physical weathering, the bedrock in the Piedmont is now generally covered with a mantle of soil that has weathered in place from the parent bedrock. These soils have variable thicknesses and are referred to as residuum or residual soils. The residuum is typically finer grained and has higher clay content near the surface because of the advanced weathering. Similarly, the soils typically become coarser grained with increasing depth because of decreased weathering. As the degree of weathering decreases, the residual soils generally retain the overall appearance, texture, gradation and foliations of the parent rock.

The boundary between soil and rock in the Piedmont is not sharply defined. A transitional zone termed "partially weathered rock" is normally found overlying the parent bedrock. Partially weathered rock (WR) is defined for engineering purposes as residual material with Standard Penetration Resistances (N-values) exceeding 100 blows per foot. The transition between hard/dense residual soils and partially weathered rock occurs at irregular depths due to variations in degree of weathering. Also, it is not unusual to find lenses and boulders of hard rock and/or zones of partially weathered rock within the soil mantel well above the general bedrock level.

According to the *1985 Geologic Map of North Carolina* the site is underlain by foliated to massive granitic rock of Permian to Pennsylvanian age (PPmg).

It is important to note that the natural geology within portions of the site has been modified in the past that included the placement of fill materials. The quality of man-made fills can vary significantly, and it is often difficult to assess the engineering properties of existing fills.

The following sections provide additional information about the soil and rock strata encountered during our subsurface exploration.

Surficial Material: A surficial layer of topsoil, ranging from approximately 4 to 12 inches in thickness, was encountered at most boring locations.

Existing Fill: Existing fill/possible fill soils consisting of Silty SAND (SM) and Silty Clayey SAND (SC-SM) were encountered below the topsoil and extended to approximate depths of 8 feet below existing grade at Boring B-8.

Residuum: The natural soils encountered below the fill and/or topsoil generally consisted of Silty SAND (SM), Clayey SAND (SC), Silty Clayey SAND (SC-SM), Sandy with SILT (SP-SM), Sandy SILT (ML), Sandy Elastic SILT (MH), Sandy Lean CLAY (CL) and Sandy Fat CLAY (CH). The SPT N-values within the sands ranged from 1 to 79 bpf, indicating a relative density of very loose to very dense. The SPT N-values within the silts and clays ranged from 2 to 50 bpf, indicating a consistency varying from very soft to very hard.

Weathered Rock: Weathered Rock (WR), which is classified as material with SPT blow counts greater than 50 blows per 6 inches of penetration, was encountered in the majority of borings. The depths of the top of weathered rock are given in the following table:

Boring	Depth to WR (ft)			
B-1	3.5			
B-2	0.5			
B-3	3.0			
B-4	0.5			
B-5	3.0			
B-6	3.5			
B-7	5.5*, 17.5			
B-8	12			
B-9	3.0			
B-10	3.0			
B-12	0.6			
B-14	8.0			
B-15	0.5			
B-16	3.0			
B-17	0.5			
B-18	3.0			
B-19	13.0			
B-20	0.3			
B-24	3.0			
B-28	3.0			

Weathered Rock (WR)

Boring	Depth to WR (ft)		
B-29	8.0		
B-30	5.5		
SCM-01	3.0		
SCM-04	0.5		
SCM-05	12.5		
SCM-07	5.5		
SCM-09	8.0		
SCM-10	0.6		
SCM-11	3.0		
SCM-12	0.3		
SCM-13	3.0		
SCM-14	0.5		

* - Lens of PWR encountered between depths of about 5.5 feet to 8 feet within location B-7

Competent Rock: Competent Rock, classified as auger refusal material, was encountered in the majority of borings. The depths of the top of weathered rock are given in the following table:

Competent Rock				
Boring	Dopth to Bock (ft)			
Boring	Depth to Rock (ft)			
B-1	3.5			
B-2	1.1			
B-3	3.0			
B-4	2.0			
B-5	3.0			
B-6	3.5			
B-7	17.5			
B-8	13.7			
B-9	3.5			
B-10	3.0			
B-12	3.6			
B-14	8.7			
B-15	0.5			
B-16	3.6			
B-17	2.5			
B-18	4.2			
B-19	13.0			
B-20	1.6			
B-24	5.5			
B-28	5.5			

Boring	Depth to Rock (ft)		
B-29	12.5		
B-30	6.0		
SCM-01	5.5		
SCM-04	1.0		
SCM-05	12.5		
SCM-07	6.0		
SCM-09	9.5		
SCM-10	2.0		
SCM-11	3.7		
SCM-12	0.5		
SCM-13	3.0		
SCM-14	1.2		

3.2 GROUNDWATER OBSERVATIONS

Water levels were measured and are given on the boring logs in Appendix B. Most borings were observed dry after drilling with cave-in at various depths. Groundwater was observed in some borings at the completion of drilling and were measured at depths ranging from 3.5 to 12.5 feet below the ground surface. As stated in the ECS Seasonal High Water Table Estimation Report dated February 7, 2022 (ECS Project No. 49:16341), the SHWTs were estimated to range from 12 inches below the existing ground surface at location SCM-18 to as much as 122 inches (10 feet) deep at location SCM-15. Variations in the long-term water table may occur as a result of changes in precipitation, evaporation, surface water runoff, construction activities, and other factors.

3.3 LABORATORY TESTING

Each sample was visually classified on the basis of texture and plasticity in accordance with ASTM D2488 Standard Practice for Description and Identification of Soils (Visual-Manual Procedures).

The laboratory testing consisted of selected tests performed on samples obtained during our field exploration operations. Classification and index property tests were performed on representative soil samples in accordance with ASTM D2487 Standard Practice for Classification for Engineering Purposes. Additionally, standard Proctor and California Bearing Ratio (CBR) tests were performed on representative samples.

After identification and classification, the samples were grouped in the major zones noted on the boring logs in Appendix B. The group symbols for each soil type are indicated in parentheses along with the soil descriptions. The stratification lines between strata on the logs are approximate; in situ, the transitions may be gradual.

4.0 PRELIMINARY RECOMMENDATIONS

4.1 BUILDING/STRUCTURE DESIGN

Lightly loaded 1- to 3-story structures (column loads less than 50 kips and wall loads less than 6 kips per foot) can be supported by shallow foundations and ground supported slabs bearing on undisturbed residual soils, new engineered fill, or approved existing fill.

For preliminary design purposes, the footings can be sized using a presumptive allowable bearing pressure of 2,000 psf. A higher bearing pressure could be achieved, depending on the results of the recommended design-phase geotechnical borings and engineering analysis.

4.2 SUBGRADE PREPARATION

4.2.1 Stripping and Grubbing

The subgrade preparation should consist of stripping all vegetation, rootmat, topsoil, and any other soft or unsuitable materials from the proposed construction areas. The borings generally encountered 4 to 12 inches of topsoil. Deeper topsoil or organic laden soils are likely present in wet, low-lying, and poorly drained areas. In the wooded areas, the rootmat may extend as deep as about 1 to 2 feet and will require additional localized stripping and grubbing depth to completely remove the organics. In agricultural fields, organics within the cultivated soil are anticipated primarily to a depth of about 6 inches. The topsoil encountered in the borings was not analyzed for its suitability for reuse in landscaping areas. ECS should be called on to verify that topsoil and unsuitable surficial materials have been completely removed prior to the placement of engineered fill or construction of structures and pavements.

We anticipate average stripping depths of 12 inches to remove the cultivated soil from the existing agricultural fields, 6 inches to remove topsoil and rootmat from areas that are currently grass-, weed- or brush-covered, and 12 inches to remove the topsoil and rootmat from areas that are currently wooded. We recommend that these average stripping depths be used for quantity approximations for earthwork design and construction cost estimating.

4.2.2 Proofrolling

After removing all unsuitable surface materials, cutting to the proposed grade, and prior to the placement of any engineered fill or other construction materials, the exposed subgrade should be examined by the geotechnical engineer or authorized representative. The exposed subgrade should be thoroughly densified in place using a 10-ton, self-propelled, vibratory smooth drum roller due to the very loose to loose sands encountered in the borings at the anticipated subgrade elevations. The exposed subgrade should then be proofrolled with previously approved construction equipment having a minimum axle load of 10 tons (e.g. fully loaded tandem-axle dump truck). The areas subject to proofrolling should be traversed by the equipment in two perpendicular (orthogonal) directions with overlapping passes of the vehicle under the observation of the geotechnical engineer or authorized representative. This procedure is intended to assist in identifying any localized yielding materials.

In the event that unstable or "pumping" subgrade is identified by the proofrolling, those areas should be marked for repair prior to the placement of any subsequent engineered fill or other construction materials. Methods of repair of unstable subgrade, such as undercutting or moisture conditioning or chemical stabilization, should be discussed with the geotechnical engineer to determine the appropriate procedure with regard to the existing conditions causing the instability. Test pits and/or hand auger borings may be excavated to explore the shallow subsurface materials in the area of the instability to help in determining the cause of the observed unstable materials and to assist in the evaluation of the appropriate remedial action to stabilize the subgrade.

Based on the soil test borings, we anticipate undercutting of existing fill and very soft to soft or very loose near-surface natural soils will be necessary in numerous areas across the site. If site earthwork is performed during the typically cooler, wetter months of the year, additional undercutting in other areas of the site is anticipated due to potentially excessively wet unstable soils. Undercut excavations should be backfilled with properly placed and engineered fill. Use of geotextiles and select granular fill may be recommended by ECS during construction to reduce the required undercut depths and/or aid in stabilization of subgrades. We recommend that unsuitable/unstable soil undercut allowance quantities be determined by the design team for inclusion in a classified earthwork contract, and bidders should provide unit prices for the following:

- Excavation of, disposal of (either off-site or on-site, depending on available space and owner's preference), and replacement of unsuitable/unstable soils with engineered fill (per cubic yard).
- Excavation of, disposal of (either off-site or on-site, depending on available space and owner's preference), and replacement of unsuitable/unstable soils with NCDOT Class II, Type 1 Select Material (per cubic yard).
- Installation of woven geotextile, Mirafi HP270 or equivalent (per square yard)

4.3 EARTHWORK OPERATIONS

4.3.1 Engineered Fill Materials

Materials suitable for use as engineered fill should consist of inorganic soils classified as CL, ML, SM, SC, SW, SP, GW, GM and GC, or a combination of these group symbols, per ASTM D 2487. The materials should be free of organic matter and debris. The fill should exhibit a maximum dry density of at least 90 pounds per cubic foot, as determined by a Standard Proctor compaction test (ASTM D 698).

Engineered fill should be placed in maximum 8-inch loose lifts. In confined areas such as utility trenches, portable compaction equipment and thin lifts of 4 inches to 6 inches may be required to achieve specified degrees of compaction.Engineered fill should be moisture conditioned as necessary to within -3 and +3 % of the soil's optimum moisture content. Moisture conditioning options include spraying and mixing in water to excessively dry soils, scarifying and drying of excessively wet soils, and adding lime to excessively wet soils.Engineered fill should be compacted with suitable equipment to a dry density of at least 95% of the Standard Proctor maximum dry density (ASTM D698) more than 12 inches below the finish subgrade elevation and to a least 98% in the upper 12 inches. ECS should be retained to observe and test the placement and compaction of engineered fill.

Product Submittals: At least one week prior to placement of engineered fill, representative bulk samples (about 50 pounds) of on-site and/or off-site borrow should be submitted to ECS for laboratory testing, which will include Atterberg limits, natural moisture content, grain-size distribution, and moisture-density relationships for compaction. Import materials should be tested prior to being hauled to the site to determine if they meet project specifications.

Suitable Engineered Fill Materials: Materials suitable for use as engineered fill should consist of inorganic soils classified as CL, ML, SM, SC, SW, SP, GW, GM and GC, or a combination of these group symbols, per ASTM D 2487. The materials should be free of organic matter and debris. The fill should exhibit a maximum dry density of at least 90 pounds per cubic foot, as determined by a Standard Proctor compaction test (ASTM D 698). On-site Fat CLAY (CH) and Elastic SILT (MH) may be placed as engineered fill for mass grading, provided the previously recommended separation distance is achieved or lime stabilization is implemented. Rock fragments should generally be less than 3 inches in maximum dimension and should be blended with soil.

For sites with ripped or blasted rock, these materials can be included in engineered fills in accordance with the following table:

Engineered fill Depth Below Finish Subgrade Elevation	Maximum Loose Lift (in.)	Maximum Particle (Rock Fragment) Size (in.)
0 to 5 ft	8	3
5 to 10 ft	12	6
>10 ft	24	18

Loose	Lifts	and	Rock	Fragment Sizes
-------	-------	-----	------	----------------

If ripped or blast rock is used as engineered fill, and it is not thoroughly blended to avoid the formation of voids within the fill, then the ripped/blast rock fill should be covered with a 2-feet-thick layer of well-graded "choke stone" material to prevent the migration of fines downward from the upper soil fill into the ripped/blast rock fill voids.

Unsuitable Materials: Unsuitable fill materials include materials which do not satisfy the requirements for suitable materials, such as topsoil, organic materials, debris, and debris-laden fill.

On-Site Borrow Suitability: The on-site soils meeting the classifications for recommended suitable engineered fill, plus meeting the restrictions on separation distances, organic content, and debris, may be used as engineered fill. We anticipate that most of the soils encountered in the borings within the anticipated excavation depths will be suitable for use as engineered fill.

The on-site Elastic SILT (MH) and Fat CLAY (CH) may be used as engineered fill for mass grading, as long as the previously recommended foundation bearing depths and vertical separation distance between floor slab subgrade and pavement subgrade elevations are achieved. However, these soils should not be used as retaining wall backfill. Please note that these soils are very moisture sensitive, can be relatively weak and compressible, and may be difficult to properly moisture condition and compact.

On-site soils used as engineered fill will require careful moisture control in order to achieve compaction and stability. Any soils excavated from below the water table will require significant drying to achieve the recommended moisture content and minimum compaction. Soils above the water table may also be relatively dry at the time of construction and require wetting to achieve the recommended moisture content and minimum compaction.

The gradation of partially weathered rock and rock removed by ripping or blasting will probably be quite varied. Crushing of boulder-sized rock fragments may be required to meet the maximum particle sizes given in the previous table if ripped or blasted rock is to be used as engineered fill.

4.3.2 Existing Fill

Based on the relative strength and stiffness of the existing fill/possible fill soils indicated by the SPT N-values from the soil test borings, in addition to the organics and construction debris encountered in Borings B-8, it appears that some of the existing fill was placed in an uncontrolled manner without consistent compaction. As we have not been provided fill placement construction field testing reports, we interpret the existing fill to also be undocumented.

Uncontrolled and/or undocumented fill poses risks associated with under-compacted soil, undetected deleterious inclusions within the fill, and/or deleterious materials at the virgin ground fill interface that are covered by the fill. ECS does not recommend supporting building foundations and pavements on under-compacted existing fill or existing fill with excessive organics or excessive inert debris. Therefore, we recommend that these conditions be addressed by on-site engineering evaluation by ECS during construction, including proofrolling and test pits, if recommended. Under-compacted fill indicated by Boring B-8, and potentially in other localized areas, should be over-excavated and replaced with engineered fill. Undercutting and replacement of existing fill should be anticipated for this project and could be addressed contractually through allowances and unit prices.

4.3.3 Expansive Soil

Elastic SILT (MH) and Fat CLAY (CH) are present at the site. These are potentially expansive soils per the current North Carolina Building Code and local practice. Based on laboratory testing and our experience, these soils have a low to medium potential for expansion (i.e., shrink-swell) and are considered to be expansive. We recommend that the mitigation measures given in this report be implemented to reduce the potential for structure or pavement distress (cracking, excessive deformation) as a result of volumetric changes in potentially expansive soils due to variations in its moisture content. Mitigation options include a 1-foot separation distance or chemical (lime) stabilization.

We recommend that if and where the expansive soils are present at the footing bearing elevations, they should be undercut to a depth of 1 foot below bottom of footing and replaced with engineered fill, compacted ABC, flowable fill, or lean concrete. We also recommend that a minimum separation distance of 1 foot be maintained between slab subgrade and pavement subgrade elevations and expansive soil (CH, MH) to reduce the potential for structure or pavement distress (cracking, excessive deformation) as a result of volumetric changes in the soil due to variations in its moisture content. Based on the borings and anticipated design grades, we anticipate that this separation

distance may be required in the areas represented by Borings B-6, B-11, B-13, B-14, B-18, B-19, B-23, B-28, B-31, and SCM-08, in addition to other localized areas at the site.

The minimum separation distance should be achieved by undercutting the undisturbed natural expansive soil and replacing it with low-plasticity engineered fill. This will require overexavation and replacement of 1 foot of expansive soil where present in the cut-fill transition.

Alternatively, the recommended separation distance could be achieved by treating the expansive soil with lime. With a 1-foot separation distance, the soil could be treated in situ with lime.

It may be possible to reduce the separation distance and the amount of undercutting/replacement or lime stabilization required with additional soil sampling, advanced laboratory testing (Expansion Index and Swell Potential), and detailed structural dead-load analysis. If lime stabilization is selected, additional laboratory testing is recommended to determine the percentage of lime required. ECS can provide a proposal for these additional services/analyses upon request.

Even though the Elastic SILT (MH) and Fat CLAY (CH) can be used as fill below the recommended separation distance elevations, they are very moisture sensitive and can be relatively weak and compressible. The moisture contents will require careful control and must be within +/- 3% of the soil's standard Proctor optimum moisture content to provide stability and to prevent excessive swell heave, shrinkage settlement, or collapse settlement upon wetting.

4.3.4 Compaction

Fill Compaction: Engineered fill should be placed in maximum 8-inch loose lifts. In confined areas such as utility trenches, portable compaction equipment and thin lifts of 4 inches to 6 inches may be required to achieve specified degrees of compaction.

Engineered fill should be moisture conditioned as necessary to within -3 and +3 % of the soil's optimum moisture content. Moisture conditioning options include spraying and mixing in water to excessively dry soils, scarifying and drying of excessively wet soils, and adding lime to excessively wet soils.

Engineered fill should be compacted with suitable equipment to a dry density of at least 95% of the Standard Proctor maximum dry density (ASTM D698) more than 12 inches below the finish subgrade elevation and to a least 98% in the upper 12 inches.

ECS should be retained to observe and test the placement and compaction of engineered fill.

Moisture Conditioning: The on-site soils are moisture sensitive and can be difficult to work. Problems include softening of exposed subgrade soils, excessive rutting or deflection under construction traffic, and the inability to adequately dry and compact wet soil.

Drying and compaction of wet soils is typically difficult during typically cooler, wetter months of the year (typically November through March). During the cooler and wetter periods of the year, delays and additional costs should be anticipated. At these times, reduction of soil moisture may need to be accomplished by a combination of mechanical manipulation and the use of chemical additives,

such as lime or cement, in order to lower moisture contents to levels appropriate for compaction. Alternatively, removal and replacement with drier, off-site materials may be necessary.

4.4 PAVEMENTS

4.4.1 Pavement Sections

Undisturbed low-plasticity soils or newly placed engineered fill can provide adequate support for a pavement structure designed for appropriate subgrade strength and traffic characteristics.

Based on the results of our soil test borings, it appears that the soils that will be exposed as pavement subgrades, exposed in cuts and placed as fill, will consist mainly of Silty Sand (SM), Sandy Lean CLAY (CL), Sandy SILT (ML), and Clayey SAND (SC). A California Bearing Ratio (CBR) of 5 should be used for preliminary pavement section thickness design, until design phase CBR laboratory testing is performed.

Fat CLAY (CH) and Elastic SILT (MH) should not be left in place in cut areas or placed as fill immediately below the pavements. A minimum separation of 1 foot should be maintained between the pavement subgrade elevation and Elastic SILT (MH) or Fat CLAY (CH), or lime stabilization should be implemented. This will require undercutting of Elastic SILT (MH) and Fat CLAY (CH) at cut fill transitions and the placement of low-plasticity soil in the upper 1 foot of engineered fill.

5.0 ADDITIONAL GEOTECHNICAL SERVICES

Once final grades, building locations, and pavement locations measure locations have been determined, we recommend that additional soil test borings and laboratory testing be performed to develop final geotechnical design and construction recommendations. Additional laboratory testing should include Expansion Index and Swell Pressure testing of the highly plastic soil encountered in the preliminary borings.

If site retaining walls 5 feet or more in height are needed to achieve design grades, we recommend that additional soil test borings and laboratory testing be performed to evaluate the foundation bearing conditions along the wall alignments and to test the on-site soils for potential use as retaining wall backfill. ECS would be pleased to provide a proposal for these additional services, including site retaining wall design, upon request.

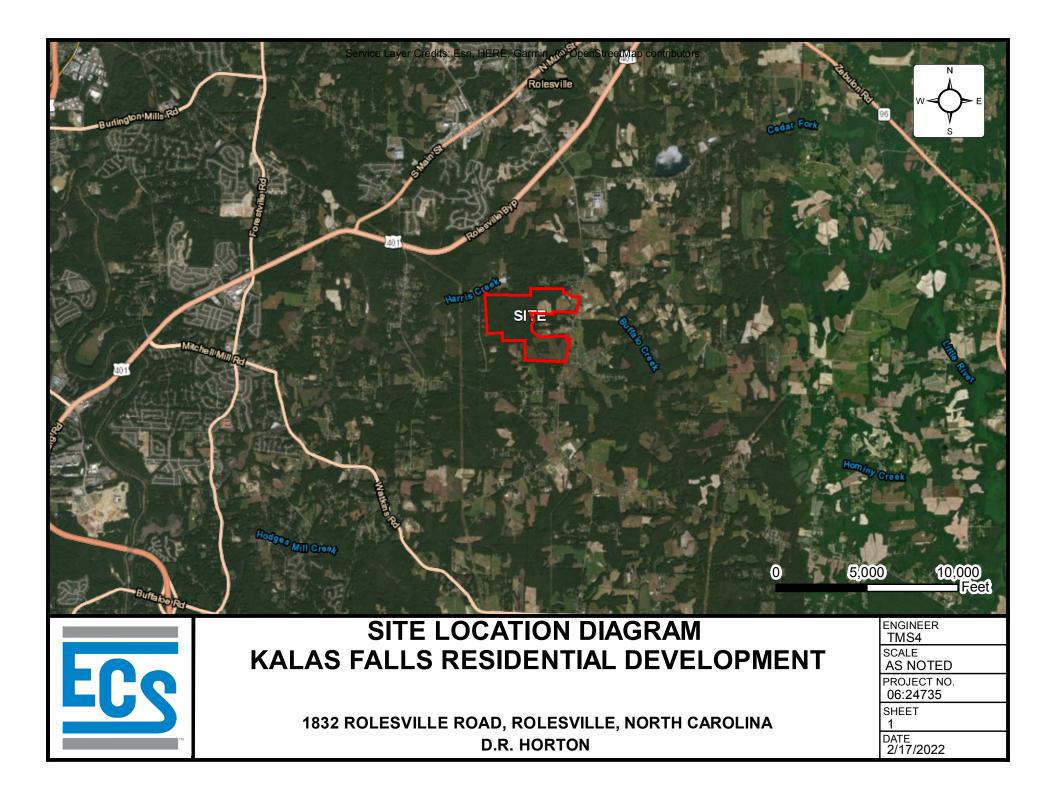
6.0 CLOSING

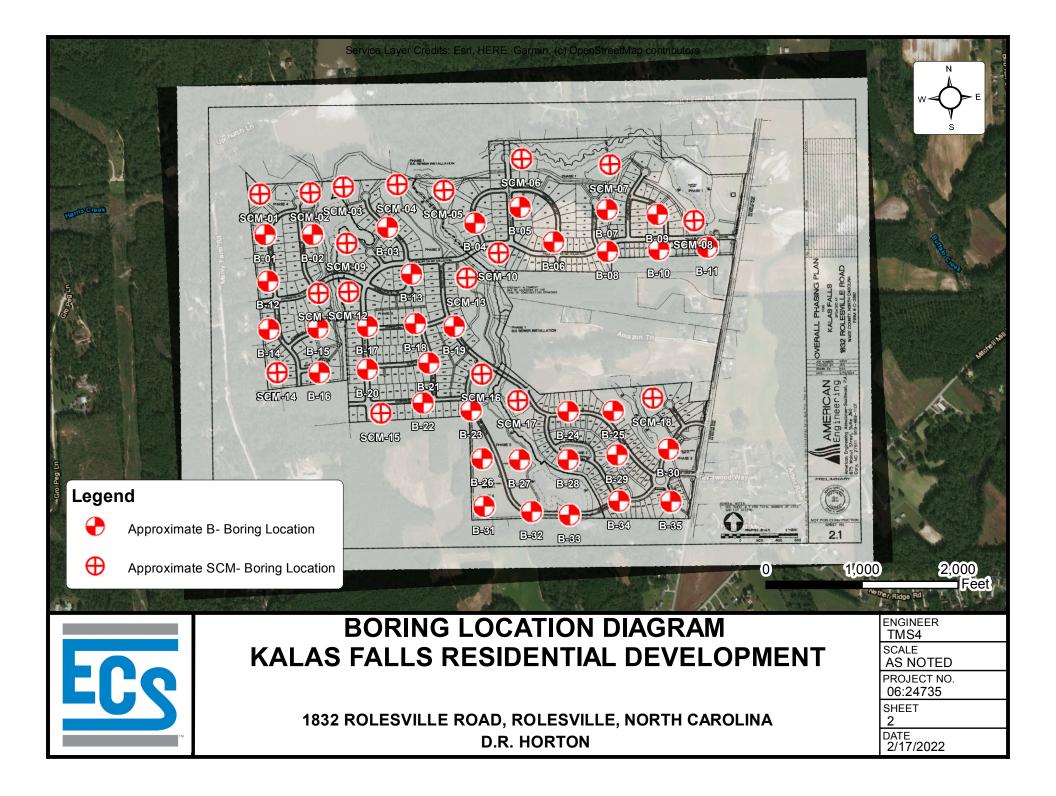
ECS has prepared this report of findings, evaluations, and preliminary recommendations to guide geotechnical-related aspects of the project. These recommendations are not intended for final design and construction. Additional exploration and/or analysis will be required to develop final commendations.

The description of the proposed project is based on information provided to ECS. If any of this information is inaccurate, either due to our interpretation of the documents provided or site or design changes that may occur later, ECS should be contacted immediately in order that we can

review the report in light of the changes and provide additional or alternate recommendations as may be required to reflect the proposed construction.

We recommend that ECS be retained to develop design and construction recommendations once the project's plans have been developed.


Field observations, monitoring, and quality assurance testing during earthwork and foundation installation are an extension of and integral to the geotechnical design recommendation. We recommend that the owner retain these quality assurance services and that ECS be allowed to continue our involvement throughout these critical phases of construction to provide general consultation as issues arise.


ECS is not responsible for the conclusions, opinions, or recommendations of others based on the data in this report.

Appendix A - Drawings and Reports

Site Location Diagram

Boring Location Diagram(s)

Appendix B – Field Operations

Reference Notes

Subsurface Exploration Procedures

Boring Logs

REFERENCE NOTES FOR BORING LOGS

	1						
ACD	HALT	SS	Split Spoo	n Sampler		PM	
ASPI		ST	ST Shelby Tube Sampler		er	RD	
CONCRETE		WS	Wash Sam	nple		RC	
CON	GREIE	BS	Bulk Samp	ole of Cutti	ngs	REC	
CDA	VEL	PA	Power Aug	ger (no sar	nple)	RQD	
GRA	VEL	HSA	Hollow Ste	em Auger			
TOPS	SOIL	ſ			PARTICI E S	SIZE IDE	FN
VOID		DESIGNA	TION				
VOID	,	Boulder	rs	12	inches (300	mm) or l	la
BRIC	ĸ	Cobble	s	3 in	nches to 12 i	, nches (7	75
Ditto		Gravel:	Coarse	3⁄4 ii	nch to 3 inch	nes (19 [°] r	mr
AGG	REGATE BASE COURSE		Fine				
		Sand:	Coarse	2.0	0 mm to 4.7	5 mm (N	ło
GW	WELL-GRADED GRAVEL		Medium	0.42	25 mm to 2.0	00 mm (N
	-		Fine	0.0	74 mm to 0.4	425 mm	1)
GP		Silt & C	lay ("Fines"	、 、			•
~~~	-	1			- <b>(</b>		_
GM			COHESIV		CLAYS		į
66	-				OLATO		
GC	-			SDT2	CONSISTE		
SW	-						
300							
SP		1			-	JI	
01		1					
SM							
	sand-silt mixtures	1					
SC	CLAYEY SAND	1			•		
-	sand-clay mixtures	1				1	
ML	SILT		0.00	>50	Very He	iu	
	non-plastic to medium plasticity	OD AV					
МН	ELASTIC SILT			S& NON-C	OHESIVES	SILIS	
	high plasticity		SPT°		DENSITY		
CL	LEAN CLAY		<5		Very Loose		
	low to medium plasticity		5 - 10		Loose	1	
СН	FAT CLAY	1	1 - 30	М	ledium Dens	e	
	high plasticity	3	31 - 50		Dense		
OL	ORGANIC SILT or CLAY		>50		Very Dense		
он	ORGANIC SILT or CLAY				EII		P/
	high plasticity						n.c
РТ	PEAT						
	highly organic soils		FILL		SSIBLE FIL		F
	GRA TOPS VOIE BRIC AGG GW GP GM GC SW SP SM SC SM SC ML MH CL CH OL OL	gravel-sand mixtures, little or no finesGPPOORLY-GRADED GRAVEL gravel-sand mixtures, little or no finesGMSILTY GRAVEL gravel-sand-silt mixturesGCCLAYEY GRAVEL gravel-sand-clay mixturesSWWELL-GRADED SAND gravelly sand, little or no finesSPPOORLY-GRADED SAND gravelly sand, little or no finesSMSILTY SAND sand-silt mixturesSCCLAYEY SAND sand-silt mixturesSCCLAYEY SAND sand-clay mixturesMLSILT non-plastic to medium plasticityMHELASTIC SILT high plasticityCLLEAN CLAY low to medium plasticityCHFAT CLAY high plastic to low plasticityOLORGANIC SILT or CLAY non-plastic to low plasticityOHORGANIC SILT or CLAY high plasticityPTPEAT	CONCRETE       WS         GRAVEL       BS         TOPSOIL       DESIGNA         VOID       DESIGNA         BRICK       Gade         AGGREGATE BASE COURSE       GW         GW       WELL-GRADED GRAVEL         gravel-sand mixtures, little or no fines       Sand:         GP       POORLY-GRADED GRAVEL         gravel-sand mixtures, little or no fines       Silt & C         GM       SILTY GRAVEL         gravel-sand-silt mixtures       UNCC         GC       CLAYEY GRAVEL         gravely sand, little or no fines       0.25         GRAVELJ <graded sand<="" td="">       0.25         gravely sand, little or no fines       0.200         SM       SILTY SAND       0.200         sand-silt mixtures       0.200         SM       SILTY SAND       0.000         sand-clay mixtures       0.200         SML       SILT       0.000         sand-clay mixtures       0.000         SML       SILT       0.000         SILTY SAND       0.000         sand-clay mixtures       0.000         SILTY SAND       0.000         sand-clay mixtures       0.000         GRAVE<!--</td--><td>CONCRETEGRAVELGRAVELTOPSOILVOIDBRICKAGGREGATE BASE COURSEGWWELL-GRADED GRAVEL gravel-sand mixtures, little or no finesGPPOORLY-GRADED GRAVEL gravel-sand-clay mixturesGCCLAYEY GRAVEL gravel-sand-clay mixturesGRSILTY GRAVEL gravel-sand-clay mixturesGWWELL-GRADED SAND gravely sand, little or no finesSPPOORLY-GRADED SAND gravely sand, little or no finesSPPOORLY-GRADED SAND gravely sand, little or no finesSMSILTY GRAVEL gravel-sand-clay mixturesSWWELL-GRADED SAND gravelly sand, little or no finesSMSILTY SAND sand-clay mixturesSMSILTY SAND sand-clay mixturesMLSILT non-plastic to medium plasticityMHELASTIC SILT high plasticityCLLEAN CLAY low to medium plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticityCHORGANIC SILT or CLAY high plasticityCHORGANIC SILT or CLAY high plasticityCHORGANIC SILT or CLAY high plasticityCHPEAT</td><td>CONCRETEGRAVELGRAVELTOPSOILVOIDBRICKAGGREGATE BASE COURSEGWWELL-GRADED GRAVEL gravel-sand mixtures, little or no finesGPPOORLY-GRADED GRAVEL gravel-sand-silt mixturesgravel-sand-silt mixturesGCCLAYEY GRAVEL gravel-sand-clay mixturesgravelly sand, little or no finesSMSILTY GRAVEL gravel-sand-clay mixturesGCCLAYEY GRAVEL gravel-sand-clay mixturesSMSILTY SAND sand-silt mixturesSCCLAYEY SAND sand-silt mixturesSCCLAYEY SAND sand-silt mixturesSCCLAYEY SAND sand-silt mixturesSLTTnon-plastic to medium plasticityMLSILT non-plastic to medium plasticityMHELASTIC SILT high plasticityCLCRAVELS, SANDS &amp; NON-C STRENGTH, OP*GRAVELS, SANDS &amp; NON-C SoSP F5SUMLSILT non-plastic to medium plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticityCHGRANIC SILT or CLAY high plasticityCHORGANIC SILT or CLAY high plasticityCHORGANIC SILT or CLAY high plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticity&lt;</td><td>CONCRETEGRAVELGRAVELTOPSOILVOIDBRICKAGGREGATE BASE COURSEGWWELL-GRADED GRAVEL gravel-sand mixtures, little or no finesGPPOORLY-GRADED GRAVEL gravel-sand mixtures, little or no finesGPPOORLY-GRADED GRAVEL gravel-sand mixtures, little or no finesGCCLAYEY GRAVEL gravel-sand-mixturesGCCLAYEY GRAVEL gravel-sand-silt mixturesGCCLAYEY GRAVEL gravel-sand-silt mixturesGCCLAYEY GRAVEL gravel-sand-silt mixturesSWWELL-GRADED SAND gravelly sand, little or no finesSMSILTY SAND sand-silt mixturesSCCLAYEY SAND sand-silt mixturesSCCLAYEY SAND sand-silt mixturesMLSILT non-plastic to medium plasticityMLSILT non-plastic to low plasticityCLLEAN CLAY high plasticityCLCLAYA non-plastic to low plasticityCHFAT CLAY non-plastic to low plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticityCHORGANIC SILT or CLAY non-plastic to low plasticityCHORGANIC SILT or CLAY high plasticityCHFAT CLAY high plasticityCHFILFILPAT</td><td>CONCRETE       WS       Wash Sample       RC         GRAVEL       BS       Bulk Sample of Cuttings       REC         TOPSOIL       PA       Power Auger (no sample)       RQD         VOID       BRICK       PARTICLE SIZE IDI       DESIGNATION       PARTICLE SIZE IDI         AGGREGATE BASE COURSE       Boulders       12 inches (300 mm) or       Cobbles       3 inches to 12 inches (10 mm) or         GW       WELL-GRADED GRAVEL       gravel-sand mixtures, little or no fines       Gravel:       Coarse       2,00 mm to 4.75 mm (No         GM       SILTY GRAVEL       gravel-sand-silt mixtures       Gename       COHESIVE SILTS &amp; CLAYS         GC       CLAYEY GRAVEL       gravel-sand-silt mixtures       SIT       COHESIVE SILTS &amp; CLAYS         GW       WELL-GRADED SAND       gravely sand, little or no fines       SPT⁵       CONSISTENCY⁷         SW       WELL-GRADED SAND       sand-silt mixtures       SUCOHESIVE SILTS       CHESIVE SILTS         SM       SILTY SAND       sand-silt mixtures       SUCOHESIVE SILTS       Film         SM       SILTY       SAND       SON       SUCHESIVE SILTS       SUTS         GRAVELS, SANDS &amp; NON-COHESIVE SILTS       SUTS       SUTS       SUTS       SUTS         SM</td></graded>	CONCRETEGRAVELGRAVELTOPSOILVOIDBRICKAGGREGATE BASE COURSEGWWELL-GRADED GRAVEL gravel-sand mixtures, little or no finesGPPOORLY-GRADED GRAVEL gravel-sand-clay mixturesGCCLAYEY GRAVEL gravel-sand-clay mixturesGRSILTY GRAVEL gravel-sand-clay mixturesGWWELL-GRADED SAND gravely sand, little or no finesSPPOORLY-GRADED SAND gravely sand, little or no finesSPPOORLY-GRADED SAND gravely sand, little or no finesSMSILTY GRAVEL gravel-sand-clay mixturesSWWELL-GRADED SAND gravelly sand, little or no finesSMSILTY SAND sand-clay mixturesSMSILTY SAND sand-clay mixturesMLSILT non-plastic to medium plasticityMHELASTIC SILT high plasticityCLLEAN CLAY low to medium plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticityCHORGANIC SILT or CLAY high plasticityCHORGANIC SILT or CLAY high plasticityCHORGANIC SILT or CLAY high plasticityCHPEAT	CONCRETEGRAVELGRAVELTOPSOILVOIDBRICKAGGREGATE BASE COURSEGWWELL-GRADED GRAVEL gravel-sand mixtures, little or no finesGPPOORLY-GRADED GRAVEL gravel-sand-silt mixturesgravel-sand-silt mixturesGCCLAYEY GRAVEL gravel-sand-clay mixturesgravelly sand, little or no finesSMSILTY GRAVEL gravel-sand-clay mixturesGCCLAYEY GRAVEL gravel-sand-clay mixturesSMSILTY SAND sand-silt mixturesSCCLAYEY SAND sand-silt mixturesSCCLAYEY SAND sand-silt mixturesSCCLAYEY SAND sand-silt mixturesSLTTnon-plastic to medium plasticityMLSILT non-plastic to medium plasticityMHELASTIC SILT high plasticityCLCRAVELS, SANDS & NON-C STRENGTH, OP*GRAVELS, SANDS & NON-C SoSP F5SUMLSILT non-plastic to medium plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticityCHGRANIC SILT or CLAY high plasticityCHORGANIC SILT or CLAY high plasticityCHORGANIC SILT or CLAY high plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticity<	CONCRETEGRAVELGRAVELTOPSOILVOIDBRICKAGGREGATE BASE COURSEGWWELL-GRADED GRAVEL gravel-sand mixtures, little or no finesGPPOORLY-GRADED GRAVEL gravel-sand mixtures, little or no finesGPPOORLY-GRADED GRAVEL gravel-sand mixtures, little or no finesGCCLAYEY GRAVEL gravel-sand-mixturesGCCLAYEY GRAVEL gravel-sand-silt mixturesGCCLAYEY GRAVEL gravel-sand-silt mixturesGCCLAYEY GRAVEL gravel-sand-silt mixturesSWWELL-GRADED SAND gravelly sand, little or no finesSMSILTY SAND sand-silt mixturesSCCLAYEY SAND sand-silt mixturesSCCLAYEY SAND sand-silt mixturesMLSILT non-plastic to medium plasticityMLSILT non-plastic to low plasticityCLLEAN CLAY high plasticityCLCLAYA non-plastic to low plasticityCHFAT CLAY non-plastic to low plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticityCHFAT CLAY high plasticityCHORGANIC SILT or CLAY non-plastic to low plasticityCHORGANIC SILT or CLAY high plasticityCHFAT CLAY high plasticityCHFILFILPAT	CONCRETE       WS       Wash Sample       RC         GRAVEL       BS       Bulk Sample of Cuttings       REC         TOPSOIL       PA       Power Auger (no sample)       RQD         VOID       BRICK       PARTICLE SIZE IDI       DESIGNATION       PARTICLE SIZE IDI         AGGREGATE BASE COURSE       Boulders       12 inches (300 mm) or       Cobbles       3 inches to 12 inches (10 mm) or         GW       WELL-GRADED GRAVEL       gravel-sand mixtures, little or no fines       Gravel:       Coarse       2,00 mm to 4.75 mm (No         GM       SILTY GRAVEL       gravel-sand-silt mixtures       Gename       COHESIVE SILTS & CLAYS         GC       CLAYEY GRAVEL       gravel-sand-silt mixtures       SIT       COHESIVE SILTS & CLAYS         GW       WELL-GRADED SAND       gravely sand, little or no fines       SPT ⁵ CONSISTENCY ⁷ SW       WELL-GRADED SAND       sand-silt mixtures       SUCOHESIVE SILTS       CHESIVE SILTS         SM       SILTY SAND       sand-silt mixtures       SUCOHESIVE SILTS       Film         SM       SILTY       SAND       SON       SUCHESIVE SILTS       SUTS         GRAVELS, SANDS & NON-COHESIVE SILTS       SUTS       SUTS       SUTS       SUTS         SM

¹Classifications and symbols per ASTM D 2488-17 (Visual-Manual Procedure) unless noted otherwise.

²To be consistent with general practice, "POORLY GRADED" has been removed from GP, GP-GM, GP-GC, SP, SP-SM, SP-SC soil types on the boring logs.

³Non-ASTM designations are included in soil descriptions and symbols along with ASTM symbol [Ex: (SM-FILL)].

⁴Typically estimated via pocket penetrometer or Torvane shear test and expressed in tons per square foot (tsf).

⁵Standard Penetration Test (SPT) refers to the number of hammer blows (blow count) of a 140 lb. hammer falling 30 inches on a 2 inch OD split spoon sampler

required to drive the sampler 12 inches (ASTM D 1586). "N-value" is another term for "blow count" and is expressed in blows per foot (bpf). SPT correlations per 7.4.2 Method B and need to be corrected if using an auto hammer.

⁶The water levels are those levels actually measured in the borehole at the times indicated by the symbol. The measurements are relatively reliable when augering, without adding fluids, in granular soils. In clay and cohesive silts, the determination of water levels may require several days for the water level to stabilize. In such cases, additional methods of measurement are generally employed.

⁷Minor deviation from ASTM D 2488-17 Note 14.

⁸Percentages are estimated to the nearest 5% per ASTM D 2488-17.

essuremeter Test ck Bit Drilling ck Core, NX, BX, AX ck Sample Recovery % ck Quality Designation %

PARTICLE SIZE IDENTIFICATION			
DESIGNATION PARTICLE SIZES		PARTICLE SIZES	
Boulders		12 inches (300 mm) or larger	
Cobbles		3 inches to 12 inches (75 mm to 300 mm)	
Gravel:	Coarse	3/4 inch to 3 inches (19 mm to 75 mm)	
	Fine	4.75 mm to 19 mm (No. 4 sieve to ³ / ₄ inch)	
Sand:	Coarse	2.00 mm to 4.75 mm (No. 10 to No. 4 sieve)	
	Medium	0.425 mm to 2.00 mm (No. 40 to No. 10 sieve)	
	Fine	0.074 mm to 0.425 mm (No. 200 to No. 40 sieve)	
Silt & Cla	y ("Fines")	<0.074 mm (smaller than a No. 200 sieve)	

RELATIVE AMOUNT ⁷	COARSE GRAINED (%) ⁸	FINE GRAINED (%) ⁸
Trace	<u>&lt;</u> 5	<5
With	10 - 20	10 - 25
Adjective (ex: "Silty")	25 - 45	30 - 45

WATER	LEVELS ⁶

t Encountered)
t Encountered)

- WL (Completion)
- WL (Seasonal High Water)
- WL (Stabilized)

FILL AND ROCK					
FILL		PROBABLE FILL	ROCK		



## SUBSURFACE EXPLORATION PROCEDURE: STANDARD PENETRATION TESTING (SPT) ASTM D 1586 Split-Barrel Sampling

Standard Penetration Testing, or **SPT**, is the most frequently used subsurface exploration test performed worldwide. This test provides samples for identification purposes, as well as a measure of penetration resistance, or N-value. The N-Value, or blow counts, when corrected and correlated, can approximate engineering properties of soils used for geotechnical design and engineering purposes.

# SPT Procedure:

- Involves driving a hollow tube (split-spoon) into the ground by dropping a 140-lb hammer a height of 30-inches at desired depth
- Recording the number of hammer blows required to drive split-spoon a distance of 12 inches (in 3 or 4 Increments of 6 inches each)
- Auger is advanced* and an additional SPT is performed
- One SPT typically performed for every two to five feet
- Obtain 1.5-inch diameter soil sample

**Drilling Methods May Vary*— The predominant drilling methods used for SPT are open hole fluid rotary drilling and hollow-stem auger drilling.

ECS provides Boring Location Diagrams and Boring Logs for each project!





CLIENT D.R. Ho						PROJECT NO.: 06:24735		BORING I B-01	NO.:	SHEET: 1 of 1
PROJEC						DRILLER/CONTR		DR:		LCS
Kalas Fa			Develo	opmen	t	Bridger Drilling I	nc.			
1832 Ro	lesville		Rolesv		rth Carolina 27587					LOSS OF CIRCULATION
NORTH	IING:			EA	STING: STATION:		S	URFACE E	LEVATION:	BOTTOM OF CASING
(	BER	ЭE	(IN)	(N			LS	(L1		Plastic Limit Water Content Liquid Limit X
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL		WATER LEVELS	ELEVATION (FT)	BLOWS/6"	STANDARD PENETRATION BLOWS/FT     ROCK QUALITY DESIGNATION & RECOVERY     RQD     REC     QUIDANTS SEMUTTODUSTED TODUSTS
					T		~			CALIBRATED PENETROMETER TON/SF [FINES CONTENT] %
	S-1	SS	18	18	Topsoil Thickness[7.00"] (SM) Residuum, SILTY MEDIUM S pink and tan, moist, medium der				2-5-11 (16)	⊗ ₁₆
					AUGER REFUSAL AT 3.5 F	T	:			
5-								-5-		
10-								-10-		
15-								-15		
20-								-20-		
25-								-25-		
30-								-30		
								+		
					NES REPRESENT THE APPROXIMATE BOUND	ARY LINES BETWEE	EN SOI	L TYPES. IN	-SITU THE TR	RANSITION MAY BE GRADUAL
	VL (Firs VL (Cor			ed)		NG STARTED:	Feb 0	3 2022	CAVE IN	DEPTH:
	VL (Sea	-		Vater)	COM	PLETED:		3 2022	HAMME	R TYPE: Auto
	VL (Sta			,	EQUI <b>ATV</b>		logo Ghg	GED BY:	DRILLING	6 METHOD: <b>2-1/4" H.S.A.</b>
					GEOTECHNI			OG		

CLIENT: D.R. Ho						PROJECT N 06:24735	NO.:		30RING N 3-02	10.:	SHEET: 1 of 1	FOG
PROJEC						DRILLER/C			R:			LUS
Kalas Fa			Develo	opmen	t	Bridger Dr	illing Inc	•				
1832 Ro	lesville		Rolesv		rth Carolina 27587						LOSS OF CIRCULATION	<u>&gt;100</u> />
NORTH	ING:			EA	STING: STATION:			SU	IRFACE E	LEVATION:	BOTTOM OF CASING	
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Conter X STANDARD PENETRATIC ROCK QUALITY DESIGNATIO RQD REC CALIBRATED PENETROM [FINES CONTENT] %	DN BLOWS/FT N & RECOVERY
	<u>S-1</u>	55		1	Topsoil Thickness[7.00"] (WR) PARTIALLY WEATHERED R SAMPLED AS, No recovery [Wea ROCK] AUGER REFUSAL AT 1.1	athered			-5- -5- -10- -15- -20- 25- 	50/1" (50/1")		⊗ _{50/1"}
									-30 -			
l	ті	HE STD			NES REPRESENT THE APPROXIMATE BOUN			SOU	TYPEC IN	-SITI I THE TR		ΔΙ
	VL (Firs											ML
	VL (Cor			/		RING STARTE			2022	CAVE IN		
V V	VL (Sea	isonal	High V	Vater)						HAMME	R TYPE: Auto	
V V	VL (Sta	bilized	)		EQU ATV	JIPMENT:		JGGI H <b>G</b>	ED BY:	DRILLING	6 METHOD: 2-1/4" H.S.A.	
					GEOTECHN				DG			

CLIENT D.R. Ho						PROJECT N 06:24735	10.:		BORING I <b>3-03</b>	NO.:	SHEET: 1 of 1	
PROJEC						DRILLER/C			R:			
Kalas Fa			Devel	opmen	t	Bridger Dri	lling Inc					~
			Rolesv	ille, No	rth Carolina 27587						LOSS OF CIRCULATION	ŷ
NORTH	IING:			EA	STING: STATION:			SU	JRFACE E	LEVATION:	BOTTOM OF CASING	
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAI	-		WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Content Liquid Limit X	
	S-1	SS	18	18	Topsoil Thickness[6.00"] (SM) Residuum, SILTY FINE SAN moist, very loose	D, brown,				1-1-1 (2)	[FINES CONTENT] %	
5-					AUGER REFUSAL AT 3 I	T						
10									-10-			
									-15-			
									-			
20									-20 - - - - -			
25-									- - -25 -			
- - - -												
30-									-30 - -			
	 Т	HE STR4	TIFICA	TION I I	NES REPRESENT THE APPROXIMATE BOUN	IDARY LINFS BF	TWEFN	SOII	TYPES. IN	-SITU THF TR	ANSITION MAY BE GRADUAI	_
V V	VL (Firs					RING STARTED			2022	CAVE IN		
	VL (Cor	-			Dry BOI	RING			2022	HAMMEI		$\neg$
	VL (Sea			Vater)		MPLETED: JIPMENT:			ED BY:			-
<u>▼</u> ∨	VL (Sta	bilized	)		GEOTECHN		G	HG			6 METHOD: <b>2-1/4" H.S.A.</b>	_

CLIENT D.R. Ho						PROJECT N 06:24735	10.:		30RING 1 3-04	NO.:	SHEET: 1 of 1	FOO
PROJEC						DRILLER/C			R:		1	LCS
Kalas Fa			Devel	opmen	t	Bridger Dri	lling Inc.	•				
			Rolesv		rth Carolina 27587						LOSS OF CIRCULAT	
NORTH	IING:			EA	STING: STATION:			SU	IRFACE E	LEVATION:	BOTTOM OF CASI	NG
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Cor X	ATION BLOWS/FT ATION & RECOVERY
-	6.4				Topsoil Thickness[6.00"]				-	50/6		
	<u>S-1</u>	SS	6	6	(WR) PARTIALLY WEATHERED R SAMPLED AS SILTY FINE TO MEI SAND, pink, tan and gray, moist [Weathered ROCK] Refusal encountered at 2.0 END OF DRILLING AT 2.0	DIUM feet.			-10 -10 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15	(50/6")		⊗ _{50/6"}
												· · ·
					NES REPRESENT THE APPROXIMATE BOUN			SOIL	TYPES. IN			DUAL
	VL (Firs VL (Cor			ea)		RING STARTED			2022	CAVE IN		
V V	VL (Sea	isonal	High V	Vater)	CON	APLETED:			2022	HAMME	R TYPE: Auto	
V V	VL (Sta	bilized	)		EQU <b>ATV</b>	JIPMENT:		)ggi H <b>g</b>	ED BY:	DRILLING	G METHOD: <b>2-1/4" H.S</b>	.A.
					GEOTECHN	CAL BORI			DG			

CLIENT: D.R. Ho						PROJECT 06:24735			BORING I B-05	NO.:	SHEET: 1 of 1		FOR		
PROJEC	CT NAN					DRILLER/	CONTRA	СТО					LUS		
Kalas Fa			Devel	opmen	t	Bridger D	orilling Inc	2.			1				
SITE LO( 1832 Ro			Rolesv	ille, No	rth Carolina 27587						LC	OSS OF CIRCULATION	<u>&gt;100</u> />		
NORTH					STING: STATION:				JRFACE E 7.00	LEVATION:	В	OTTOM OF CASING			
	IBER	PE	(IN)	â				S	FT)	_		Limit Water Conter	nt Liquid Limit ────△		
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	ROCI	STANDARD PENETRATIO K QUALITY DESIGNATIO RQD			
	SAM	SA	SAM	RE				1W	ELE	ш		REC	IETER TON/SF		
					Topsoil Thickness[6.00"]						[FINE	ES CONTENT] %			
	S-1	SS	18	18	(SC) Residuum, CLAYEY MEDIUN brown and orange, moist, loose	I SAND,				3-3-4 (7)	⊗7				
					AUGER REFUSAL AT 3 F	г	;/:/:/:/:								
									-						
5-									-5-						
-									-						
-															
-									-						
10-															
-									-						
-									-						
15-									-15						
-									-						
-									-						
-									-						
20									-20						
-															
-									-						
-									-						
25-									-25-						
30-									-30-						
	L TH	HE STRA	ATIFICA	L TION LI	NES REPRESENT THE APPROXIMATE BOUND	DARY LINES I	BETWEEN	SOIL	TYPES. IN	-SITU THE TR	I RANSITION N	MAY BE GRADU	AL		
V V	VL (Firs	st Enco	ountere	ed)	BOR	ING START	ED: F	eb 08	3 2022	CAVE IN	DEPTH:	2.00			
	VL (Cor		-		DRY		F	eb 08	3 2022	HAMME	R TYPE:	Auto			
	VL (Sea			Vater)		IPLETED: IPMENT:			ED BY:						
V V	VL (Sta	bilized	)		ATV (	CME550	c	AR3		DRILLING	5 METHOD	): <b>2.25 HSA</b>			
1					GEOTECHNI	LAL BOI	ĸĿĦŎĹ	E L	UG						

CLIENT D.R. Ho						PROJECT NO 06:24735	.:		ORING N - <b>06</b>	10.:	SHEET 1 of 1			
PROJEC	CT NAN					DRILLER/COM		_			_			LUS
Kalas Fa			Devel	opmen	t	Bridger Drillin	ng Inc.						i	~
1832 Ro	lesville		Rolesv	ille, No	orth Carolina 27587							LOSS OF CIF	RCULATION	<u>&gt;100</u> />
NORTH	IING:			EA	STING: STATION:			SU	RFACE EI	_EVATION:		BOTTOM C	OF CASING	
	1BER	PE	(IN)	(N				ELS	ET)	-	Ρ	lastic Limit Wa X	iter Content Li	quid Limit —∆
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"		ROCK QUALITY RQD REC	PENETRATION B	RECOVERY
	S		0)									CALIBRATE	D PENETROMETE	R TON/SF
	S-1	SS	18	18	Topsoil Thickness[8.00"] (SM) Residuum, SILTY FINE TO M SAND, dark yellowish brown, mo medium dense					1-3-8 (11)	⊗ ₁₁	13.7	[19.6%]	
-					AUGER REFUSAL AT 3.5 F	r ili			-					
5-									-5					
-									-					
-									-					
10-									-10					
-									-					
									-					
15-									-15					
-									-					
									-					
20-									-20 -					
									-					
-									-					
25-									-25 -					
20									20					
30-									-30-					
		HE STRA	TIFICA	TION I I	NES REPRESENT THE APPROXIMATE BOUND.	ARY LINES BFTV	VEENIS	011	TYPES. IN	-SITU THF TF	ANSITI	ON MAY BF	GRADUAI	
V V	VL (Firs					NG STARTED:			2022	CAVE IN			0,	
V V	VL (Cor	mpleti	on)		Dry BORII		Feh	08	2022	HAMME	R TYPF	: Auto		
	VL (Sea			Vater)		PLETED: PMENT:			ED BY:					
<u>v</u> w	VL (Sta	bilized	)		ATV		GH	G			5 METH	IOD: <b>2-1/4</b>	" H.S.A.	
1					GEOTECHNIC	AL BUKEF	IULE	L	טי					

CLIENT D.R. Ho						PROJECT NO.: 06:24735		BORING <b>B-07</b>	NO.:	SHEET: 1 of 1
PROJEC		/IE:				DRILLER/CON		-		LUS
Kalas Fa			l Devel	opmen	t	Bridger Drilling	; Inc.			
SITE LO 1832 Ro			Rolesv	ille, No	rth Carolina 27587					LOSS OF CIRCULATION
NORTH	IING:		I	EA	STING: STATION:		5	SURFACE E	ELEVATION:	BOTTOM OF CASING
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIA	L	WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Content Liquid Limit X
	S-1	SS	18	18	Topsoil Thickness[4.00"] (ML) Residuum, SANDY SILT, or	ange,			1-2-3	<i>∞</i> ,
-	51	55	10	10	moist, firm			-	(5)	45
5-	S-2	SS	18	18	(SM) Residuum, SILTY MEDIUN COARSE SAND, gray and white, medium dense	moist,		-5-	11-13-11 (24)	824
	S-3	SS	6	6	(WR) PARTIALLY WEATHERED R SAMPLED AS SILTY FINE SAND, moist [Weathered ROCK]	orange,		-	50/6 (50/6")	S50/6"
	S-4	SS	18	18	(SM) Residuum, SILTY FINE SAN orange, moist, medium dense			-10-	6-6-7 (13)	<b>⊗</b> ₁₃
15- 	S-5	SS	18	18				-15- -15- -	3-4-5 (9)	\& ₉
					Refusal encountered at 17 END OF DRILLING AT 17.					
20								-20		
- - - -								-		
25								-25		
							_			
	 ті	HE STRA	ATIFICA		NES REPRESENT THE APPROXIMATE BOUI	DARY LINES BETW	EEN SO	IL TYPES. II	N-SITU THF TF	ANSITION MAY BE GRADUAI
∠ v	VL (Firs					RING STARTED:		)3 2022	CAVE IN	
	VL (Co			-		RING				
V V	VL (Sea	asonal	High \	Water)		MPLETED:		03 2022	HAMME	R TYPE: Auto
V W	VL (Sta	bilized	I)		EQ. <b>AT</b> V	JIPMENT:	LOG GHG	GED BY:	DRILLING	G METHOD: <b>2-1/4" H.S.A.</b>
						ICAL BOREH			I	

CLIENT: D.R. Ho							PROJECT 06:24735			BORING I B-08	NO.:	SHEET: 1 of 1	
PROJEC		/IE:					DRILLER/						S
Kalas Fa			l Devel	opmen	t		Bridger D	rilling Ind	с.				ž
SITE LOO 1832 Ro			Rolesv	ille, No	rth Carolina 27587							LOSS OF CIRCULATION	•••>
NORTH	ING:		I	EA	STING:	STATION:			SL	JRFACE E	LEVATION:	BOTTOM OF CASING	
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION O		-		WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Content Liquid Limit X	
-					Topsoil Thickness[12.0	-				-			
	S-1	SS	18	18	(SM FILL) FILL, SILTY N and brown, moist	IEDIUM S	AND, gray				2-3-2 (5)	₩5	
5-	S-2	SS	18	18	(SC-SM FILL) FILL, SILT SAND, orange, moist	Y CLAYEY	MEDIUM				2-3-5 (8)	⊗ ₈	
	S-3	SS	18	18							2-4-5 (9)	₿	
-					(SM) Residuum, SILTY	FINE TO I	MEDIUM				6 8 0		
10-	S-4	SS	18	18	SAND, orange, moist,	medium	dense			-10-	6-8-9 (17)	& _{4Z}	
	<del>\$-5</del>	<del>SS</del>	2	2	(WR) PARTIALLY WEAT SAMPLED AS SILTY ME SAND, pink and white, ROCK] AUGER REFUSA	DIUM TC moist [V	COARSE Veathered			-10 -15 -15 -20 -25 - 	50/2" (50/2")		0/2"
l	Tł	HE STRA	L ATIFICA	 	NES REPRESENT THE APPROXI	MATE BOUN	IDARY LINES F	BETWEEN	   SOII	_ TYPES. IN	I-SITU THE TF	ANSITION MAY BE GRADUAL	
V W							RING STARTE			3 2022	CAVE IN		
<b>T</b> W	/L (Cor	npleti	on)		Dry		RING						
V V	/L (Sea	asonal	High V	Water)		сог	MPLETED:			3 2022	HAMME	R TYPE: Auto	
V V	/L (Sta	bilized	)			EQU ATV	JIPMENT:		ogg i <b>hg</b>	ED BY:	DRILLING	6 METHOD: <b>2-1/4" H.S.A.</b>	
					GEC		ICAL BOF			OG	L		

CLIENT D.R. Ho						PROJECT N 06:24735	0.:		BORING I B-09	NO.:	SHEET: 1 of 1	-00
PROJEC						DRILLER/CO			R:			LUS
Kalas Fa			Devel	opmen	t	Bridger Dril	ling Inc.	•				~
			Rolesv	ille, No	rth Carolina 27587						LOSS OF CIRCULATION	<u>&gt;100%</u>
NORTH	ling:			EA	STING: STATION:			SU	IRFACE E	LEVATION:	BOTTOM OF CASING	
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Content L X STANDARD PENETRATION E ROCK QUALITY DESIGNATION & RQD RQD RCC CALIBRATED PENETROMETE [FINES CONTENT] %	∆ SLOWS/FT RECOVERY
	S-1	SS	18	18	Topsoil Thickness[2.00"] (SM) Residuum, SILTY MEDIUM orange, moist, loose	SAND,				WOH-1-6 (7)	87	
5	<del></del>	<del>- 55</del> -	0	-0-	(WR) PARTIALLY WEATHERED RO SAMPLED AS, No recovery [Wea ROCK] AUGER REFUSAL AT 3.5	othered				50/0" (50/0")		⊗ _{50/0"}
10									-10- 			
15									-15 - - - - - - - - - - - - - - - - - - -			
20									-20 - - - - - - - - - - - - - - - - - - -			
25									-25 - - - - - - - - - - - - - - - - - - -			
	Tł	HE STRA	ATIFICA	TION LI	NES REPRESENT THE APPROXIMATE BOUN	DARY LINES BE	TWEEN	SOIL	TYPES. IN	-SITU THE TR	ANSITION MAY BE GRADUAL	
V V	VL (Firs	st Enco	ounter	ed)	BOR	ING STARTED	: Fe	b 02	2022	CAVE IN	DEPTH: <b>3.00</b>	
	VL (Cor		-		Dry BOR		Fe	b 02	2022	HAMME	R TYPE: Auto	
V V	VL (Sea	asonal	High V	Vater)		IPLETED:			ED BY:			
V V	VL (Sta	bilized	)		ATV		Gł	HG		DRILLING	6 METHOD: 2-1/4" H.S.A.	
					GEOTECHNI	CAL BORE	HOL	E LC	DG			

CLIENT D.R. Ho							PROJECT N 06:24735	D.:		BORING N 3-10	NO.:	SHEET: 1 of 1	
PROJEC		/IE:					DRILLER/CO	ONTRA				1012	
Kalas Fa			Devel	opmen	t		Bridger Dril	ling Inc.				1	
SITE LO 1832 Ro			Rolesv	ille, No	rth Carolina 27587							LOSS OF CIRCU	
NORTH	IING:			EA	STING:	STATION:			SU	JRFACE E	LEVATION:	BOTTOM OF (	
(	1BER	ЪЕ	(IN)	(N					ELS	(FT)	=		r Content Liquid Limit ●
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	OF MATERIAL			WATER LEVELS	elevation (FT)	BLOWS/6"	ROCK QUALITY DE	NETRATION BLOWS/FT SIGNATION & RECOVERY
	SAI	5	SAI	~					5			CALIBRATED PI [FINES CONTENT] 9	ENETROMETER TON/SF
-					Topsoil Thickness[6.00 (SM) Residuum, SILTY	-	ro			-			
	S-1	SS	18	18	COARSE SAND, gray a					-	5-5-17 (22)	⊗ ₂₂	
-					medium dense AUGER REFU	SAL AT 3 F	r	1.1.1.1.1					
5-										-5-			
										-			
-													
10-										-10-			
-										-			
-													
15-										- -15-			
-													
										-			
-										-			
20-										-20			
-										-			
-										-			
-										-			
25-										-25-			
-										-			
-										-			
30-										-30-			
					NES REPRESENT THE APPROXI	MATE BOUNE	ARY LINES BE	WEEN	SOIL	TYPES. IN	-SITU THE TR	L RANSITION MAY BE G	RADUAL
	VL (Firs			ed)	<b>.</b>		NG STARTED	: Fe	b 03	2022	CAVE IN	DEPTH:	
	VL (Cor VL (Sea			Vater)	Dry	BORI COM	NG PLETED:	Fe	b 03	2022	HAMMEI	R TYPE: Auto	
	VL (Sta		-				PMENT:	LC Gł		ED BY:	DRILLING	6 METHOD: <b>2-1/4"</b>	H.S.A.
					GEC		CAL BORE			OG			

CLIENT D.R. Ho							PROJECT 06:24735			BORING   <b>B-11</b>	NO.:	SHEET: 1 of 1		
PROJE		/IE:					DRILLER	CONTR/	АСТО			1		LUS
Kalas Fa			l Devel	opmen	t		Bridger D	Drilling In	с.			1		
SITE LO 1832 Ro			Rolesv	ille, No	orth Carolina 27587							L	OSS OF CIRCULATION	<u>&gt;100%</u>
NORTH	IING:		1	EA	ASTING:	STATION:			SL	JRFACE E	LEVATION:		BOTTOM OF CASING	
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	DF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	RO	c Limit Water Conten X STANDARD PENETRATIC CK QUALITY DESIGNATIO • RQD • REC CALIBRATED PENETROM VES CONTENTJ %	→ △
-					Topsoil Thickness[4.00			XM		-				
-	S-1	SS	18	18	(CH) Residuum, SAND brownish yellow, mois		(,				1-2-4 (6)	$\otimes_6$	29 29.3	62 [61.7%]
5-	S-2	SS	18	18	(SM) Residuum, SILTY SAND, tan and pink, m loose					-5 -	1-1-3 (4)	⊗₄		
-	S-3	SS	18	18						-	2-2-4 (6)	$\otimes_6$		
10-	S-4	SS	18	18						-10	1-1-4 (5)	⊗₅		
15-	S-5	SS	18	18						-15- -	2-3-5 (8)	⊗ ₈		
-	-				(SM) Residuum, SILTY and tan, moist, mediu		D, pink				3-4-7			
20-	S-6	SS	18	18	END OF BORI	NG AT 20 F	т			-20	(11)	⊗ ₁₁		
25-										-25 - - - - - - - - - - - - - - - - - -				
		HE STP			NES REPRESENT THE APPROXI			RETW/EEN		TYPES IN	1-SITLI THE TE		MAY RE GRADU	<u>ما</u>
V V	VL (Firs				dry		ING START			2022	CAVE IN		MALDE GIVADU	<u>، د</u>
	VL (Cor				<u>_</u>	BOR								
	VL (Sea	-		Vater)		CON	/IPLETED:		an 24	2022	HAMME	R TYPE:	Auto	
	VL (Sta		-	,		EQU Truc	IIPMENT: <b>k 55 Trailer/</b>	2013		ED BY:	DRILLING	6 METHO	D: <b>2.25 HSA</b>	
'	_ (310		,		GEC	OTECHNI			AR3	OG				

CLIENT: D.R. Ho								DJECT N 24735	D.:		BORING I <b>3-12</b>	NO.:	SHEET: <b>1 of 1</b>		
PROJEC	T NAN						DRI	LLER/CO		CTO			1011		LUS
Kalas Fa			Devel	opmen	t		Brid	dger Dril	ling Inc						
			Rolesv	ille, No	rth Carolina 27587								L	OSS OF CIRCULATION	<u>&gt;100</u> 2
NORTH	ING:			EA	STING:	STATION	:		1	SU	IRFACE E	LEVATION:	1	BOTTOM OF CASING	
	ER		Î	Ê						S	<u> </u>			: Limit Water Conter	t Liquid Limit ────△
(FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)						WATER LEVELS	elevation (FT)	s/6"		STANDARD PENETRATIC	
DЕРТН (FT)	PLE N	MPLE	PLE D	COVE	DESCRIPTION C	OF MATERIA	NL.			TER L	VATIC	BLOWS/6"	ROC	K QUALITY DESIGNATIO	N & RECOVERY
	SAM	SA	SAM	REC						٨٧	ELE			REC	IFTER TON/SE
					Topsoil Thickness[8.00	וייר								ES CONTENT] %	: :
					(WR) PARTIALLY WEAT		ROCK		///////////////////////////////////////		_	4-5-50/4"			
	S-1	SS	16	16	SAMPLED AS SILTY MI						_	(55/10")			⊗ _{55/10"}
	<del>- S-2</del>	S	-1-	-1-	SAND, orange, brown [Weathered ROCK]	and gray	, moist	t			-	50/1"			⊗ _{50/1"}
	• -		-	-	AUGER REFUS	GAL AT 3.6	6 FT	/			-	(50/1")			- 50/1
5-											-5-				
											-				
											-				
											-				
10-											-10				
-											-				
											-				
-											-				
											-				
15-											-15				
											-				
											-				
-											-				
20-											-20 -				
											-20				
											-				
											-				
											-				
25-											-25 –				
											_				
											-				
											-				
											-				
30-											-30-				
														· · · · · · · · · · · · · · · · · · ·	
	TH L (Firs/				NES REPRESENT THE APPROXI										AL
	/L (Cor			Luj	Dry			TARTED	: Fe	eb 11	2022	CAVE IN	UEPTH:	2.00	
	/L (Sea	-	-	Vater)	ыу		RING MPLET	ED:	Fe	eb 11	2022	HAMME	R TYPE:	Auto	
	/L (Sta			vater)		———EQ	UIPME				ED BY:	DRILLING	6 METHO	): <b>2-1/4" H.S.A</b>	
	₁ 5.a	~	1		GEO	ATN DTECHN		BORE		н <u></u> Е L(	DG				

CLIENT D.R. Ho								ROJECT N	0.:		BORING   <b>3-13</b>	NO.:	SHEET: 1 of 1	
PROJEC		/IE:						RILLER/CO	ONTRA				1011	- EUQ
Kalas Fa	alls Resi	dentia	l Devel	opmen	t			Bridger Dril						~
SITE LO 1832 Ro			Rolesv	rille. No	orth Carolina 27587								LOSS OF CIRCULATIC	NN <b>)100%</b>
NORTH					STING:	STATIC	DN:	N:			JRFACE E	LEVATION:	BOTTOM OF CASING	
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	PF MATEF	RIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Cont X	TION BLOWS/FT
-					Topsoil Thickness[6.00	-								
	S-1	SS	18	18		C) Residuum, CLAYEY FINE TO ME ND, brown, moist to wet, very lo			7.7.7		-	WOH-1-1 (2)	$ \overset{\bullet}{\times}_{16.7}^{23} \times \overset{38}{\times}_{15.7}^{38} $	<u>38</u> [36.0%]
	S-2	SS	18	18	(CL) Residuum, SANDY silt, red and brown, m			trace				4-6-7 (13)	₿13	
	S-3	SS	18	18	(SM) Residuum, SILTY SAND, pink and gray, r medium dense							5-5-3 (8)	⊗ ₈	
	S-4	SS	18	18								4-4-5 (9)	₿9	
	S-5	SS	18	18							-15- - - - - - - - - - - - - - - - - - -	6-7-10 (17)	€17	
20-	S-6	SS	18	18							-20-	9-12-16 (28)	S ₂₈	
25					END OF BORI		20 F I				-25			
	ті	HE CTD					ם א רו או וו				TYPEC IN	ו_גודו ו דעב דם		
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWE         WL (First Encountered)         BORING STARTED:														UAL
							BORING					'E IN DEPTH: <b>16.90</b>		
V V	VL (Sea	asonal	High \	Nater)			COMPL	PLETED: Feb 09 2022 HAM			HAMME	MER TYPE: Auto		
⊻ v	VL (Sta	bilizec	1)				EQUIPN ATV	/IENT:		.OGG i <b>hg</b>	ED BY:	DRILLING	G METHOD: <b>2-1/4" H.S.</b> /	Α.
					GEO			L BORE			OG	I		

.R. Ho ROJE							06:24735		B-14	NO.:	SHEET: 1 of 1		50
	CT NAN	/IE:					DRILLER/CONTI	RACTC					<b>LU</b>
	alls Resi		l Devel	opmen	t		Bridger Drilling	nc.			1		
			Rolesv	ille, No	rth Carolina 27587						LC	DSS OF CIRCULATION	Σιοι
NORTHING: EASTING: STATIC								SU	JRFACE E	LEVATION:	E	BOTTOM OF CASING	
(L	ABER	VBER (IN) (IN)						WATER LEVELS	(FT)	=	Plastic Limit Water Content I X		nt Liquid Limit ────△
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION	OF MATERIAL	-		ELEVATION (FT)	BLOWS/6"	STANDARD PENETRATION BLOWS/F ROCK QUALITY DESIGNATION & RECOVER     RQD     REC     CALIBRATED PENETROMETER TON/S		N & RECOVERY
	-				Topsoil Thickness[6.0	00"1					[FIN	ES CONTENT] %	
	S-1	SS	18	18	(ML) Residuum, SAN yellowish brown, mo	DY SILT, light	11111			2-3-3 (6)	∞6		
	S-2	SS	18	18						4-6-7 (13)	⊗13	20.1	[59.9%]
-	S-3	SS	18	18	(SM) Residuum, SILT and tan, moist, dense		, gray			9-17-29 (46)		846	
-	- 			2	(WR) PARTIALLY WEA	THERED RO	СК	:	$\left  \right $	50/2"			
-		S			SAMPLED AS FINE SA					(50/2")			850
10- -	-				and tan, moist [Weat AUGER REFU				-10-				
-	-												
	-								-15-				
-	-												
-	-												
20-	-								-20 - -				
	-												
25-	-								-25				
-	-												
-	-												
30-									-30				
	LTi	HE STR/	L ATIFICA	L TION LI	NES REPRESENT THE APPROX	(IMATE BOUND	ARY LINES BETWE	EN SOIL	TYPES. IN	N-SITU THE TR	L ANSITION I	MAY BE GRADU	AL
Z \	VL (Firs						NG STARTED:		L 2022	CAVE IN		8.00	
	VL (Coi VL (Sea			Nator)	Dry	BORI	NG PLETED:	Feb 11	L 2022	HAMME	R TYPE:	Auto	
	VL (Sea		-	valer)			PMENT:	logg <b>Ghg</b>	ied by:	DRILLING	6 METHOD	): <b>2-1/4" H.S.A</b>	

CLIENT D.R. Ho						PROJECT NO.: 06:24735			BORING NO.: <b>B-15</b>		SHEET: 1 of 1		FCo
PROJEC						DRILLER/CONTRACTOR:							<b>LCS</b>
	Kalas Falls Residential Development     Bridger Drilling Inc.       SITE LOCATION:     LOSS OF CIRCULATION												
1832 Ro	olesville		Rolesv		orth Carolina 27587						LOSS OF CIRCULATION		
NORTH	IING:			EA	ASTING: STATION:		SURFACE ELEVATION				BOTTOM OF CASING		
	BER	щ	(IN)	î				WATER LEVELS	(F			Limit Water Conten	t Liquid Limit ────△
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	DIST.	SAMPLE DIST. (IN) RECOVERY (IN)		FERIAL			elevation (FT)	VS/6"	STANDARD PENETRATION BLOWS/FT ROCK QUALITY DESIGNATION & RECOVERY		
DEPTI	1PLE	AMPL	<b>1</b> PLE	COVE	DESCRIPTION OF MATERIA				EVATI	BLOWS/6"			
	SAN	/S	SAN	RE					ELE		REC     CALIBRATED PENETROMETER TON/SF		ETER TON/SF
	S-1	SS	0	0	Topsoil Thickness[5.00"]					50/0"	[FINE	S CONTENT] %	× (8)
-			Ū		(WR) PARTIALLY WEATHERED R	ОСК	1			(50/0")			⊗ _{50/0"}
					SAMPLED AS, No recovery [We	athered				-			
					ROCK] AUGER REFUSAL AT 0.5	FT							
5-									-5-				
	-												
-													
-													
10-	1								-10-				
-													
-													
-													
15-									-15-				
-													
-													
-													
									-				
20-									-20-				
-													
	-												
	-												
-													
25-									-25-				
-													
-													
-													
30-									-30				
													: :
	THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL												
\	VL (Firs	st Enco	ountere	ed)	ВО	RING START	NG STARTED: Jan 19 2022 CAVE			CAVE IN	N DEPTH:		
V V	VL (Coi	mpletio	on)			RING	la	an 25	1 25 2022 HAMME		R TYPE: Auto		
V V	VL (Sea	asonal	High V	Vater)		MPLETED: UIPMENT:	PLETED: Jan 25 2022 HAMIM				NIIFE. AULU		
V 🗹	VL (Sta	bilized	)					HG HG	LU DI:	DRILLING	6 METHOD	: 2-1/4" H.S.A.	
	GEOTECHNICAL BOREHOLE LOG												

PRODUCT NAME:         DBIT IF (ZON NACCION:         DBIT IF (ZON NACCION:         DESCRIPTION:         DESCRIPTION: <thdescripion:< th=""></thdescripion:<>	CLIENT D.R. Ho							PROJECT I 06:24735	10.:		BORING N 3-16	10.:	SHEET: 1 of 1
SNL LOCARDION       LOS 01 36CURDING       SUBACCE VELLOW       SUBACCE VELOW       SUBACCE VELLOW       SUBAC			/E:						ONTRA				
1382 Revenue Resca, Relevantile, North Carolina 2797       North Links       Station       North Kack Litt Value Rev       International Rescard Processing Rescard Procest Processing Rescard Processing Rescard Pr				Devel	opmen	t		Bridger Dr	illing Inc				
Line         Line <thline< th="">         Line         Line         <th< td=""><td></td><td></td><td></td><td>Rolesv</td><td>ille, No</td><td>orth Carolina 27587</td><td></td><td></td><td></td><td></td><td></td><td></td><td>LOSS OF CIRCULATION</td></th<></thline<>				Rolesv	ille, No	orth Carolina 27587							LOSS OF CIRCULATION
Bit	NORTH	ling:			EA	STING:	STATION:			SL	JRFACE E	LEVATION:	BOTTOM OF CASING
5-1       55       18       18       18       (SM) Residuum, SLIY MEDIUM SAND, brown, moist, loose       22-35       30'       30'       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       <	DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	DF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	X
52       55       1       1       (WR) PARTIALLY WEATHERED ROCK SAMPLED AS SLITY FINE TO MEDIUM SAND, tan and gray, moist (Weathered ROCK)       50/1"       50/1"         10       6       60/1"       50/1"       50/1"       50/1"         10       6       60/1"       50/1"       50/1"         10       6       60/1"       50/1"       50/1"         10       6       6       6       6         10       6       6       6       6         10       6       6       6       6         10       6       6       6       6         10       6       6       6       6         11       6       6       6       6         10       6       6       6       6         11       6       6       6       6         11       6       6       6       6         12       6       6       6       6         13       6       6       6       6         14       6       6       6       6         15       6       6       6       6         15       6		S-1	SS	18	18	(SM) Residuum, SILTY	-	SAND,			-		$\otimes_{8}$ 17.0 $29 \times \frac{41}{[25.2\%]}$
Image: Image		<del>S-2</del>	<u>SS</u>	_1	1	(WR) PARTIALLY WEAT SAMPLED AS SILTY FIN SAND, tan and gray, m ROCK]	IE TO MEI noist [Wea	DIUM thered			-10- -10- -15- -15- -15- -1	50/1"	
VL (First Encountered)     BORING STARTED:     Feb 11 2022     CAVE IN DEPTH:       VL (Completion)     Dry     BORING COMPLETED:     Feb 11 2022     HAMMER TYPE:     Auto       VL (Seasonal High Water)     EQUIPMENT: ATV     LOGGED BY: GHG     DRILLING METHOD: 2-1/4" H.S.A.	30-										-30 -30		
VL (First Encountered)     BORING STARTED:     Feb 11 2022     CAVE IN DEPTH:       VL (Completion)     Dry     BORING COMPLETED:     Feb 11 2022     HAMMER TYPE:     Auto       VL (Seasonal High Water)     EQUIPMENT: ATV     LOGGED BY: GHG     DRILLING METHOD: 2-1/4" H.S.A.			HE STR4			NES REPRESENT THE APPROXI	MATE BOUN		TWFFN	SOII	TYPES IN	-SITU THE TR	ANSITION MAY BE GRADUAL
WL (Completion)     Dry     BORING     Feb 11 2022     HAMMER TYPE:     Auto       WL (Seasonal High Water)     COMPLETED:     EQUIPMENT:     LOGGED BY:     DRILLING METHOD:     2-1/4" H.S.A.       WL (Stabilized)     ATV     GHG     DRILLING METHOD:     2-1/4" H.S.A.	∑ v												
V     WL (Seasonal High Water)     COMPLETED:       V     EQUIPMENT:     LOGGED BY:       V     KTV     GHG	▼ v	VL (Cor	mpleti	on)		Dry	BOF	RING		eb 11	2022		
☑   WL (Stabilized)   ATV GHG DRILLING METHOD: 2-1/4 [™] H.S.A.	V V	VL (Sea	isonal	High V	Vater)								
GEOTECHNICAL BOREHOLE LOG	<u>v</u> v	VL (Sta	bilized	)		~~~	ATV		G	HG		DRILLING	5 METHOD: <b>2-1/4" H.S.A.</b>

CLIENT: D.R. Ho							PROJEC 06:2473			BORING I <b>B-17</b>	NO.:	SHEET: <b>1 of 1</b>		
PROJEC		/IE:						/CONTR/				1011		<b>LC</b> C
Kalas Fa			l Devel	opmen	t		Bridger	Drilling In	с.			1		
SITE LOO 1832 Ro			Rolesv	ille, No	rth Carolina 27587							L	DSS OF CIRCULATION	<u>&gt;100</u> %
NORTH	ING:			EA	STING:	STATION:			SU	JRFACE E	LEVATION:	E	BOTTOM OF CASING	
	3ER	ш	(Z	Î					S	Ê			Limit Water Conten	t Liquid Limit ────△
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	OF MATERIAL	-		WATER LEVELS	ELEVATION (FT)	BLOWS/6"		STANDARD PENETRATIO	
	SAM	SA	SAM	RE(					1×	ELE	ш	0	REC CALIBRATED PENETROM	IETER TON/SF
-					Topsoil Thickness[6.00	)"]			8			[FIN	ES CONTENT] %	
-	S-1	SS	16	16	(WR) PARTIALLY WEAT	THERED RO				-	3-4-50/4"			⊗ _{54/10"}
					SAMPLED AS SILTY ME brown, moist [Weathe						(54/10")			54/10
-					AUGER REFUS	AL AT 2.5	FT			-				
5-										-5-				
-														
-										-				
10-										-10-				
-										-				
-										-				
15										-15				
										-				
										-				
-										-				
20-										-20-				
-										-				
_										-				
										-				
25-										-25-				
										-				
-										-				
30 -										-30-				
					NES REPRESENT THE APPROXI	MATE BOUN	IDARY LINES	BETWEEN	n soil	TYPES. IN	I-SITU THE TR	ANSITION	MAY BE GRADU.	AL
	-		ounter	ed)			RING STAR	fed: J	an 19	2022	CAVE IN	DEPTH:	2.50	
		mpleti	-	N=+- )	Dry		RING MPLETED:	l	an 25	2022	HAMME	R TYPE:	Auto	
	-		High V	vater)		EQU	JIPMENT:			ED BY:	DRILLING		): <b>2-1/4" H.S.A</b> .	
	rr (sta	bilized	)		GFC	ATV DTECHN			SHG L <b>E L</b> (	OG			,	

CLIENT D.R. Ho							PROJECT 06:24735	NO.:		BORING I <b>3-18</b>	NO.:	SHEET: 1 of 1	
PROJEC		/IE:					DRILLER/0	CONTRA				1011	
Kalas Fa			Devel	opmen	t		Bridger Dr	illing Inc	c <b>.</b>			1	
SITE LO 1832 Ro			Rolesv	ille, No	orth Carolina 27587							LOSS OF CIRCU	
NORTH	lING:			EA	ASTING:	STATION:			SL	JRFACE E	LEVATION:	BOTTOM OF (	
	BER	Ъ	(IN)	î					LS	(F		Plastic Limit Water X	r Content Liquid Limit ●
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	F MATERIAI			WATER LEVELS	elevation (FT)	BLOWS/6"		NETRATION BLOWS/FT SIGNATION & RECOVERY
DEPT	MPLE	SAMP	MPLE	ECOV					VATEF	LEVAT	BLOV	RQD REC	
	SAI	0)	SAI	~					5	Ē			ENETROMETER TON/SF
-					Topsoil Thickness[6.00							[FINES CONTENT] 9	
-	S-1	SS	18	18	(CH) Residuum, SAND yellowish brown, mois		ί,			-	2-3-3 (6)	⊗ ₆ 29 25.1	×64
-											(0)	23.1	[39.3 %]
-	S-2	SS	8	8	(WR) PARTIALLY WEAT					-	6-50/2" (50/2")		⊗ _{50/2"}
5-					orange and brown, m					-5	(30/2 )		
					ROCK]	AL AT 4 2	CT	/					
					AUGER REPUS	AL AI 4.2							
-													
-													
10-										-10-			
-										-			
-										-			
-										-			
15-										-15			
										-			
20-										-20 –			
										-20			
-	-									-			
-										-			
-										-			
25-										-25			
-													
-										-			
-													
30-										-30			
										-			
	TI	HE STRA	L ATIFICA	 TION LI	NES REPRESENT THE APPROXI	MATE BOUN	DARY LINES B	ETWEEN	l SOIL	TYPES. IN	-SITU THE TR	ANSITION MAY BE G	RADUAL
V V	VL (Firs						ING STARTE			2022	CAVE IN		
▼ v	VL (Coi	mpleti	on)		Dry		ING		ok 40	2022			
V V	VL (Sea	asonal	High V	Vater)		CON	/IPLETED:			2022	HAMME	R TYPE: Auto	
V V	VL (Sta	bilized	)			EQU ATV	IIPMENT:		oggi I <b>hg</b>	ED BY:	DRILLING	G METHOD: <b>2-1/4"</b>	H.S.A.
					GEO		CAL BOR			OG			

CLIENT D.R. Ho						PROJECT 06:24735			BORING   <b>B-19</b>	NO.:	SHEET: 1 of 1
PROJEC						DRILLER/			DR:		
Kalas Fa			l Devel	opmen	t	Bridger D	rilling In	IC.			· · · · · · · · · · · · · · · · · · ·
			Rolesv	ille, No	rth Carolina 27587						LOSS OF CIRCULATION
NORTH	ling:	1	1	EA	STING: STATION:			SI	JRFACE E	LEVATION:	BOTTOM OF CASING
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Content Liquid Limit X
	S-1	SS	18	18	Topsoil Thickness[4.00"] (MH) Residuum, SANDY ELASTIC brown, moist, stiff	C SILT,				3-4-5 (9)	$\bigotimes_{9}$ $27.7$ $40 \times \frac{65}{[60.9\%]}$
5-	S-2	SS	18	18	(SM) Residuum, SILTY FINE SAN and gray, moist, loose to mediu	-		•		3-4-6 (10)	⊗ ₁₀
	S-3	SS	18	18				· · · · ·		3-4-4 (8)	⊗ ₈
- - 10-	S-4	SS	18	18				•	- - -10-	4-5-6 (11)	Ø ₁₁
					AUGER REFUSAL AT 13	FT					
20-											
									-25 - - -		
30-									-30-		
	 ті	HE STRA			NES REPRESENT THE APPROXIMATE BOUN				TYPES IN		ANSITION MAY BE GRADUAL
	VL (Firs					RING STARTE			0 2022	CAVE IN	
	VL (Co			,	_	RING STARTE			0 2022	HAMME	
V V	VL (Sea	asonal	High V	Water)		JIPMENT:			ED BY:		NTHE, AUU
V V	VL (Sta	bilized	1)		ATV		(	GHG		DRILLING	6 METHOD: <b>2-1/4" H.S.A.</b>
					GEOTECHN	CAL BOF	EHO	LE L	OG		

CLIENT							PROJECT N 06:24735	10.:		30RING 1 3-20	NO.:	SHEET: 1 of 1		
PROJEC	T NAN						DRILLER/C		сто			1011		LUS
Kalas Fa			Devel	opmen	t		Bridger Dr	illing Inc	•					
1832 Ro	lesville		Rolesv		orth Carolina 27587	1			_			LC	DSS OF CIRCULATION	<u>) 100</u> %
NORTH	ING:			EA	STING:	STATION:			SU	IRFACE E	LEVATION:	E	BOTTOM OF CASING	
	BER	Ĕ	(IN)	ź					LS	(F			Limit Water Content	: Liquid Limit ∆
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	DF MATERIAI	-		WATER LEVELS	ELEVATION (FT)	BLOWS/6"	-	STANDARD PENETRATIO K QUALITY DESIGNATION RQD	-
	SAI	S	SAN	~					\$	Ξ			REC CALIBRATED PENETROM	ETER TON/SF
-					Topsoil Thickness[3.00		,			-		[FIN	ES CONTENTJ %	
-	S-1	SS	7	7	(WR) PARTIALLY WEAT SAMPLED AS SILTY MI					-	5-50/1" (50/1")			⊗ _{50/1"}
-					and gray, moist [Weat	hered RO	CK]			-				
					AUGER REFUS	SAL AT 1.6	FT			-				
5-										-5-				
_										-				
_										_				
										-				
10-										10				
10-										-10-				
-										-				
-										-				
										-				
15-										-15				
-										-				
										-				
20-										-20 –				
20										-20				
-										-				
										-				
_										-				
25-										-25				
										_				
-										-				
-										-				
30-										-30				
										-00				
	TI	HE STRA	L ATIFICA	L TION LI	NES REPRESENT THE APPROXI	MATE BOUN	IDARY LINES BI	TWEEN	SOIL	TYPES. IN	-SITU THE TR	ANSITION	MAY BE GRADUA	AL
V V		st Enco					RING STARTE			2022	CAVE IN			
V V	VL (Coi	mpleti	on)		Dry		RING							
V V	VL (Sea	asonal	High V	Vater)		COL	MPLETED:			2022	HAMME	K TYPE:	Auto	
V V	VL (Sta	bilized	)			EQU ATV	JIPMENT:		)ggi H <b>g</b>	ED BY:	DRILLING	6 METHOD	): 2-1/4" H.S.A.	
					GEC		ICAL BOR			DG	1			

CLIENT D.R. Ho								JECT NO.: 24735		BORING <b>B-21</b>	NO.:	SHEET: 1 of 1		
PROJEC		/IE:						LER/CONT				1011		EUQ
Kalas Fa	alls Resi	dentia	l Devel	opmen	t		Bric	lger Drilling	Inc.			1		~
SITE LO 1832 Ro			Rolesv	ille, No	orth Carolina 27587							LOSS OF	CIRCULATION	<u>&gt;100%</u>
NORTH			1		STING:	STATION	1:		S	URFACE E	LEVATION:	BOTTO	VI OF CASING	
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	DF MATERI <i>I</i>	AL		WATER LEVELS	ELEVATION (FT)	BLOWS/6"	X	Water Content L	—∆ LOWS/FT RECOVERY
-					Topsoil Thickness[7.00	-			<u> </u>					
	S-1	SS	18	18	(CL) Residuum, SAND and pink, moist, firm t		LAY, tar			-	2-2-4 (6)	⊗ ₆		
5-	S-2	SS	18	18						-5-	4-6-6 (12)	⊗ ₁₂		
	S-3	SS	18	18	(SC-SM) Residuum, SI MEDIUM SAND, pink loose to medium dens	and gray		1.1.1.1		-	4-5-5 (10)	⊗ ₁₀		
10-	S-4	SS	18	18					/	-10-	3-4-6 (10)	⊗ ₁₀		
	S-5	SS	18	18							4-6-6 (12)	⊗ ₁₂		
20-	S-6	SS	18	18	END OF BORI	NG AT 20	FT		/	20 -	6-7-9 (16)	⊗ ₁₆		
25										-25 -				
	<u></u> ть	HE STR	L ATIFICA	L TION I I	NES REPRESENT THE APPROXI	MATE BOU	INDARY I	INES BFTWF	EN SOI	L TYPES IN	N-SITU THE TE	ANSITION MAY	BE GRADUAI	
	VL (Firs				NES NEL NESENT THE APPROAL			TARTED:		0 2022	CAVE IN		.30	
V V	VL (Cor	mpleti	on)		Dry	BC	DRING			0 2022	HAMME			
V V	VL (Sea	asonal	High V	Water)			) DMPLET QUIPMEI			GED BY:				
V V	VL (Sta	bilizec	4)			AT	v		GHG		DRILLING	6 METHOD: <b>2-</b> 1	L/4" H.S.A.	
					GEO	DTECHN	VICAL	BOREHO	JLE L	OG				

CLIENT D.R. Ho						PROJECT NO.: 06:24735		BORING I B-22	NO.:	SHEET: 1 of 1
PROJEC		/IE:				DRILLER/CONTRA				LUS
Kalas Fa			l Devel	opmen	t	Bridger Drilling In	c.			
SITE LO 1832 Ro			Rolesv	ille, No	rth Carolina 27587					
NORTH			1		STING: STATION:		SI	JRFACE E	LEVATION:	BOTTOM OF CASING
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL		WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Content Liquid Limit X
	S-1	SS	18	18	Topsoil Thickness[6.00"] (CL) Residuum, SANDY LEAN CLA silt, orange, moist, soft	Y, trace			1-1-2 (3)	₩3
	S-2	SS	18	18	(SC) Residuum, CLAYEY FINE TO I SAND, orange, moist, loose	MEDIUM			3-5-5 (10)	♥10
	S-3	SS	18	18	(SM) Residuum, SILTY FINE TO M SAND, pink and gray, moist, loose medium dense				4-6-7 (13)	Ø ₁₃
10-	S-4	SS	18	18				-10	4-5-5 (10)	⊗ ₁₀
	S-5	SS	18	18				-15-	3-5-7 (12)	⊗12
20-	S-6	SS	18	18					7-10-12 (22)	S ₂₂
20					END OF BORING AT 20 F	T		-20		
	LTI	HE STR/	L ATIFICA	L TION LI	NES REPRESENT THE APPROXIMATE BOUND	ARY LINES BETWEEN	l V SOII	L TYPES. IN	-SITU THE TR	L RANSITION MAY BE GRADUAL
∑ V	VL (Firs							0 2022	CAVE IN	
V V	VL (Coi	npleti	on)		Dry BORI	NG .	oh 11	1 2022		
V V	VL (Sea	sonal	High V	Vater)		PLETED:		0 2022	HAMME	R TYPE: Auto
V V	VL (Sta	bilized	)		EQUI ATV		.OGG Ghg	ED BY:	DRILLING	6 METHOD: <b>2-1/4" H.S.A.</b>
								OG		

CLIENT D.R. Ho							PROJECT 06:2473			BORING N B-23	10.:	SHEET: 1 of 1		6	
PROJEC		ЛE:						/CONTRA		-		1011		LC	2
Kalas Fa	alls Resi	identia	l Devel	opmen	t			Drilling In				1			
SITE LO 1832 Ro			Rolesv	ville, No	orth Carolina 27587							LC	ISS OF CIRCULATIO	DN <b>50</b>	D
NORTH			1		ASTING:	STATION:			SU	JRFACE E	LEVATION:	В	OTTOM OF CASIN	G	
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	DF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"		Limit Water Cont TANDARD PENETRA CQUALITY DESIGNAT RQD REC CALIBRATED PENETR (S CONTENT] %	IION BLOWS/FT	
-	-				Topsoil Thickness[6.00	-									
	S-1	SS	18	18	(SC) Alluvium, CLAYEY SAND, grayish brown, loose, no recovery at	saturated,		////			1-1-1 (2)	≫ ₂	27 23.9×	48 [45.2%]	
	S-2	SS	18	18	obstruction				Ŧ	-5-	2-2-3 (5)	⊗₅			
-	S-3	SS	18	18	(SM) Residuum, SILTY SAND, gray and brown loose					-	1-1-2 (3)	⊗₃			
10-	S-4	SS	18	18						-10-	1-1-2 (3)	⊗₃			
	S-5	SS	18	18						-15	1-2-1 (3)	⊗3			
					(SM) Residuum, SILTY SAND, orange and bro						5-7-9				
20-	S-6	SS	18	18	medium dense END OF BOR	ING AT 20 F	т			-20- -	(16)	⊗ ₁₆			
										-25-					
30-	-									-30					
		HE STP			NES REPRESENT THE APPROXI			RET\A/EEN			-SITLI THE TE		AAY RE GRAD		
V V	VL (Firs				NES NERNESENT THE APPROXI		ING START			2 2022	CAVE IN		13.00	UAL	
	VL (Co				5.00	BORI									
V V	VL (Sea	asonal	High \	Water)		COM	1PLETED:				HAMME	K IYPE:	Auto		
V V	VL (Sta	bilizec	1)			ATV		G	HG	ED BY:	DRILLING	6 METHOD	: <b>2-1/4" H.S.</b>	Α.	
					GEC	DTECHNI	LAL BO	KEHOL	.E L(	UG					

CLIENT D.R. Ho								OJECT NC :24735	).:		30RING 6- <b>24</b>	NO.:	SHEET: 1 of 1		
PROJEC		ΛE:						ILLER/CO	NTRA				1011		EUQ
Kalas Fa			Devel	opmen	t		Br	idger Drilli	ng Inc	•			1		~
SITE LO 1832 Ro			Rolesv	ille, No	orth Carolina 27587								LOSS OF	CIRCULATION	<u>&gt;100%</u>
NORTH	IING:			EA	STING:	STATION	N:			SU	IRFACE E	LEVATION:	BOTTON	1 OF CASING	
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C		AL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	X	Nater Content	∆ N BLOWS/FT & RECOVERY
-					Topsoil Thickness[6.00 (CL) Residuum, SAND	-					-				
	S-1	SS	18	18	brown, moist, stiff		.LAI,				-	3-4-7 (11)	⊗ _{tt}	_	
	S-2	SS	13	13	(WR) PARTIALLY WEAT SAMPLED AS SILTY FIN and gray, moist [Weat AUGER REFUS	IE SAND, hered R	, orang OCK]	ge			-5- -10- -10- -15- -15- -15- -15- -15- -	10-20-50/1" (70/7")			×87077"
25											-25 - -25 - - - - - - - - - - - - - - - - - - -				
	TH VL (Firs				NES REPRESENT THE APPROXI										L
	VL (Cor			- ~ /	Dry		ORING S	STARTED:			2022	CAVE IN			
	VL (Sea		-	Vater)		СС	OMPLE				2022	HAMME	R TYPE: Aut	0	
v w	VL (Sta	bilized	)			EC AT	quipme <b>fv</b>	ENT:		)ggi H <b>g</b>	ED BY:	DRILLING	6 METHOD: <b>2-1</b> ,	/4" H.S.A.	
					GEC			BORE			DG				

CLIENT D.R. Ho						PROJEC 06:247			BORING I B-25	NO.:	SHEET: 1 of 1
	CT NAN	1E:					R/CONTRA				LUS
	alls Resi		l Devel	opmen	t	Bridger	Drilling In	с.			
SITE LC 1832 R			Rolesv	ille. No	orth Carolina 27587						LOSS OF CIRCULATION
NORTH		,			STATION:			SL	JRFACE E	LEVATION:	BOTTOM OF CASING
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIA	L		WATER LEVELS	ELEVATION (FT)	BLOW5/6"	Plastic Limit Water Content Liquid Limit X
	_				Topsoil Thickness[6.00"]						
	S-1	SS	18	18	(SM) Residuum, SILTY FINE SAN reddish yellow, moist, loose	ID,				2-3-5 (8)	$\otimes_{8}$ $25.4$ $36 \times \frac{44}{[38.7\%]}$
5-	S-2	SS	18	18					-5-	1-4-5 (9)	⊗ ₉
	S-3	SS	18	18					-	3-3-4 (7)	⊗7
10-	S-4	SS	18	18					-10-	2-2-4 (6)	⊗ ₆
-	-				(SC) Residuum, CLAYEY FINE SA brown, moist, loose	ND, gray,					
15-	S-5	SS	18	18	brown, moist, ioose				-15	2-2-3 (5)	∞5
					(SM) Residuum, SILTY FINE TO I SAND, gray, moist, medium der						
-	S-6	SS	18	18					-	10-14-16 (30)	× ₃₀
20-					END OF BORING AT 20	FT			-20		
25-									-25-		
30-									-30-		
	L TI	HE STR	l Atifica	I TION LI	 NES REPRESENT THE APPROXIMATE BOUN	DARY LINE	S BETWEEN	I I SOIL	_ TYPES. IN	I-SITU THE TR	L RANSITION MAY BE GRADUAL
	NL (Firs				13 50	RING STAR			2022	CAVE IN	
<b>T</b> 1	NL (Coi	npleti	on)			RING					
V V	NL (Sea	sonal	High V	Water)	CO	MPLETED:			2022	HAMME	R TYPE: Auto
	NL (Sta		-		EQI Tru	UIPMENT: <b>ck 55 Traile</b>	r/2013		ED BY:	DRILLING	6 METHOD: <b>2.25 HSA</b>
					GEOTECHN	ÎCAL BC		.E L(	OG		

LIENT .R. Ho								PROJECT N 06:24735	10.:		BORING   <b>3-26</b>	NO.:	SHEET: 1 of 1			
	T NAM	ИE:						06:24735 DRILLER/C	ONTRA				1 01 1			L (
	alls Res		l Devel	opmen	t			Bridger Dri								
	CATIO												L	DSS OF CIRCULATI	ION	וסול
		e Road,	Rolesv		orth Carolina 27587	CTAT										
IURTE	ling:			EA	ASTING:	STATI	ION:			SU		LEVATION:	I	BOTTOM OF CASI	NG	
Ē	SAMPLE NUMBER	ΡE	SAMPLE DIST. (IN)	(Z						ELS	(FT)	=		c Limit Water Cor X●	ntent Liquid ────∆	Limit
DЕРТН (FT)	NUN	SAMPLE TYPE	DIST	RECOVERY (IN)	DESCRIPTIC		FRIAL			WATER LEVELS	elevation (FT)	BLOWS/6"	-	STANDARD PENETR		
DEPT	IPLE	MPL	PLE		DESCRIPTIC		LINAL			ATER	. VATI	BLOV		RQD		VERI
	SAN	^t S	SAN	RE						Š	ELE			REC		I/SF
										3				ES CONTENT] %		:
_					Topsoil Thickness[6 (ML) Residuum, SII		d brow									
_	S-1	SS	18	18	moist, stiff	Li, tan an		11,			-	2-4-5 (9)	\\$9			
-	-										-					
-			10	10							-	1-6-9				
5-	S-2	SS	18	18							-5-	(15)	∞15			
<u> </u>					(SM) Residuum, SII		SAND 1	tan								
-	S-3	SS	18	18	and gray, moist to							3-2-4 (6)	Ø ₆			
-						, -						(0)				
-												2-2-3				
-	S-4	SS	18	18								(5)	$\otimes_5$			
10-	-										-10-					
-	-										-					
-	-															
-											-					
-	S-5	SS	18	18							-	2-2-3 (5)	$\otimes_5$			
15-											-15-	(0)				
_	-										_					
_	-										_					
_	-										_					
_	S-6	SS	18	18							-	3-3-6	⊗,			
- 20 –	5-0	55	10	10	END OF BC		20 ET				-20-	(9)	9			
_	-						20 F I				-					
-	-										-					
_	-										-					
-	-															
25-											-25 -					
											-20-					
-	-															
-	-										-					
-	}															
-	1															
30-	1										-30-					
					NES REPRESENT THE APPR		BOUNDAF	RY LINES BE	TWEEN	I SOIL	TYPES. IN	I-SITU THE TR	ANSITION	MAY BE GRAI	DUAL	
	VL (Fir			ed)	10.	.50	BORING	g startei	): J	an 19	2022	CAVE IN	DEPTH:	12.00		
	VL (Co	-					BORING		J	an 19	2022	НАММЕ	R TYPE:	Auto		
Z V	VL (Sea	asonal	High V	Vater)							ED BY:					
v v	VL (Sta	bilized	1)			_		MENT: 5 Trailer/20	)13			DRILLING	6 METHO	): <b>2.25 HSA</b>		
					G	GEOTEC	<b>HŇĬC</b> A	AL BOR	EHOI	E LO	OG					

CLIENT D.R. Ho						PROJECT NO 06:24735	.:	BORING B-27	NO.:	SHEET: 1 of 1
PROJE	CT NAN					DRILLER/COM		OR:		LUS
Kalas Fa			l Devel	opmen	t	Bridger Drillin	ng Inc.			
			Rolesv	ille, No	orth Carolina 27587					LOSS OF CIRCULATION
NORTH	ling:		I	EA	STING: STATION:			SURFACE I	ELEVATION:	BOTTOM OF CASING
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL		WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Content Liquid Limit X
-	S-1	SS	18	18	Topsoil Thickness[6.00"] (SC) Residuum, CLAYEY SAND, ta brown, moist, loose to medium o	7.			1-3-5 (8)	∞8
5-	S-2	SS	18	18				5-	2-5-7 (12)	Ø ₁₂
	S-3	SS	18	18	(SM) Residuum, SILTY SAND, gray brown, moist, loose to medium o				3-4-4 (8)	⊗ ₈
10-	S-4	SS	18	18					3-3-4 (7)	⊗7
15-	S-5	SS	18	18				-15	2-5-3 (8)	⊗8
20-	S-6	SS	18	18	END OF BORING AT 20 FT				4-6-10 (16)	⊗ ₁₆
25-								-25-		
30-								-30-		
	UL (Firs				NES REPRESENT THE APPROXIMATE BOUND	NG STARTED:		20 2022	CAVE IN	
	VL (Coi			,	BON		Jall	-0 2022		ULI III. 12.00
	VL (Sea			Vater)	BORI COM	NG PLETED:	Jan 2	20 2022	HAMME	R TYPE: Auto
	VL (Sta		-		EQUI Truck	PMENT: 55 Trailer/2013	LOG	GED BY:	DRILLING	6 METHOD: <b>2.25 HSA</b>
	v L (Jid	SIIIZEU	•/		GEOTECHNIC	CAL BOREH	'CAR	s LOG		

CLIENT: D.R. Ho							PROJECT N 06:24735	10.:		BORING N 3-28	10.:	SHEET: 1 of 1		
PROJEC		/IE:					DRILLER/C	ONTRA				1011		EUQ
Kalas Fa			Devel	opmen	t		Bridger Dri	illing Inc				1		~
SITE LO( 1832 Ro			Rolesv	ille, No	orth Carolina 27587							LOSS O	F CIRCULATION	<u>&gt;100%</u>
NORTH	ING:			EA	STING:	STATION:			SL	JRFACE EI	EVATION:	BOTTC	IM OF CASING	
Ē	1BER	PE	(IN)	(N)					ELS	(FT)	=	Plastic Limit X	Water Content	Liquid Limit ───△
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"			
	S		7S									CALIBR [FINES CON	ATED PENETROMET	TER TON/SF
-					Topsoil Thickness[6.0 (SP-SM) Residuum, SA	-	SILT. dark			-	1-2-3			
-	S-1	SS	18	18	brown, moist, loose		,			-	(5)	85-10-0	[11.6%]	
	S-2	SS	4	4	(WR) PARTIALLY WEA SAMPLED AS SILTY SA					-	50/4" (50/4")			∞50/4"
5-					moist [Weathered RO	CK]				-5-				
					AUGER REFUS	6AL AT 5.5 F	T			-				
										-				
										-				
10										-10				
										-				
-										-				
-										-				
15										-15				
_														
										-				
-										-				
20-										-20				
										-				
-										-				
25-										-25-				
										-				
-										-				
30-										-30				
	т	HE CTD			NES REPRESENT THE APPROX				SOIL	TYPES IN			BEGRADUA	
V W	/L (Firs				dry		NG STARTEI			2022	CAVE IN		50	L
▼ w	/L (Cor	npleti	on)			BOR		J;	an 20	2022	HAMME		ıto	
V V	-			Water)			IPLETED: IPMENT: 255 Trailer/20			ED BY:				
V V	/L (Sta	bilized	)		CF(	Truck F350 DTECHNI		013	A D 2			6 METHOD: 2.	25 HSA	

CLIENT							PROJECT N 06:24735	NO.:		BORING   <b>B-29</b>	NO.:	SHEET: 1 of 1			
PROJE		ЛE:					DRILLER/C	CONTRA				1011			
Kalas Fa			l Devel	opmen	t		Bridger Dr	illing In	с.			1			
SITE LO 1832 Ro			Rolesv	ville, No	rth Carolina 27587							LOSS OF CIRCUL			
NORTH	HING:			EA	STING:	STATION:			SU	JRFACE E	LEVATION:	BOTTOM OF CA	ISING		
	3ER	ш	(N)	Î					S	Ē		Plastic Limit Water ( X	Content Liquid Limit		
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	STANDARD PENI ROCK QUALITY DESIC RQD RQD REC CALIBRATED PEN	NATION & RECOVERY		
-	-				Topsoil Thickness[5.00	)"]				-		[FINES CONTENT] %			
-	S-1	SS	18	18	(SM) Residuum, SILTY brown, moist, loose	-	nish				1-2-4 (6)	⊗6			
	S-2	SS	18	18	(ML) Residuum, SILT, t brown, moist, stiff	race sand,	tannish				4-5-7	Ø ₁₂			
5-			10	10						-5-	(12)	12			
-	S-3	SS	18	18							3-5-6 (11)	Ø _{TT}			
					(WR) PARTIALLY WEAT						2-7-50/3"				
10-	S-4	SS	15	15	SAMPLED AS SILTY FIN SAND, gray and tan, m					-10-	(57/9")		×57/9"		
-					ROCK]										
-	-				AUGER REFUS	AL AT 12.5 F	т			-					
-	-									-					
15-	-									-15					
-										-					
-	-									-					
-	-														
20-	-									-20-					
-	-														
-	-									-					
25-	-									-25-					
-	-														
-										-					
	-									-					
30-	-									-30					
$\nabla$ V	TI VL (Firs				NES REPRESENT THE APPROXI dry		ARY LINES BI			_ TYPES. IN			ADUAL		
	VL (Co			-		BORI									
V V	VL (Sea	asonal	High \	Nater)		СОМ	PLETED:			2022	HAMME	ANSITION MAY BE GRADUAL DEPTH: 12.50 & TYPE: Auto			
V V	VL (Sta	bilizec	1)				PMENT: 55Trailer/20	⁾¹³	AR3	ED BY:	DRILLING	5 METHOD: <b>2.25 HS</b> A	۱		
					GEO	DTECHNIC	CAL BOR	EHOL	.E LO	OG					

CLIENT D.R. Ho							PROJECT N 06:24735	10.:		BORING 1 3-30	NO.:	SHEET: 1 of 1		
PROJEC		ЛЕ:					DRILLER/C	ONTRA				1011		<b>LCC</b>
Kalas Fa			l Devel	opmen	t		Bridger Dri	illing Inc						
SITE LO 1832 Ro			Rolesv	ille, No	orth Carolina 27587							LO	SS OF CIRCULATION	v <b>)100%</b>
NORTH					ASTING:	STATION:			SL	JRFACE E	LEVATION:	В	OTTOM OF CASING	
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	DF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"		Limit Water Conte TANDARD PENETRATI C QUALITY DESIGNATIO RQD REC ALIBRATED PENETROI S CONTENT] %	ION BLOWS/FT
-	-				Topsoil Thickness[12.0	-				-				
	S-1	SS	18	18	(CL) Residuum, SAND` and tan, moist, firm	Y LEAN CLA	Y, gray			-	1-2-3 (5)	⊗₅		
	S-2	SS	18	18	(SM) Residuum, SILTY SAND, gray, moist to v		1EDIUM		•	- - - - - -	11-3-2 (5)	85		
	<del>5-3</del>	<del>SS</del>	0	0	(WR) PARTIALLY WEAT SAMPLED AS, No reco ROCK] AUGER REFU	very [Wea	thered		×	-5- -10- -10- -15- -15- 	50/0" (50/0")			S 50/0"
25										-25 - 				
	TI VL (Firs				NES REPRESENT THE APPROXI									JAL
	VL (Coi				5.00	BOR	ING STARTEI			2022	CAVE IN		6.00	
	VL (Sea	-		Water)		COM	1PLETED:			2022	HAMME	R TYPE:	Auto	
	VL (Sta		-	,		EQU ATV	IPMENT:		ogg <b>hg</b>	ED BY:	DRILLING	6 METHOD	: <b>2-1/4" H.S.A</b>	
					GEC		CAL BOR			OG				

CLIENT D.R. Ho							PROJECT 06:24735			BORING N <b>3-31</b>	10.:	SHEET: 1 of 1		
PROJE		/IE:					DRILLER/			-		1011		EUS
Kalas Fa	alls Resi	dentia	l Devel	opmen	t		Bridger D	rilling In	c <b>.</b>			1		
SITE LO			Deleg	ille Ne	wth Covoline 37507							L	OSS OF CIRCULATION	)100 <i>%</i>
NORTH		коаа,	Kolesv		rth Carolina 27587 STING:	STATION:			SL	JRFACE E	LEVATION:		BOTTOM OF CASING	
Ē	1BER	PE	(IN)	(Z)		1			ELS	(FT)	=		c Limit Water Conten X	t Liquid Limit ────△
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	DF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"		STANDARD PENETRATIC CK QUALITY DESIGNATION RQD REC CALIBRATED PENETROM JES CONTENT] %	N & RECOVERY
-	-				Topsoil Thickness[6.00	D"]								
	S-1	SS	18	18	(CH) Residuum, SAND brownish yellow, mois		ί,			-	2-2-2 (4)	⊗₄	30 28.4	79 [60.0%]
_					(SM) Residuum, SILTY		ח							
5-	S-2	SS	18	18	orangish brown and g loose to medium dens	ray, moist				-5- -5-	1-3-4 (7)	<b>⊗</b> 7		
	S-3	SS	18	18							1-2-4 (6)	$\otimes_6$		
	S-4	SS	18	18						-10-	1-3-5 (8)	₿8		
	-													
15-	S-5	SS	18	18					$\nabla$	-15	7-9-14 (23)	\$2	3	
	-				(SM) Residuum, SILTY orangish brown and g									
20-	S-6	SS	18	18	very dense					-20	15-21-41 (62)		862	
	-				END OF BORI	NG AT 20 F	1							
25-	-									-25-				
-	-									-23				
	-													
30-										-30-				
		HE STR			NES REPRESENT THE APPROXI			BETWEEN			-SITU THE TR		MAY BE GRADU	41
V V	VL (Firs				16.00		ING STARTI			2022	CAVE IN		17.50	
	VL (Coi	-				BOR	ING APLETED:	Ji	an 19	2022	HAMME	R TYPE:	Auto	
	VL (Sea VL (Sta		-	Water)		EQU Truc	IIPMENT: k 55Trailer/2	2013	VB3	ED BY:	DRILLING	6 METHO	D: 2.25 HSA	
					GEC	DTECHNI	CAL BOF			OG	I			

CLIENT D.R. Ho							PROJECT N 06:24735	0.:		BORING I <b>3-32</b>	NO.:	SHEET: 1 of 1	
PROJEC		/IE:					DRILLER/CO	ONTRA					EUQ
Kalas Fa			l Devel	opmen	t		Bridger Dril						×
SITE LO 1832 Ro			Rolesv	ville, No	rth Carolina 27587							LOSS OF CIRCULATION	<u>&gt;100</u> 2
NORTH	ling:			EA	STING:	STATION:			SL	JRFACE E	LEVATION:	BOTTOM OF CASING	
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	DF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Content Lik X STANDARD PENETRATION BL ROCK QUALITY DESIGNATION & F RQD RQD CALIBRATED PENETROMETER [FINES CONTENT] %	—∆ .ows/ft Recovery
					Topsoil Thickness[6.00	-				-			
	S-1	SS	18	18	(SM) Residuum, SILTY contains mica, tannish orange, moist, mediur	n brown and	k			-	2-5-7 (12)	⊗ ₁₂	
  5	S-2	SS	18	18							2-4-5 (9)	Ø9	
-	S-3	SS	18	18						-	2-3-3 (6)	86	
- - 10-	S-4	SS	18	18						-10	2-3-4 (7)	⊗7	
-					(ML) Residuum, SAND moist to wet, firm	Y SILT, tan a	ind gray,						
 15 	S-5	SS	18	18					$\nabla$	-15 - -	2-3-4 (7)	\$7	
-					(ML) Residuum, SAND wet, very stiff	Y SILT, tan a	and gray,				5-10-11		
20-	S-6	SS	18	18						-20-	(21)	⊗ ₂₁	
					END OF BORI	NG AT 20 FT				-20			
25 - - -										-25 - - - -			
										- - -30 - -			
					NES REPRESENT THE APPROXI				SOU				
V V	VL (Firs				14.50		NG STARTED			2022	CAVE IN		
▼ V	VL (Co	mpleti	on)			BORIN		Ja	n 19	2022	HAMMEI	R TYPE: Auto	
V	VL (Sea	asonal	High \	Nater)			PLETED:			ED BY:			
V V	VL (Sta	bilizec	1)		GFC		MENT: 55Trailer/201		4R3		DRILLING	6 METHOD: 2.25 HSA	

LIENT								CT NO.:		BORING	NO.:	SHEET:		
R. Ho	rton T NAN	1E.					06:247	2 <b>35</b> R/CONT		B-33		1 of 1		<b>LC</b>
			Devel	opmen	t			R/CONT		K:				
	CATIO		Deven	opinen	•		Druge	Dining						
			Rolesv	ille, No	orth Carolina 27587								DSS OF CIRCULATION	Σıc
ORTH	ING:		I	EA	ASTING:	STATION:			SL	JRFACE E	ELEVATION:	В	30TTOM OF CASING	
Ē	SAMPLE NUMBER	γF	SAMPLE DIST. (IN)	(IN)					ELS	(FT)	Ē		Limit Water Content	Liquid Limit ───∆
DEPTH (FT)	NUN	SAMPLE TYPE	LSID	RECOVERY (IN)	DESCRIPTION	OF MATERIA	I		WATER LEVELS	elevation (FT)	BLOWS/6"		STANDARD PENETRATION	
DEPT	1PLE	MP	1PLE	0 S		01 100 12100	-		ATER	EVAT	BLOV		RQD	
	SAN	/S	SAN	RE					X	ELE			REC CALIBRATED PENETROME	
									///8			-	ES CONTENT] %	
-					Topsoil Thickness[6.0	-								
-	S-1	SS	18	18	(SM) Residuum, SILT					-	3-5-6 (11)	⊗ ₁₁		
-	-				gray and brown, moi dense to loose	st to wet,	meaium			-	(11)			
_					dense to loose									
_	S-2	SS	18	18							1-3-3 (6)	Ø ₆		
5										-5-	(0)			
_					(ML) Residuum, SILT,	white, ora	inge and							
_	S-3	SS	18	18	gray, wet, very soft						2-1-1 (2)	₿ ₂		
F														
-					(ML) Residuum, SILT,	white, ora	inge and				2-3-3			
	S-4	SS	18	18	gray, moist, firm						(6)	$\otimes_6$		
10										-10-				
-										-				
_														
_														
_										-	1-2-4			
	S-5	SS	18	18							(6)	×.		
15-										-15-				
_														
_					(ML) Residuum, SILT,	white ora	nge and			-			$\setminus$	
_					gray, moist, hard	writte, ora	inge and			_			$\mathbf{i}$	
_	S-6	SS	18	18	8					-	7-12-38			
20-	3-0	33	10	10						-20-	(50)		850	
					END OF BOR	ING AT 20 I	FT							
-														
-														
_														
-										-				
25 -										-25-				
_														
_														
-										-				
-														
-														
30 -										-30				
	TI	HE STR	ATIFICA	L TION LI	 NES REPRESENT THE APPRO>	IMATE BOUN	IDARY LINE	S BETWE	EN SOIL	TYPES. IN	N-SITU THE TR	ANSITION I	MAY BE GRADUA	L
	VL (Firs	st Enco	ounter		3.50		RING STAF		Jan 20		CAVE IN		10.00	
	VL (Co	-					RING		Jan 20	2022	НАММЕ	R TYPE:	Auto	
Z V	VL (Sea	asonal	High V	Vater)			MPLETED							
z v	VL (Sta	bilizec	1)				UIPMENT: ck 55Traile		CAR3	ED BY:	DRILLING	6 METHOD	): <b>2.25 HSA</b>	
					CE	OTECHN				00				

CLIENT D.R. Ho						PROJECT N 06:24735	0.:		BORING I B- <b>34</b>	NO.:	SHEET: 1 of 1			
PROJE		/IE:				DRILLER/C	ONTRA				LUS			
Kalas Fa			l Devel	opmen	t	Bridger Dri	ling In	с.						
SITE LO 1832 Ro			Rolesv	ille, No	rth Carolina 27587						LOSS OF CIRCULATION			
NORTH	HING:		Ι	EA	STING: STATION:			SU	JRFACE E	LEVATION:	BOTTOM OF CASING			
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Content Liquid Limit X			
-	S-1	SS	18	18	Topsoil Thickness[6.00"] (SM) Residuum, SILTY FINE SAND and orange, moist, very loose	), gray				1-1-1 (2)	₹2			
-	-				(SM) Residuum, SILTY FINE SAND	), gray				2-5-6				
5-	S-2	SS	18	18	and orange, moist, medium dens loose	se to			-5-	(11)	⊗ ₁₁			
-	S-3	SS	18	18						4-5-6 (11)	⊗11			
	S-4	SS	18	18						4-3-3 (6)	<ul> <li>↓</li> <li>♥6</li> </ul>			
10									-10 - - - - - -					
15-	S-5	SS	18	18					-15 -15 - - -	4-4-5 (9)	⊗₀			
			10	10					-	1-3-3				
20-	S-6	SS	18	18	END OF BORING AT 20 F	r			-20-	(6)	×6			
25-									-25-					
	-													
	TI	HE STR/	atifica	t. Tion Li	L NES REPRESENT THE APPROXIMATE BOUND	ARY LINES BE	TWEEN	i I SOIL	TYPES. IN	-SITU THE TR	I ANSITION MAY BE GRADUAL			
	VL (Firs			ed)	dry BORI	NG STARTED	): <b>J</b> a	an 19	2022	CAVE IN				
	VL (Coi			N/ater1	BORI COM	NG PLETED:	Ji	an 19	2022	HAMME	R TYPE: Auto			
	VL (Sta		-	valei)	EQUI Truck	PMENT: 55 Trailer/20	13	402	ED BY:	DRILLING	6 METHOD: <b>2.25 HSA</b>			
					GEOTECHNI		HOL	E LO	OG					

CLIENT:									D.:		BORING I	NO.:	SHEET:			
<b>D.R. Ho</b> PROJEC		٨Ŀ						:24735 ILLER/CC			8-35 R∙		1 of 1			
alas Fa			l Devel	opmen	t			idger Drill			Ν.					
TE LO					-			- 0 -	0	-						גססול
832 Ro	lesville	Road,	Rolesv		orth Carolina 27587									LOSS OF CIRCU	LATION	71007
IORTH	ING:			EA	STING:	STATION	N:			SU	JRFACE E	LEVATION:		BOTTOM OF C	ASING	
	ßER		Î	()						S	Ê		Pla	astic Limit Water X	Content Liquid	Limit
(FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)						WATER LEVELS	elevation (FT)				-	/FT
DЕРТН (FT)	E NI	PLE	EDI	VER	DESCRIPTION	OF MATERI	AL			ER LE	ATIO	BLOWS/6"		ROCK QUALITY DES	GNATION & RECO	VERY
DEF	MPL	SAM	MPL	ECO						VATE	LEV	BLC		RQD REC		
	SA	•,	SA	Ľ.							ш			CALIBRATED PE	NETROMETER TON	/SF
					(SM) Residuum, SILT	FINE SA	ND lic	ht		:				[FINES CONTENT] %		
_					gray and dark brown						_	1-1-1				
_	S-1	SS	18	18	loose to loose		,	,			-	(2)	⊗ ₂			
-																
+											-	1-1-2				
	S-2	SS	18	18								(3)	⊗3	3	3 <b>4</b> 0.8 × [41.5%	]
5											-5-					
-											-	1-1-1				
_	S-3	SS	18	18								(2)	Ø2			
_												2-3-5				
10	S-4	SS	18	18							-10-	(8)	⊗ ₈			
10-											-10-					
_																
_																
_								-			_					
_	S-5	SS	10	10								4-4-3				
15	3-5	33	18	18							-15	(7)	\$7			
-											-10 -					
_																
-					(SM) Residuum, SILT	FINE SA	ND, gr	ay						$\backslash$		
					and white and orang											
_	S-6	SS	18	18							-	14-18-16 (34)		⊗ ₃₄		
20					END OF BOR	ING AT 20					-20-	(34)				
_							,				-					
-																
-											-					
-																
25 -											-25					
_											-					
_																
-																
_											_					
30 -											-30-					
	Tł	HE STR	ATIFICA	TION LI	NES REPRESENT THE APPROX	IMATE BOU	JNDARY	LINES BET	WEEI	N SOIL	TYPES. IN	-SITU THE TR	ANSITIO	N MAY BE GI	RADUAL	
V V	/L (Firs	st Enco	ounter	ed)	6.00	BC	ORING	STARTED	: J	an 19	2022	CAVE IN	DEPTH:	11.50		
V V	/L (Coi	npleti	on)			BC	ORING			an 35	2022			٨٠		
V V	/L (Sea	isonal	High V	Vater)		СС	OMPLE			an 25		HAMME	N IYPE:	Auto		
<u>م</u>	/L (Sta	bilizec	)			EC Tr	QUIPMI Tuck 55 1	ENT: <b>railer/20</b> 3	12	.OGG CAR3	ED BY:	DRILLING	METH	OD: 2.25 HS	A	
<u>v</u> v			1			OTECHI				.AK3						

CLIENT D.R. Ho								JECT NO. <b>4735</b>	:	BORII SCM-C	NG NO.:	SHEET: 1 of 1		
PROJEC		/IE:						LER/CON	ITRACT		-	1011		EUS
Kalas Fa			Devel	opmen	t		Brid	ger Drillin	g Inc.			1		~
SITE LO 1832 Ro			Rolesv	ille, No	rth Carolina 27587							LO	SS OF CIRCULATION	)100
NORTH	ling:			EA	STING:	STATION	1:			SURFAG	CE ELEVATION	l: B	OTTOM OF CASING	
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C		AL	8777	MATED LEVIELS	ELEVATION (FT)	"9/SWO18		Limit Water Conter TANDARD PENETRATIC CQUALITY DESIGNATIO RQD REC ALIBRATED PENETROM S CONTENT] %	DN BLOWS/FT N & RECOVERY
-					Topsoil Thickness[10.0	-				_	-			
	S-1	SS	18	18	(SM) Residuum, SILTY tan, moist, very loose	MEDIUN	VI SAND	,			_ WOH-1-2 _ (3)	⊗ ₃		
					(WR) PARTIALLY WEAT	HERED F	ROCK		:1 1 1		 			
5-	S-2	SS	18	18	SAMPLED AS SILTY ME SAND, orange, moist [						- (58)		858	
-	AUGER REFUSAL AT 5.5 FT										-			
-											-			
10-										-1				
-														
-											-			
-														
15-										-1	5-			
-														
-											-			
-											-			
20-										-2	0-]			
-											-			
-											-			
25-										-2	5-			
-											-			
-														
30-										-3	U			
	ті	HE CTR			NES REPRESENT THE APPROXI				/FENISC					ΔΙ
	VL (Firs				MESTICI NESENTI THE APPROAT		DRING ST			11 2022		N DEPTH:	4.00	
	VL (Coi				Dry		DRING	, LD.						
V V	VL (Sea	asonal	High V	Vater)		СС	OMPLETE			11 2022		IER TYPE:	Auto	
⊻ V	VL (Sta	bilized	)			EC AT	QUIPMEN V	11:	LOG	GED B'	r: DRILLI	NG METHOD	: <b>2-1/4" H.S.A</b>	
					GEC	DTECHN		BOREH			I			

CLIENT D.R. Ho							DJECT NO.: 24735		BORING I SCM-02	NO.:	SHEET: 1 of 1
PROJEC		ИE:					LLER/CONTR				
Kalas Fa			l Devel	opmen	t	Bri	dger Drilling Ir	nc.			
SITE LO 1832 Ro			Rolesv	ville, No	orth Carolina 27587						
NORTH	ling:			EA	ASTING: STATION:	:		SI	JRFACE E	LEVATION:	BOTTOM OF CASING
	ßER	ш	(Z	7				S	Ê		Plastic Limit Water Content Liquid Limit X $\Delta$
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIA	J		WATER LEVELS	ELEVATION (FT)	BLOWS/6"	STANDARD PENETRATION BLOWS/FT ROCK QUALITY DESIGNATION & RECOVERY
DEPT	MPLE	SAMP	MPLE	ECOV				VATEF	LEVAT	BLO	RQD REC
	SA	0,	SA								CALIBRATED PENETROMETER TON/SF [FINES CONTENT] %
-					Topsoil Thickness[6.00"]			<u>,</u>			
	S-1	SS	18	18	(SC) Residuum, CLAYEY FINE SA yellowish brown, moist, loose	AND,	///			2-3-4 (7)	$\otimes_7 \qquad \overset{2^3}{18.0} \times \underbrace{59.6\%}_{[39.6\%]}$
-										(*)	
	S-2	SS	18	18	<ul> <li>(SM) Residuum, SILTY MEDIUN tan, moist, medium dense to lo</li> </ul>		D,		-	4-5-6	Ø ₁₁
5-	5-2	55	10	10		J036			-5-	(11)	€ ² 11
										3-4-6	
-	S-3	SS	18	18				:	-	(10)	[⊗] 10
-									-		
10	S-4	SS	18	18				:		5-4-5 (9)	⊗9
10-									-10-		
									-		
-									-		
-	S-5	SS	18	18						3-4-4 (8)	⊗ ₈
15-					END OF BORING AT 15	FT		:	-15-	(8)	-0
									-		
-									-		
20-									-20-		
-											
-									-		
									-		
25-									-25-		
-											
-									-		
-									-		
30-									-30-		
	LTI	L HE STR	l Atifica	i Tion Li	NES REPRESENT THE APPROXIMATE BOUI	NDARY I	LINES BETWEE	n soii	L TYPES. IN	I-SITU THE TR	L RANSITION MAY BE GRADUAL
V V	VL (Firs	st Enco	ounter	ed)	ВО	RING S	TARTED:	Feb 09	9 2022	CAVE IN	DEPTH: <b>12.00</b>
V V	VL (Co	mpleti	on)		Dry BO	RING		Fah Or	9 2022	HAMME	R TYPE: Auto
V V	VL (Sea	asonal	High \	Nater)		MPLET UIPME	ED:		ED BY:		NTIFE, AUD
V 🗹	VL (Sta	bilizec	1)		AT\	/		GHG		DRILLING	6 METHOD: 2-1/4" H.S.A.
					GEOTECHN	IICAL	BOREHO	LEL	OG		

CLIENT D.R. Ho							JECT N <b>4735</b>	0.:		BORING I SCM-03	NO.:	SHEET: 1 of 1
PROJEC			David				LER/CO			R:		<b>L</b> .C.S.
Kalas Fa			Devel	opmen	t	Brid	ger Dril	ling in	с.			
		Road,	Rolesv		rth Carolina 27587							LOSS OF CIRCULATION
NORTH	ING:			EA	STING: STATION:				SU	JRFACE E	LEVATION:	BOTTOM OF CASING
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAI	L			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Content Liquid Limit X STANDARD PENETRATION BLOWS/FT ROCK QUALITY DESIGNATION & RECOVERY RQD RC CALIBRATED PENETROMETER TON/SF [FINES CONTENT] %
	S-1	SS	18	18	Topsoil Thickness[7.00"] (SC-SM) Residuum, SILTY CLAYE MEDIUM SAND, gray and tan, n loose						1-1-2 (3)	∞3
	S-2	SS	18	18	(SM) Residuum, SILTY MEDIUM COARSE SAND, orange and gray medium dense		t,			-5-	3-5-7 (12)	Ø12
	S-3	SS	18	18							6-9-13 (22)	Ø ₂₂
- - 10-	S-4	SS	18	18						- - -10-	7-10-9 (19)	⊗ ₁₉
	S-5	SS	18	18	END OF BORING AT 15	FT				- - -15-	9-12-16 (28)	Ø ₂₈
20										-20 - - - -		
 25												
	Tł	HE STRA	L ATIFICA	L TION LI	NES REPRESENT THE APPROXIMATE BOUN	IDARY LI	NES BE	TWEEN	I V SOIL	TYPES. IN	I-SITU THE TR	L ANSITION MAY BE GRADUAL
∑ v	VL (Firs					RING ST				2022	CAVE IN	
V V	VL (Cor	npleti	on)		_	RING				2022		
V V	VL (Sea	isonal	High V	Vater)						ED BY:	HAMME	R TYPE: Auto
v w	VL (Sta	bilized	)		ATV			c	GHG		DRILLING	6 METHOD: 2-1/4" H.S.A.
					GEOTECHN	ICAL I	BORE	HO	.E L	OG		

CLIENT: D.R. Ho							ROJECT N 6:24735	0.:		BORING N CM-04	10.:	SHEET: 1 of 1	
PROJEC		ЛЕ:				DF	RILLER/CO		сто			1011	- CUS
Kalas Fa			Devel	opmen	t	В	ridger Dril	ling Inc.				1	
SITE LOO 1832 Ro			Rolesv	ille, No	orth Carolina 27587							LOSS OF CIRCULATIO	N <b>200</b> 2
NORTH	ING:			EA	STING: STATIO	DN:			SU	IRFACE EI	LEVATION:	BOTTOM OF CASING	5 <b>—</b>
	1BER	PE	(IN)	(N					ELS	(FT)	_	Plastic Limit Water Conte X	ent Liquid Limit ────△
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATER	RIAL			WATER LEVELS	elevation (FT)	BLOWS/6"	STANDARD PENETRAT	-
DEI	AMPI	SAM	AMPI	RECC					WAT	ELEV	BL(	RQD REC	
	S		S									CALIBRATED PENETRO	METER TON/SF
-	<del>S-1</del>	SS	0	0	Topsoil Thickness[6.00"] (WR) PARTIALLY WEATHERED		/			-	50/0"		⊗ _{50/0"}
					SAMPLED AS, No recovery [W					-	(50/0")		
					ROCK]	1 FT	]			_			
_										-			
5-										-5-			
-										-			
-										-			
										-			
10-										-10-			
										-			
										-			
-										-			
15-										-15-			
										-			
-										-			
-										-			
20-										-20-			
										-			
										-			
-										-			
-										-			
25-										-25-			
-										-			
-										-			
										-			
30-										-30-			
∑ w					NES REPRESENT THE APPROXIMATE BO					TYPES. IN			JAL
	-			1	_	BORING	STARTED	. не	0 09	2022	CAVE IN		
	-		High V	Vater)	C	COMPLE	TED:			2022	HAMME	R TYPE: Auto	
V V				,		EQUIPM ATV	ENT:	LC GH		ED BY:	DRILLING	6 METHOD: <b>2-1/4" H.S.</b>	A.
	-				GEOTECH		L BORE			DG			

PROJECT INVARE:         Description         Description <thdescription< th=""></thdescription<>	CLIENT D.R. Ho							PROJE 06:24	ECT NO.:		BORING I SCM-05	NO.:	SHEET: 1 of 1		
STE DOCATION:       INCOMPACT AND INCOMPACT A	PROJEC	CT NAN						DRILL	ER/CONTR/	АСТО			10.1		US
1932 Boekenik Read, Naterik Cardina 2767       DUS PORCURAN       Particular Acade       Particular	-			l Devel	opmen	t		Bridg	er Drilling In	с.					
Line         Line <thline< th="">         Line         Line         <th< td=""><td>1832 Ro</td><td>olesville</td><td></td><td>Rolesv</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>LOSS</td><td>OF CIRCULATION</td><td><u>)</u></td></th<></thline<>	1832 Ro	olesville		Rolesv									LOSS	OF CIRCULATION	<u>)</u>
E3       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <t< td=""><td>NORTH</td><td>IING:</td><td></td><td>1</td><td>EA</td><td>ASTING:</td><td>STATION:</td><td></td><td></td><td>SU</td><td>JRFACE E</td><td>LEVATION:</td><td>BOTT</td><td>TOM OF CASING</td><td></td></t<>	NORTH	IING:		1	EA	ASTING:	STATION:			SU	JRFACE E	LEVATION:	BOTT	TOM OF CASING	
S-1         SS         18         18           5         5         5         18         18           5         5         5         18         18           6         5         5         18         18           10         54         55         18         18           5         5         18         18         18           10         54         55         18         18           10         54         55         18         18           10         54         55         18         18           10         54         55         18         18           10         54         55         18         18           10         54         55         18         18           10         54         55         18         18           10         54         55         18         18           10         54         55         18         18           10         56         57         18         18           10         56         57         18         18           10         56		1BER	PE	(IN)	(N					ELS	FT)	_			
S-1         SS         18         18           5         5         5         18         18           5         5         5         18         18           6         5         5         18         18           10         54         55         18         18           5         5         18         18         18           10         54         55         18         18           10         54         55         18         18           10         54         55         18         18           10         54         55         18         18           10         54         55         18         18           10         54         55         18         18           10         54         55         18         18           10         54         55         18         18           10         54         55         18         18           10         56         57         18         18           10         56         57         18         18           10         56	отн (FT	E NUM	РLЕ ТҮ	E DIST.	VERY (	DESCRIPTION C	F MATERIA	-		ER LEVE	ATION (	,9/S/VC	ROCK QL	JALITY DESIGNATION & REC	
S1         S5         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         19         10         5-1         55         18         18         18         18         10         5-1         55         18         18         18         10         10         5-4         55         18         18         10         6-3.12         27.11         118         6-3.12         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.13         27.	DE	SAMPI	SAN	SAMPI	RECO					WAT	ELEV	BL	RE	c	DN /65
51         55         18         18         ISM         ISM regenish brown, moist, medium dense         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 <td></td> <td></td> <td></td> <td></td> <td></td> <td>Topsoil Thickness[9.00</td> <td>ויינ]</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>JN/SF</td>						Topsoil Thickness[9.00	ויינ]				_				JN/SF
10		S-1	55	18	18	(SM) Residuum, SILTY	MEDIUM						×.		
5-2       55       18       18         5-3       55       18       18         10       5-4       55       18       18         5-4       55       18       18       18         10       5-4       55       18       18         10       5-4       55       18       18         10       5-4       55       18       18         10       5-4       55       18       18         10       5-4       55       18       18         10       5-4       55       18       18         10       5-4       55       18       18         115       16       18       18       18         20       15       -15       -15       -15         15       -25       -25       -25       -25         30       -25       -25       -30       -30         21       -25       -30       -30       -30         22       -25       -30       -30       -30         23       -25       -30       -30       -30         24       -25       -30 <t< td=""><td></td><td>5-1</td><td></td><td>10</td><td>10</td><td></td><td>moist, me</td><td>edium</td><td></td><td></td><td>-</td><td>(18)</td><td>11256</td><td>[21.8%]</td><td></td></t<>		5-1		10	10		moist, me	edium			-	(18)	11256	[21.8%]	
5	-	S-2	SS	18	18								Ø ₁₃		
5-3       55       18       18         10       5-4       55       18       18         10       5-3       55       18       18         10       5-4       55       18       18         10       5-4       55       18       18         10       5-4       55       18       18         10       5-4       55       18       18         115       5-79       (16)       5-79         15       5-70       10       5-70         20       5-70       10       5-70         20       5-70       5-70       5-70         20       5-70       5-70       5-70         20       5-70       5-70       5-70         20       5-70       5-70       5-70         20       5-70       5-70       5-70         20       5-70       5-70       5-70         20       5-70       5-70       5-70         20       5-70       5-70       5-70         20       5-70       5-70       5-70         20       5-70       5-70       5-70         30 <td>5-</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-5-</td> <td></td> <td></td> <td></td> <td></td>	5-	_									-5-				
10       5-4       SS       18       18       18         10       -10       -10       -10       (16)       ®ise         15       -15       -15       -15       -15       -15         20       -20       -20       -20       -20       -20         21       -10       -15       -15       -15       -15         20       -20       -20       -20       -20       -20         25       -25       -25       -25       -30       -30         20       -10       -25       -30       -30       -30         20       -10       -15       -15       -15       -15         25       -25       -25       -25       -30       -30         25       -30       -30       -30       -30       -30         25       -30       -30       -30       -30       -30         26       -30       -30       -30       -30       -30         27       WL (First Encountered)       BORING STARTED: Feb 08 2022       CAVE IN DEPTH: 11.50         27       WL (Completion)       Dry       BORING       Feb 08 2022       HAMMER TYPE: Auto <td>-  </td> <td>S-3</td> <td>SS</td> <td>18</td> <td>18</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>Ø₂₁</td> <td></td> <td></td>	-	S-3	SS	18	18						-		Ø ₂₁		
10       5-4       SS       18       18       18         10       -10       -10       -10       (16)       ®ise         15       -15       -15       -15       -15       -15         20       -20       -20       -20       -20       -20         21       -10       -15       -15       -15       -15         20       -20       -20       -20       -20       -20         25       -25       -25       -25       -30       -30         20       -10       -25       -30       -30       -30         20       -10       -15       -15       -15       -15         25       -25       -25       -25       -30       -30         25       -30       -30       -30       -30       -30         25       -30       -30       -30       -30       -30         26       -30       -30       -30       -30       -30         27       WL (First Encountered)       BORING STARTED: Feb 08 2022       CAVE IN DEPTH: 11.50         27       WL (Completion)       Dry       BORING       Feb 08 2022       HAMMER TYPE: Auto <td></td>															
AUGER REFUSAL AT 12.5 FT  -15  -15  -15  -15  -15  -15  -20  -20  -20  -20  -20  -20  -20  -2	10-	S-4	SS	18	18						-10-		Ø ₁₆		
15       -15         20       -20         25       -25         30       -25         30       -25         4       -25         5       -25         4       -25         5       -30         11       11         12       11         12       11         13       11         14       11         15       11         15       11         15       11         15       11         15       11         15       11         15       11         15       11         16       11         17       11         18       11         19       11         10       11         10       11         10       11         10       11         10       11         10       11         10       11         10       11         10       11         10       11         10       11											-				
15       -15         20       -20         25       -25         30       -25         30       -25         4       -25         5       -25         4       -25         5       -30         11       11         12       11         12       11         13       11         14       11         15       11         15       11         15       11         15       11         15       11         15       11         15       11         15       11         16       11         17       11         18       11         19       11         10       11         10       11         10       11         10       11         10       11         10       11         10       11         10       11         10       11         10       11         10       11						AUGER REFUS	AL AT 12.5	FT							
20 20 20 20 25 30 THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES THE STRATIFICATION MAY BE GRADUAL	-										-				
25 30 THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) WL (Completion) Dry BORING Feb 08 2022 HAMMER TYPE: Auto	15-										-15				
25 30 THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) WL (Completion) Dry BORING Feb 08 2022 HAMMER TYPE: Auto	-										-				
25 30 THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) WL (Completion) Dry BORING Feb 08 2022 HAMMER TYPE: Auto	-										-				
25 30 THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) WL (Completion) Dry BORING Feb 08 2022 HAMMER TYPE: Auto	-										-				
30       -30         30       -30         THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL         ✓ WL (First Encountered)       BORING STARTED: Feb 08 2022       CAVE IN DEPTH: 11.50         ✓ WL (Completion)       Dry       BORING       Feb 08 2022       HAMMER TYPE: Auto	20-										-20-				
30       -30         30       -30         THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL         ✓ WL (First Encountered)       BORING STARTED: Feb 08 2022       CAVE IN DEPTH: 11.50         ✓ WL (Completion)       Dry       BORING       Feb 08 2022       HAMMER TYPE: Auto		-									-				
30       -30         30       -30         THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL         ✓ WL (First Encountered)       BORING STARTED: Feb 08 2022       CAVE IN DEPTH: 11.50         ✓ WL (Completion)       Dry       BORING       Feb 08 2022       HAMMER TYPE: Auto											-				
30       -30         30       -30         THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL         ✓ WL (First Encountered)       BORING STARTED: Feb 08 2022       CAVE IN DEPTH: 11.50         ✓ WL (Completion)       Dry       BORING       Feb 08 2022       HAMMER TYPE: Auto	25-										-25-				
Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. IN-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. IN-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. IN-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. IN-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. IN-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. In-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. In-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. In-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. In-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. Image: Constraint of the stratificating type is the stratification lines represent	-														
Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. IN-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. IN-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. IN-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. IN-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. IN-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. In-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. In-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. In-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. In-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. Image: Constraint of the stratificating type is the stratification lines represent		-									-				
Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. IN-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. IN-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. IN-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. IN-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. IN-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. In-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. In-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. In-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. In-SITU the transition may be gradual         Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. Image: Constraint of the stratification lines represent the approximate boundary lines between soil types. Image: Constraint of the stratificating type is the stratification lines represent	-										-				
✓ WL (First Encountered)       BORING STARTED:       Feb 08 2022       CAVE IN DEPTH:       11.50         ✓ WL (Completion)       Dry       BORING       Feb 08 2022       HAMMER TYPE:       Auto	30-										-30				
✓       WL (First Encountered)       BORING STARTED:       Feb 08 2022       CAVE IN DEPTH:       11.50         ✓       WL (Completion)       Dry       BORING       Feb 08 2022       HAMMER TYPE:       Auto														: : :	:
▼     WL (Completion)     Dry     BORING     Feb 08 2022     HAMMER TYPE:     Auto						NES REPRESENT THE APPROXI									
Feb 08 2022 HAMMER TYPE: Auto					,	Dry									
	V V	VL (Sea	asonal	High V	Vater)		со	MPLETED	):						
Image: Section of the section of t	V V	VL (Sta	bilized	4)			ATV		G	GHG		DRILLING	6 METHOD: 2	2-1/4" H.S.A.	

CLIENT D.R. Ho							PROJECT N 06:24735	10.:		BORING I SCM-06	NO.:	SHEET: <b>1 of 1</b>		
PROJEC	CT NAN						DRILLER/C		АСТО			1011		EUS
Kalas Fa SITE LO			l Devel	opmen	t		Bridger Dri	lling In	с.					
1832 Ro	olesville		Rolesv		rth Carolina 27587							LOSS	OF CIRCULATION	<u>&gt;100</u> %
NORTH	ling:		I	EA	STING: STATI	ION:			SU	JRFACE E	LEVATION:	BOT	TOM OF CASING	
	ßER	ш	(N	7					S	Ê		Plastic Lin X	nit Water Content	Liquid Limit ────△
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)					WATER LEVELS	elevation (FT)	/s/6"	STAI	NDARD PENETRATION	BLOWS/FT
DEPTI	APLE I	AMPL	APLE I	COVE	DESCRIPTION OF MAT	ERIAL			ATER	EVATI	BLOWS/6"	RC		& RECOVERY
	SAN	Ś	SAN	R					3				IBRATED PENETROME	rer ton/sf
					Topsoil Thickness[8.00"]					-		[FINES C	ONTENT] %	
-	S-1	SS	18	18	(SM) Residuum, SILTY MEDI brown, moist, loose	IUM S/	AND,			-	2-3-6 (9)	⊗,		
-											(-)			
	S-2	SS	18	18	(ML) Residuum, SANDY SILT gray, moist to wet, very stiff		-			-	7-10-10 (20)	Ø ₂₀		
5-										-5	(20)			
	S-3	SS	18	18						-	6-8-7			
-			10	10						-	(15)			
-	S-4	SS	18	18	(SM) Residuum, SILTY FINE SAND, gray and orange, mo					-	3-4-4	₿		
10-	5-4	33	10	10	loose		wet,			-10-	(8)	≪8		
-														
									▼	-				
-										-	2-3-4			
15-	S-5	SS	18	18						-15-	(7)	⊗7		
-					END OF BORING AT	15 FT				-				
										-				
										-				
20-										20				
20-										-20-				
-										-				
-										_				
										-				
25-										-25-				
-										-				
-														
-										-				
30-										-30				
	Tł VL (Firs				NES REPRESENT THE APPROXIMATE E									L
	VL (Firs			euj	12.00	<b></b>	IG STARTEI	): F	eb 08	3 2022	CAVE IN	DEPTH: :	12.30	
	VL (Sea			Vater)	12.00	BORIN COMP	IG PLETED:	F	eb 08	3 2022	HAMME	R TYPE:	Auto	
	VL (Sta		-				MENT:			ED BY:	DRILLING	6 METHOD: 2	2-1/4" H.S.A.	
	1.5 to		,		GEOTEC		AL BOR		інд .E L(	OG				

CLIENT D.R. Ho								OJECT NO 24735	D.:		BORING I	NO.:	SHEET: 1 of 1	
PROJEC		/IE:						ILLER/CC	ONTRA				1011	- <b>EU</b> Q
Kalas Fa	alls Resi	dentia	l Devel	opmen	t			dger Drill						
SITE LO 1832 Ro			Rolesv	ille, No	orth Carolina 27587								LOSS OF CIRCUL	
NORTH	ING:			EA	STING:	STATION	N:				JRFACE E <b>6.00</b>	LEVATION:	BOTTOM OF C	ASING
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	DF MATERI,	AL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	X	Content Liquid Limit
-					Topsoil Thickness[10.0			¥			-			
	S-1	SS	18	18	(ML) Residuum, SAND soft	iy Sili, ta	an, mo	ist,				1-1-2 (3)	⊗3	
	S-2	SS	18	18	(SM) Residuum, SILTY tan, moist, medium de		M SAN	D,			-	6-8-13 (21)	821	
5-					(WR) PARTIALLY WEAT		POCK				-5-	5 0 (O)		
-	<del>S-3</del>	<del>SS</del>	0	0	SAMPLED AS, No reco ROCK]	very [W	'eather	ed			-	50/0" (50/0")		<i>─</i> ⊗ _{50/0"}
10-	-										-10			
	-													
	-													
15-											-15			
	-										-			
	-													
20-	-										-20			
	-										-			
25-	-										-25-			
-	-										-			
-	-										-			
30-											-30			
														: <u> </u>
	TI VL (Firs				NES REPRESENT THE APPROXI									ADUAL
	VL (FIIS			cuj	DRY		ORING S	STARTED			2022	CAVE IN		
V V	VL (Sea	asonal	High V	Water)		СС	OMPLET				2022	HAMME	R TYPE: Auto	
_ ⊻_ V	VL (Sta	bilized	l)			AT	QUIPME <b>TV CME5</b>	50	c	AR3	ED BY:	DRILLING	G METHOD: <b>2.25 HS</b>	A
					GEC	DTECHN	NICAL	BORE	HOL	ELC	OG			

CLIENT D.R. Ho						PROJECT 06:24735			BORING I SCM-08	NO.:	SHEET: 1 of 1		
PROJE						DRILLER/			R:		1		LUS
Kalas Fa			l Devel	opmen	t	Bridger D	orilling Inc	2.			1		
SITE LO 1832 Ro			Rolesv	ville, No	orth Carolina 27587						Ŀ	OSS OF CIRCULATION	<u>&gt;100</u> %
NORTH		-	I		ASTING: STATION:				JRFACE E <b>78.00</b>	LEVATION:		BOTTOM OF CASING	
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	ROG	C Limit Water Content X STANDARD PENETRATION CK QUALITY DESIGNATION RQD REC CALIBRATED PENETROME IES CONTENT] %	∆ I BLOWS/FT & RECOVERY
-	-				Topsoil Thickness[12.00"]				-				
-	S-1	SS	18	18	(CH) Residuum, FAT CLAY WITH brownish yellow, moist, firm	SAND,				2-2-3 (5)	⊗₅	30 30.1	72 [73.0%]
5-	S-2	SS	18	18	(SM) Residuum, SILTY MEDIUM pink and brown, moist to wet, l medium dense				-5	2-2-4 (6)	⊗ ₆		
	S-3	SS	18	18				$\bigtriangledown$	-	2-3-5 (8)	⊗ ₈		
	S-4	SS	18	18						2-4-7 (11)	⊗ ₁₁		
10									-10				
	S-5	SS	18	18					-15-	3-3-6 (9)	⊗9		
20					END OF BORING AT 15	-1			-20				
30-									-30-				
		ן כדה						501		כודו ו דגור דר			
∠ v	VL (Firs				NES REPRESENT THE APPROXIMATE BOUN 7.00 BOF	RING START			3 2022	CAVE IN		12.00	L
▼ v	VL (Coi	mpleti	on)			RING	Fe	eb 08	3 2022	HAMME	R TYPE:	Auto	
V V	VL (Sea	asonal	High \	Nater)		/IPLETED: JIPMENT:			ED BY:				
⊻ v	VL (Sta	bilizec	1)		GEOTECHNI		C.	AR3		DRILLING	6 METHO	):	

CLIENT D.R. Ho						PROJEC 06:2473			BORING SCM-09	NO.:	SHEET: 1 of 1
PROJEC		/IE:				DRILLE	R/CONTR/	ACTC			
Kalas Fa			Devel	opmen	t	Bridger	Drilling In	с.			~
SITE LO 1832 Ro			Rolesv	ille. No	rth Carolina 27587						LOSS OF CIRCULATION
NORTH					STING: STATION:			SU	JRFACE E	ELEVATION:	BOTTOM OF CASING
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Content Liquid Limit X
	S-1	SS	18	18	Topsoil Thickness[8.00"] (SM) Residuum, SILTY FINE TO N SAND, gray and brown, moist, lo medium dense					2-3-4 (7)	×.
5-	S-2	SS	18	18					-5-	5-10-24 (34)	844
	S-3	SS	18	18	(SM) Residuum, SILTY FINE TO N SAND, gray and brown, moist, v		e			17-29-50 (79)	
-	S-4	SS	8	8	(WR) PARTIALLY WEATHERED RO				-	35-50/2"	⊗ _{50/2"}
10-	5 4	55	0	0	SAMPLED AS SILTY FINE TO MEI SAND, orange and gray, moist to			┳	 	(50/2")	50/2"
					[Weathered ROCK] AUGER REFUSAL AT 9.5	FT			-15 -15 -15 -15 -15 -15 -15 -15 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10		
	TI	HE STRA	ATIFICA	L TION I I	NES REPRESENT THE APPROXIMATE BOUN	DARY LINF	S BETWFF		L TYPES. I	N-SITU THF TF	ANSITION MAY BE GRADUAI
V V	VL (Firs					RING STAR			2022	CAVE IN	
▼ v	VL (Coi	npleti	on)		9.40 BOF	RING			5 2022	HAMME	
V V	VL (Sea	asonal	High V	Vater)		JIPMENT:			ED BY:		
v w	VL (Sta	bilized	)		ATV		c.	GHG		DRILLING	6 METHOD: <b>2-1/4" H.S.A.</b>
					GEOTECHN	CAL BC	OREHOL	.E L	OG		

CLIENT: D.R. Ho							PROJECT NO 06:24735	.:	BORI SCM-:	NG NO.: 10	SHEET: 1 of 1		
PROJEC	T NAN						DRILLER/COI						EUS
Kalas Fa			l Devel	opmen	t		Bridger Drilli	ng Inc.					
			Rolesv	ille, No	orth Carolina 27587						LOSS O	F CIRCULATION	<u>&gt;100</u> />
NORTH	ING:			EA	STING: ST	ATION:			SURFA	CE ELEVATION:	BOTTC	IM OF CASING	
	IBER	FE	(IN)	(Z					S E	-	Plastic Limit X	Water Content	Liquid Limit ───△
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF M	1ATERIAL			VVALEK LEVELS	"9/S/NO18		ARD PENETRATION	
	SAM	SA	SAM	REC								ATED PENETROME	TER TON/SF
-					Topsoil Thickness[8.00"]						[FINES CON	ITENT] %	
	S-1	SS	3	3	(WR) PARTIALLY WEATHE					50/3" (50/3")			⊗ _{50/3"}
-					SAMPLED AS SILTY MEDI moist [Weathered ROCK]		D, gray,			-			
					AUGER REFUSAI	LAT 2 FT				_			
5-									-	.5 -			
										-			
-										_			
										_			
10-									-1	0-			
										-			
										-			
										-			
15-									-1	5_			
									'	- -			
										-			
										-			
-										-			
20-									-2	0			
										_			
										_			
										_			
25-									-2	5-			
										-			
										-			
										-			
30 -									-3	0-			
										-			
	TI	L HE STRA	atifica [:]	L TION LI	L NES REPRESENT THE APPROXIMAT	TE BOUNDA	ARY LINES BETA	VEEN S	JIL TYPE	I S. IN-SITU THE T	RANSITION MAY	BE GRADUA	L
V V	/L (Firs	st Enco	ounter	ed)		BORIN	IG STARTED:	Jan	19 2022	CAVE IN	I DEPTH: 1.	00	
V V	/L (Co	mpleti	on)		Dry	BORIN	IG	lan	25 2022		ER TYPE: Au	ıto	
V V	/L (Sea	asonal	High V	Vater)			PLETED: PMENT:		GED B				
V V	/L (Sta	bilized	1)			ATV		GHO	3	'. DRILLIN	IG METHOD: 2-	1/4" H.S.A.	
					GEOTI		AL BORE			· ·			

CLIENT D.R. Ho								ROJECT N 16:24735	0.:		BORING	NO.:	SHEET: 1 of 1	
PROJEC		/IE:						RILLER/CO	ONTRA				10.1	LUS
Kalas Fa			Devel	opmen	t		E	Bridger Dril	ling Inc	2.			1	
SITE LO 1832 Ro			Rolesv	ille, No	rth Carolina 27587								LOSS OF CIRCULATION	1 2002
NORTH	ling:			EA	STING:	STATION	N:			SU	JRFACE E	LEVATION:	BOTTOM OF CASING	
	ßER		(N	Â						S	Ē		Plastic Limit Water Conte X	nt Liquid Limit ────∆
I (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)						WATER LEVELS	elevation (FT)	"S/6"	STANDARD PENETRATI	
DЕРТН (FT)	PLE	MPLI	PLE	COVE	DESCRIPTION C	)F MAIERI	AL			ATER	VATIO	BLOWS/6"	ROCK QUALITY DESIGNATIO	IN & RECOVERY
	SAM	SA	SAM	ßĒ						/M	E	ш	REC     CALIBRATED PENETROM	/IETER TON/SF
					Topsoil Thickness[12.0	00"1			X		_		[FINES CONTENT] %	
-	6.4		10	10	(SM) Residuum, SILTY	-	ND, b	prown,				1-1-WOH		
	S-1	SS	18	18	moist, very loose							(1)	ØT	
-	<del>- S-2</del>	S	-1-	1	(WR) PARTIALLY WEAT	HERED I	ROCK	(				50/1"		→ ≫ _{50/1"}
-					SAMPLED AS, No reco	very [W	'eathe	ered			-5-	(50/1")		
5-					ROCK]	AL AT 3.	.7 FT	]			-5-			
-											-			
-											-			
-											-			
10-											-10			
-											_			
-											-			
-											-			
-														
15-											-15-			
-											-			
-											-			
											-			
20-											-20-			
-											-			
-											-			
-											_			
-														
25-											-25-			
-											-			
											-			
-														
30-											-30-			
											-50 -			
	 тн	HE STRA			NES REPRESENT THE APPROXI	MATE BOU	JNDAR	Y LINES BE	IWFFN	SOII	TYPES IN	I-SITU THE TR	ANSITION MAY BE GRADI	AL
✓ WL (First Encountered) BORING ST											. 2022	CAVE IN		-
	VL (Cor				Dry		ORING							
	VL (Sea		-	Vater)		СС	OMPL	ETED:			2022	HAMME	R TYPE: Auto	
V Y	VL (Sta	bilized	)			EC AT	QUIPN FV	1ENT:		oggi H <b>g</b>	ED BY:	DRILLING	6 METHOD: 2-1/4" H.S.A	
					GEC			L BORE			OG			

CLIENT D.R. Ho						PROJECT N 06:24735	10.:		ORING N <b>CM-12</b>	0.:	SHEET: 1 of 1		FCo
PROJEC						DRILLER/C		TOF	२:				<b>L</b> <u>C</u> .
Kalas Fa			Devel	opmen	t	Bridger Dri	lling Inc.						
1832 Ro	olesville		Rolesv		rth Carolina 27587						LC	DSS OF CIRCULATION	<u>&gt;100</u> 2)
NORTH	IING:			EA	STING: STATION:			SU	RFACE EL	EVATION:	E	BOTTOM OF CASING	
	BER	ЪЕ	(IN)	ź				S	Ê	_		Limit Water Conter	nt Liquid Limit ────△
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIA			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	-	STANDARD PENETRATION	-
DEPT	4PLE	AMPL	<b>1</b> PLE	COVI	DESCRIPTION OF MATERIA	-		ATER	EVATI	BLOV		RQD	N & RECOVERT
	SAN	S	SAN	RE				≥	EL		0	REC CALIBRATED PENETRON	IETER TON/SF
	S-1	SS	0	0	Topsoil Thickness[4.00"]					50/0"	[FIN	ES CONTENT] %	⊗ _{50/0"}
			Ŭ		(WR) PARTIALLY WEATHERED R	оск			_	(50/0")			50/0"
					SAMPLED AS, No recovery [We	athered			-				
-					ROCK] AUGER REFUSAL AT 0.5	FT			-				
									-				
5-									-5				
									-				
-													
									-				
-									-				
10-									-10-				
	-												
-									-				
									-				
-													
15-									-15-				
-									-				
-									-				
-									-				
20-									20				
20-									-20-				
-									-				
-									-				
-									-				
25-									-25-				
									-25				
-									-				
-									-				
-									-				
30-									-30				
									-50				
										כודו ו דו יר די			A1
	UL (Firs				NES REPRESENT THE APPROXIMATE BOUN								AL
	VL (Coi			-~/	_	RING STARTEE			2022	CAVE IN		0.50	
	VL (Sea			Vater)	col	MPLETED:			2022	HAMME	R TYPE:	Auto	
	VL (Sta				EQ! <b>ATV</b>	JIPMENT:	LO GH		ED BY:	DRILLING	6 METHOD	): 2-1/4" H.S.A	
	•				GEOTECHN				)G				

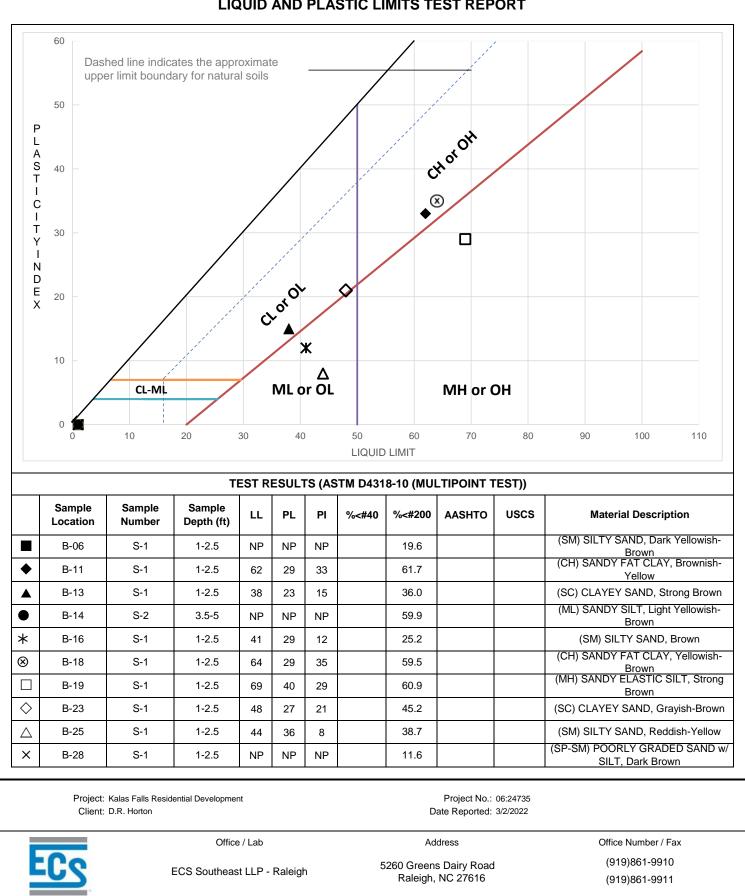
CLIENT D.R. Ho						PROJECT NC 06:24735	).:		BORING N CM-13	10.:	SHEET: <b>1 of 1</b>	FCo
PROJEC			Devel			DRILLER/CO			R:			<b>L</b> <u>C</u> .
Kalas Fa			Devel	opmen	t	Bridger Drilli	ng Inc.	•				
		Road,	Rolesv		rth Carolina 27587					E) (ATION	LOSS OF CIRCULAT	
NORTH	IING:			EA	STING: STATION:					LEVATION:	BOTTOM OF CASI	NG
	1BER	PE	(IN)	(N				ELS	FT)	-	Plastic Limit Water Cor X	ntent Liquid Limit ────△
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL			WATER LEVELS	elevation (FT)	BLOWS/6"	STANDARD PENETR	
DEP	MPLE	SAMF	MPLE	RECOV				NATE	ILE VA	BLO	RQD REC	
	SA		SA	-							CALIBRATED PENET	ROMETER TON/SF
-					Topsoil Thickness[7.00"]				-			
-	S-1	SS	18	18	(SM) Residuum, SILTY MEDIUM Stan, moist, medium dense	SAND,			-	1-7-10 (17)	⊗ ₁₇	
-					AUGER REFUSAL AT 3 F	T			-			
					AUGER REFUSAL AT 3 F	•			-			
5-									-5			
-									-			
-									-			
-									-			
10-									-10-			
-									-			
									-			
									-			
_									-			
15-									-15-			
									-			
									-			
									-			
20-									-20-			
-									-			
									-			
									-			
25-									-25-			
									-			
									-			
									-			
30-									-30 -			
									-			
	LLLL TH	HE STRA	TIFICA	TION LI	NES REPRESENT THE APPROXIMATE BOUND	DARY LINES BET	WEEN	SOIL	TYPES. IN	-SITU THE TR	I RANSITION MAY BE GRAI	DUAL
\	VL (Firs	st Enco	ountere	ed)	BOR	ING STARTED:	Fe	b 09	2022	CAVE IN	DEPTH: <b>3.00</b>	
<b>V</b>	VL (Cor	mpleti	on)		Dry BOR		Fe	b 09	2022	HAMMEI	R TYPE: Auto	
V V	VL (Sea	isonal	High V	Vater)		IPLETED: IPMENT:			ED BY:			
V 12	VL (Sta	bilized	)		ATV		Gł	IG		DRILLING	G METHOD: <b>2-1/4" H.S</b>	.A.
					GEOTECHNI	CAL BORE	HOL	E LC	DG			

CLIENT: D.R. Ho							PROJECT NO 06:24735	D.:		DRING N 2 <b>M-14</b>	10.:	SHEET: 1 of 1		
PROJEC		/IE:					DRILLER/CC	ONTRAC						EUR
Kalas Fa	lls Resi	dentia	Devel	opmen	t		Bridger Drill	ling Inc.						
SITE LO( 1832 Ro			Rolesv	ille, No	orth Carolina 27587							LC	DSS OF CIRCULATION	י <u>אוססא</u>
NORTH	ING:			EA	ASTING:	STATION:			SUR	RFACE EI	EVATION:	В	OTTOM OF CASING	
L)	ABER	PE	. (IN)	(IN)					ELS	(FT)	Ŧ		Limit Water Conte	nt Liquid Limit ────△
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	DF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	ROC	STANDARD PENETRATI K QUALITY DESIGNATIC RQD REC CALIBRATED PENETROM	ON & RECOVERY
	<u> </u>				Topsoil Thickness[6.00		/				50/2"	[FINI	ES CONTENT] %	
	5-1	- 55 -		2	(WR) PARTIALLY WEAT SAMPLED AS SILTY ME SAND, brown, moist [ ¹ AUGER REFUS	EDIUM TO Weathered	COARSE d ROCK]			-10 -10 -20 -25	50/2" (50/2")			⊗ _{50/2"}
30-										-30-				
											כודו ו דו יה דה			A1
V W		HE STRA			NES REPRESENT THE APPROXI		ING STARTED		50IL T		CAVE IN		MAY BE GRADU 1.20	AL
<b>V</b> W	VL (Coi	npleti	on)		Dry	BOR	ING		o 11 2		HAMME		Auto	
V V	VL (Sea	asonal	High V	Vater)			IPLETED: IPMENT:			D BY:				
V 12	VL (Sta	bilized	)			ATV		GH	G		DRILLING	5 METHOD	): 2-1/4" H.S.A	•
					GEC	JIECHNI	CAL BORE	HOLE	: LO	G				

CLIEN D.R. H							PROJECT 06:24735			BORING I SCM-15	NO.:	SHEET: 1 of 1	
		ИE:					DRILLER/	CONTRA	сто				EUS
	Falls Res		l Devel	opmen	t		Bridger D	rilling Ind					~
	OCATIOI Rolesville		Rolesv	ville, No	orth Carolina 27587							LOSS OF CIRCULATION	<u>&gt;100</u> />
NORT	HING:	[	1	EA	ASTING:	STATION:			SU	JRFACE E	LEVATION:	BOTTOM OF CASING	
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	F MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Content   X	∆ BLOWS/FT I RECOVERY
		SS	18	18	Topsoil Thickness[4.00 (CL) Residuum, SANDY brown, moist, soft		<b>ΑΥ</b> ,				1-1-2 (3)	∞3	
5		SS	18	18	(ML) Residuum, SAND trace gravel, orange a wet, stiff		•				3-6-6 (12)	⊗ ₁₂	
		SS	18	18							4-4-5 (9)	⊗ ₉	
10		SS	18	18						-10 -	3-4-6 (10)	⊗ ₁₀	
	- - - - - - - - - - - - - - - - - - -	SS	18	18					▼		3-6-4 (10)	⊗ ₁₀	
15 20 25					END OF BORI	NG AT 15 I	-Τ			-15- 			
30	-	HE STRA	ATIFICA	TION LI	NES REPRESENT THE APPROXII	MATE BOUN	DARY LINES F	BETWEEN	SOIL	-30 - - - - - - -	I-SITU THE TR	ANSITION MAY BE GRADUAL	
$\Box$	WL (Firs						ING STARTE			0 2022	CAVE IN		
⊻	WL (Co	mpleti	on)		12.10		ING			1 2022			
V	WL (Sea	asonal	High V	Water)		CON	/IPLETED:			) 2022	HAMME	R TYPE: Auto	
V	WL (Sta	bilized	1)		GFC	ATV	IPMENT:	G	HG	ied by:	DRILLING	6 METHOD: 2-1/4" H.S.A.	

## Appendix C – Laboratory Testing

Laboratory Testing Summary

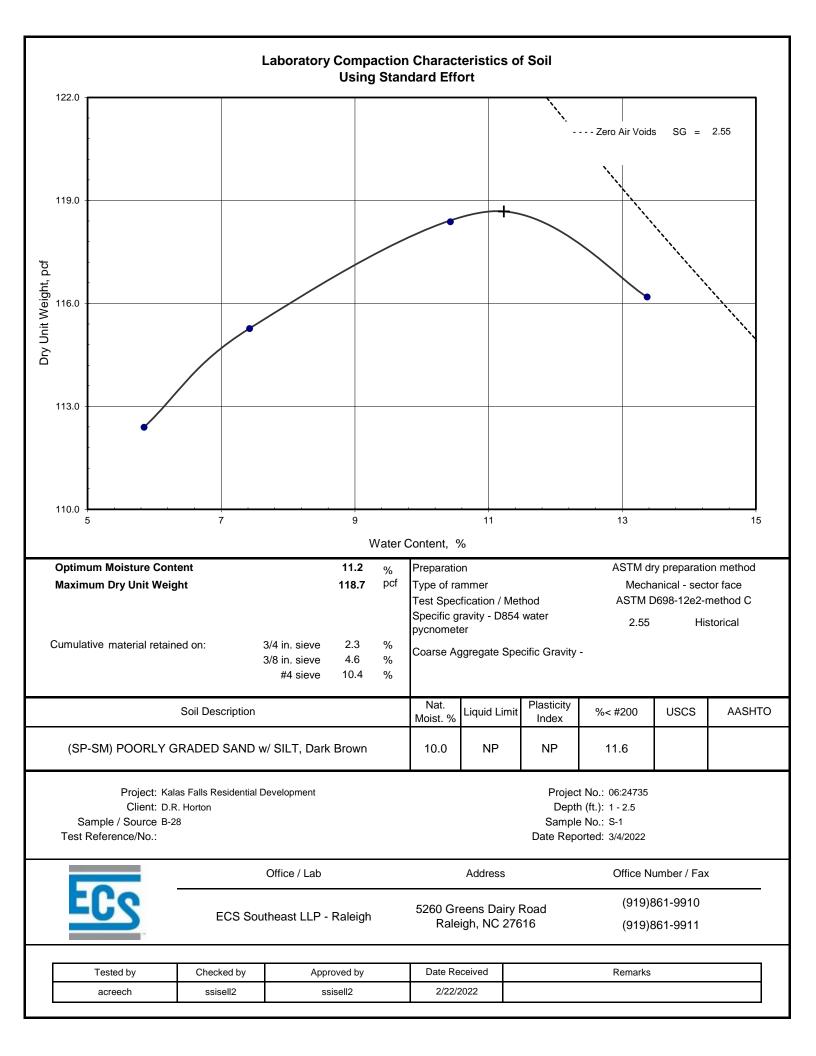

Plasticity Chart(s)

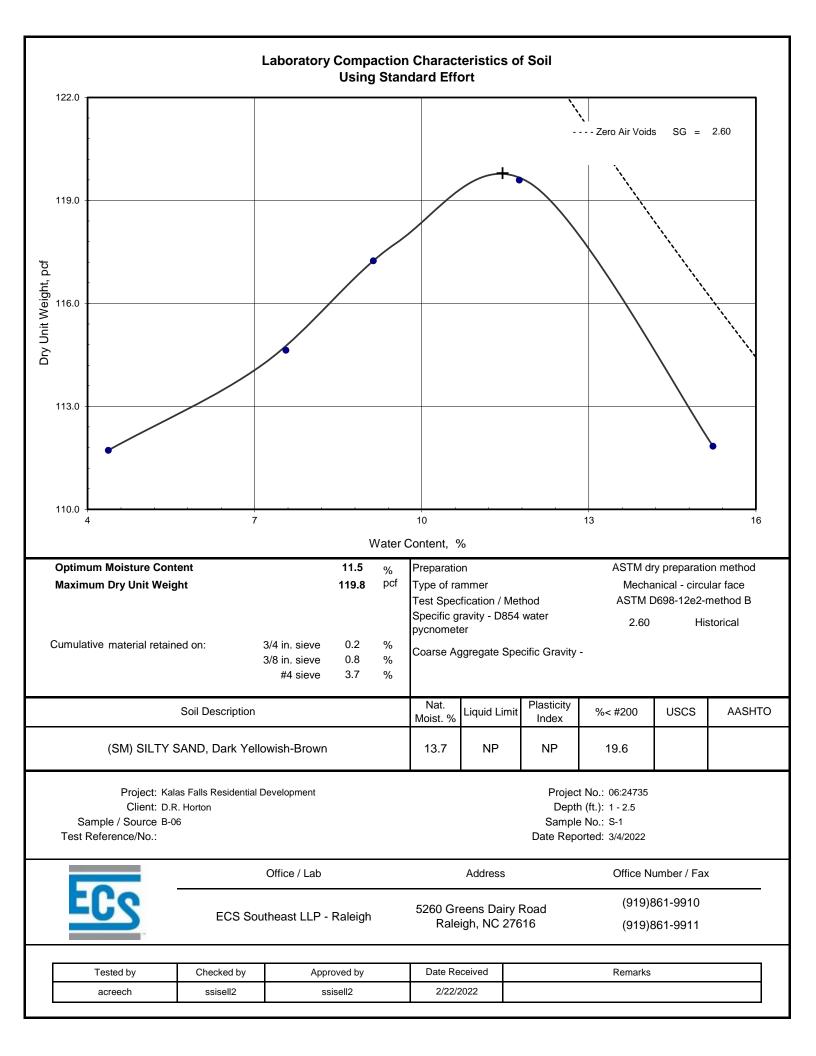
Moisture-Density Relationship Curve(s)

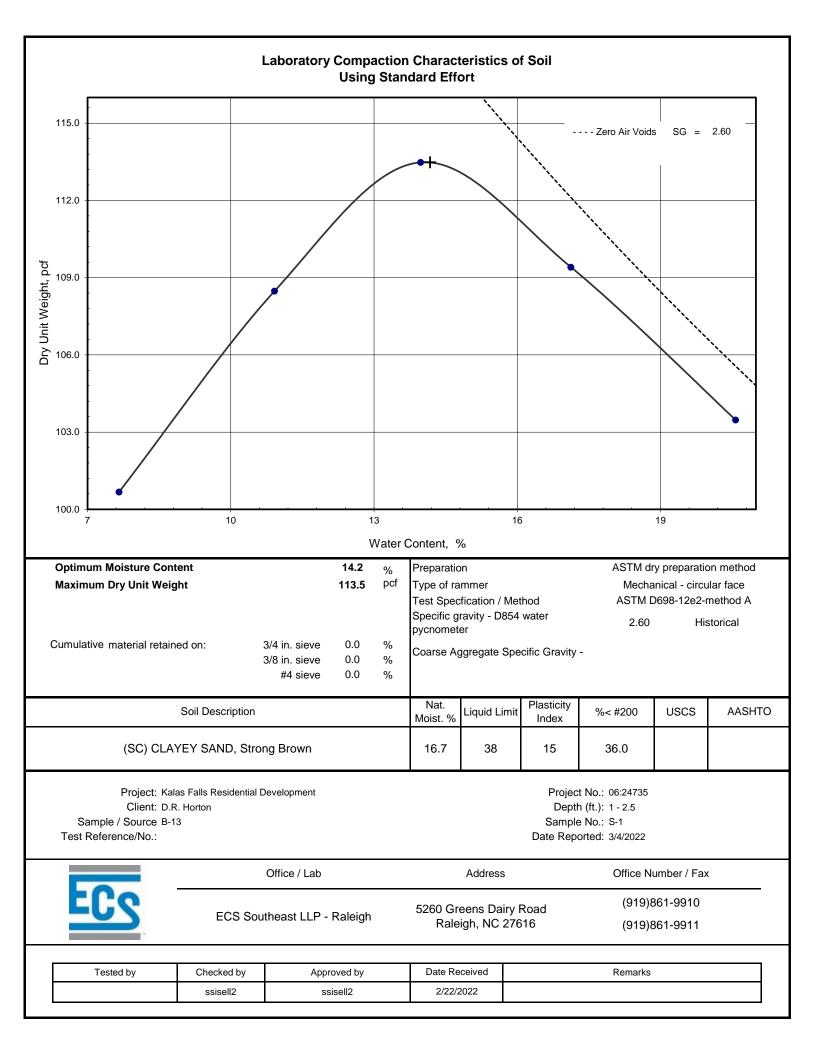

CBR Test Results

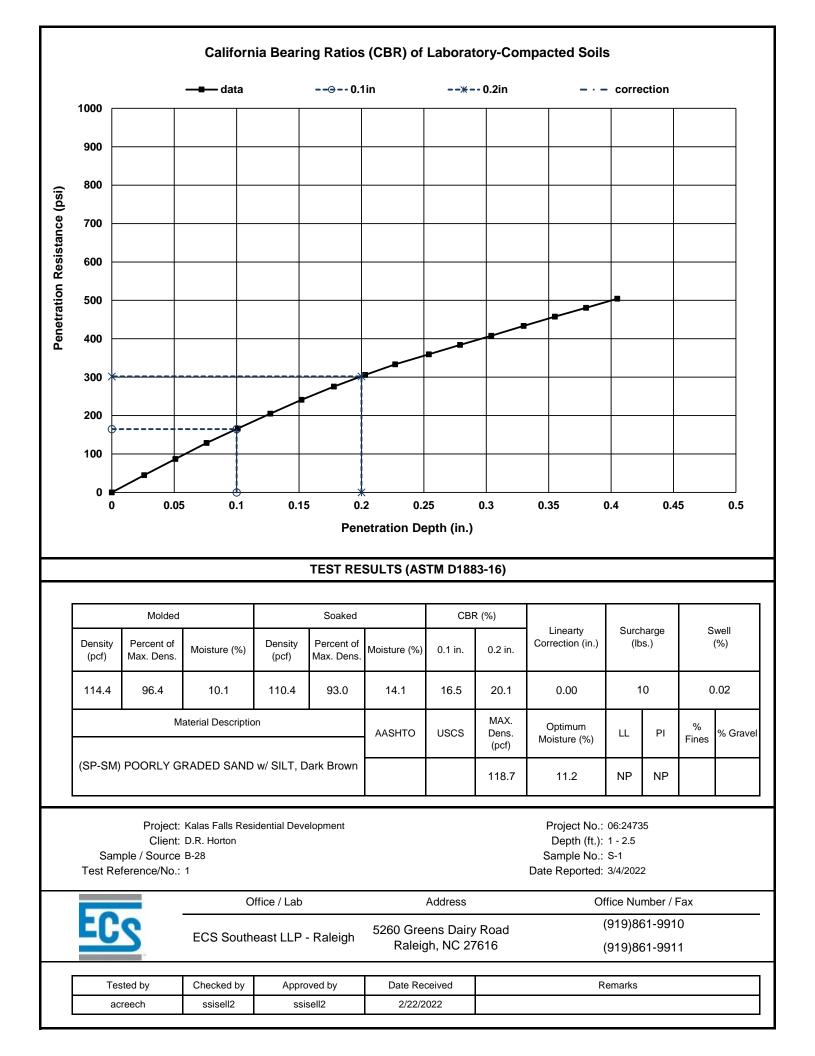
				La	abora	tory T	estin	ig Su	mm	ary				
										•			Page	1 of 1
							Atter	berg Li	mits ³	Percent	Moisture - De	ensity (Corr.) ⁵		
Sample Source	Sample Number	Start Depth (feet)	End Depth (feet)	Sample Distance (feet)	MC ¹ (%)	Soil Type ²	LL	PL	PI	Passing No. 200 Sieve ⁴	Maximum Density (pcf)	Optimum Moisture (%)	CBR Value ⁶	Organic Content
B-06	S-1	1.0	2.5	1.5	13.7	SM		NP		19.6	111.7	11.5	20	
B-11	S-1	1.0	2.5	1.5	29.3	СН	62	29	33	61.7				
B-13	S-1	1.0	2.5	1.5	16.7	SC	38	23	15	36.0	100.7	14.2	10	
B-14	S-2	3.5	5.0	1.5	20.1	ML		NP		59.9				
B-16	S-1	1.0	2.5	1.5	17.0	SM	41	29	12	25.2				
B-18	S-1	1.0	2.5	1.5	25.1	СН	64	29	35	59.5				
B-19	S-1	1.0	2.5	1.5	27.7	MH	69	40	29	60.9				
B-23	S-1	1.0	2.5	1.5	23.9	SC	48	27	21	45.2				
B-25	S-1	1.0	2.5	1.5	25.4	SM	44	36	8	38.7				
B-28	S-1	1.0	2.5	1.5	10.0	SP-SM		NP		11.6	118.4	11.2	17	
B-31	S-1	1.0	2.5	1.5	28.4	СН	79	30	49	60.0				
B-35	S-2	3.5	5.0	1.5	30.8	SM	62	34	28	41.5				
SCM-02	S-1	1.0	2.5	1.5	18.0	SC	50	23	27	39.6				
SCM-05	S-1	1.0	2.5	1.5	12.6	SM		NP		21.8				
SCM-08	S-1	1.0	2.5	1.5	30.1	СН	72	30	42	73.0				
Notes: Definitions:				/ D 4318, 4. ASTN ified Soil Classifica							od ia Bearing Ration, O	C: Organic Content (	ASTM D 2974)	
Project No.	06:2473	5									ECS South	east, LLP	- Raleigh	)
Project Name: PM:	Kalas Fa Gunnar		ntial Devel	opment					Ξ	<u>Co</u>	9001 Glenwood Raleigh, NC 27			
PE:		Schippore	eit								Phone:	919-861-9910		
Printed On:	March 7									TH	Fax:	919-861-9911		

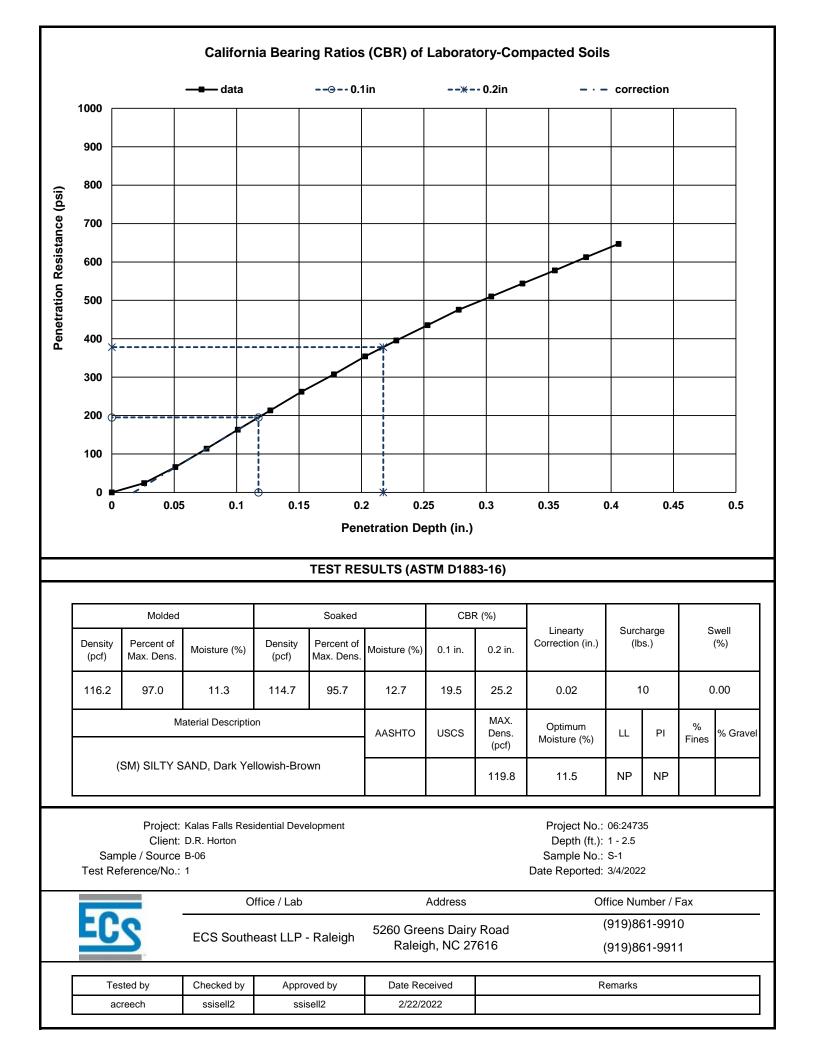
#### LIQUID AND PLASTIC LIMITS TEST REPORT

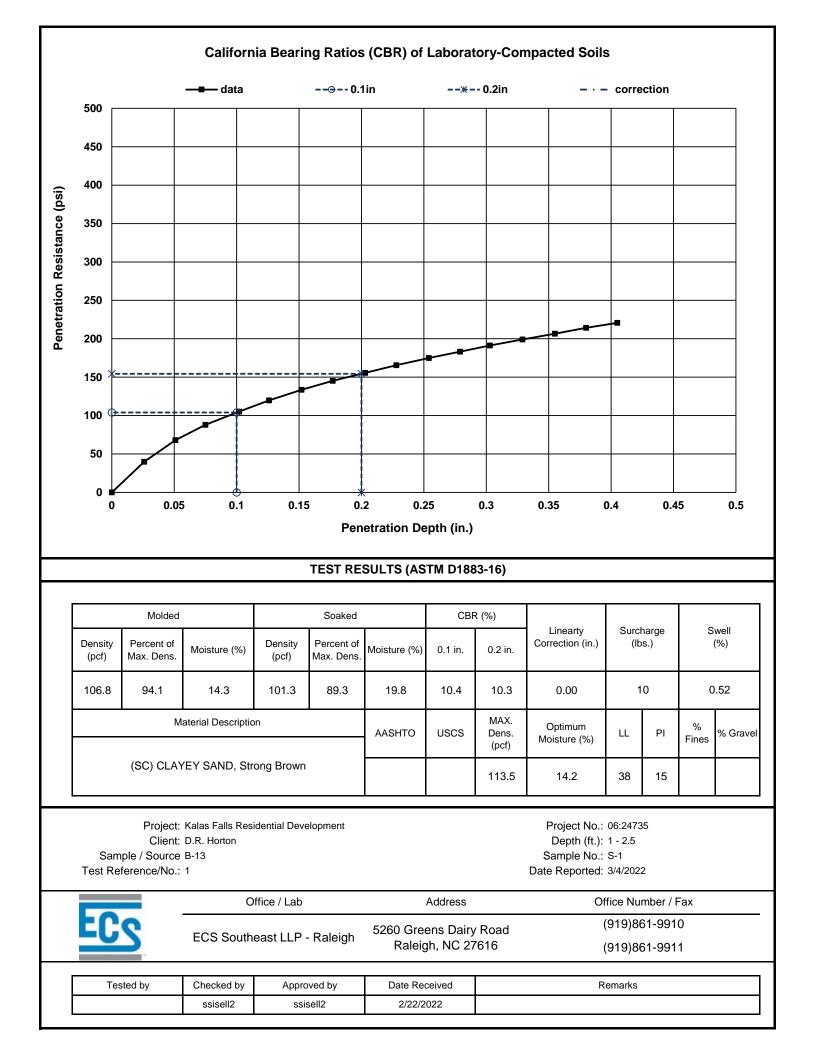




Tested by	Checked by	Approved by	Date Received
acreech	ssisell2	ssisell2	2/22/2022



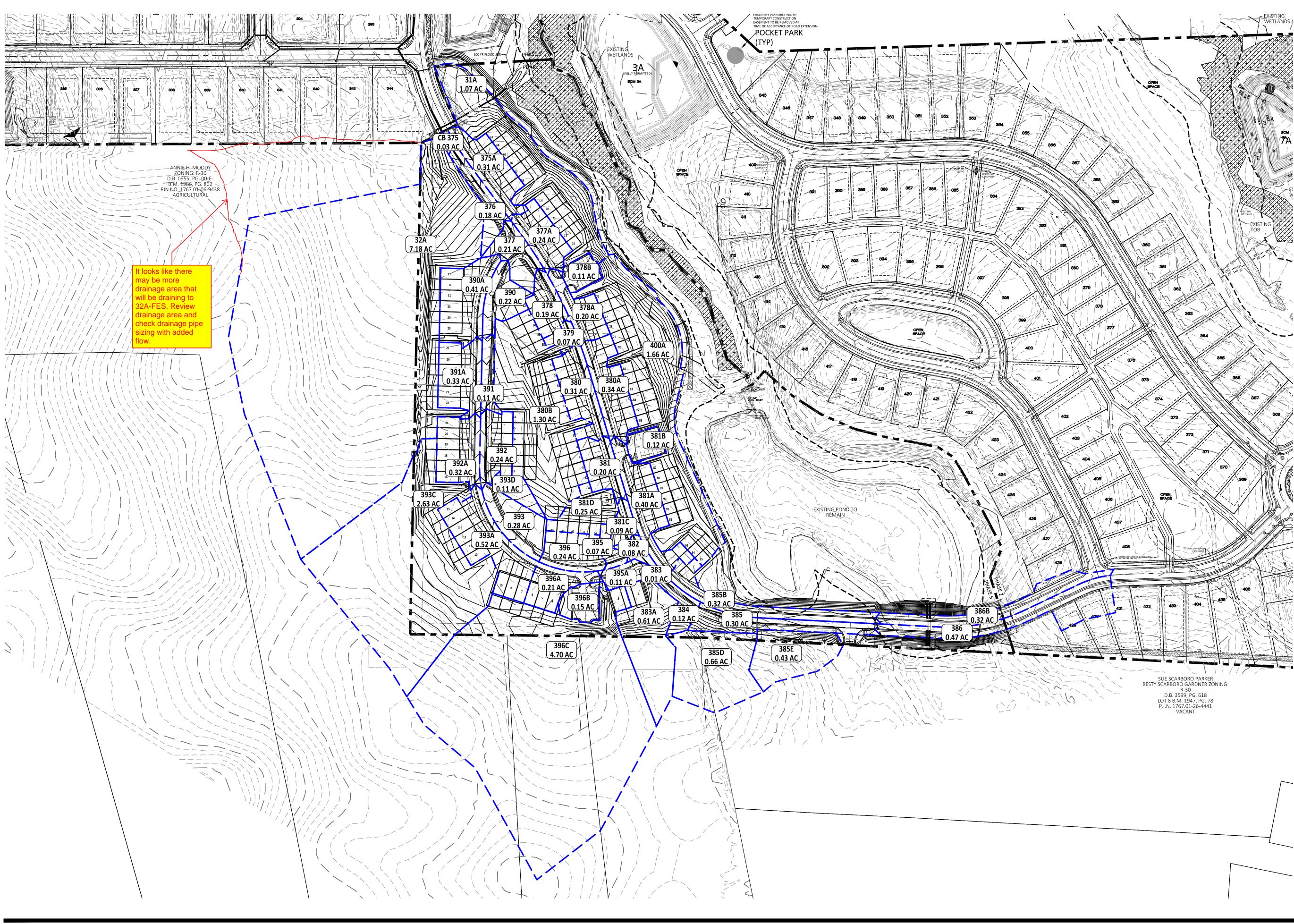


ssisell2


^{2/22/2022} 












Project Name

# APPENDIX B DRAINAGE AREA MAPS





RALEIGH NC | CHARLOTTE NC | CHESAPEAKE VA COPYRIGHT @2024 AMERICAN ENGINEERING PROJECT # 220020



NOTE: THIS EXHIBIT IS TO BE USED IN TANDEM WITH HYDRAFLOW STORM SEWERS MODELING FOR CONVEYANCE CALCULATIONS.

GRAPHIC SCALE

**( IN FEET )** 1 inch = 100 ft

> ROLESVILLE, NC | WAKE COUNTY December 20, 2024





**Kalas Falls Phase 5** 

## **APPENDIX C**

#### STORM CONVEYANCE CALCULATIONS



Project Name:	Kalas Falls PH
Project Number:	R180115
Date:	12/20/2024
Calculated By:	SM
Checked By:	JK
Input data in blue boxes	

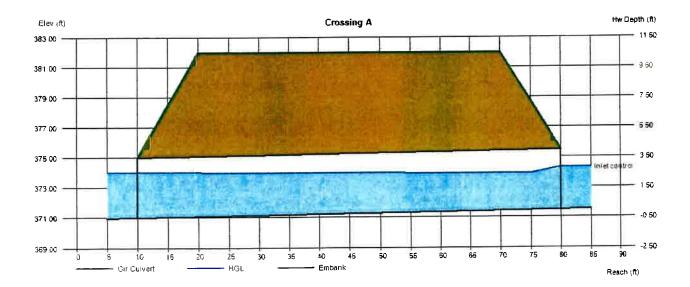
	Rational C-Value Calculations for Inlet Areas													
Area ID	Drainage Area (ac)	Roof (ac)	Roadway (ac)	Driveway (ac)	Sidewalk (ac)	Open Space (ac)	Pasture (ac)	Wooded (ac)	Offsite Impervious	Impervious C	Open Space C	Pasture C	Wooded C	Composite C Value
Onsite	12.85	2.52	2.32	1.31	0.71	5.77	0.00	0.00	0.20	0.9	0.22	0.38	0.3	0.59
Offsite	5.64	0.00	0.00	0.00	0.00	0.00	1.54	4.10	0.00	0.9	0.22	0.38	0.3	0.32



Project Name:	Kalas Falls Phase
Project Number:	180115
Date:	12/23/2024
Calculated By:	SM
Checked By:	JK

Rip Rap Dissipater Calculations 10-Year Storm									
Outlet ID	Pipe Diameter (in)	Pipe Velocity (fps)	Stone Class	Stone Depth (in)	Stone Material (tons)	Geo- Textile (SY)	Start Width (ft)	End Width (ft)	Length (ft)
FES 10 (TEMP)	12	0.25	В	12	1	4	2	6	4
FES 11 (TEMP)	12	0.17	В	12	1	4	2	6	4
FES 20 (TEMP)	36	3.71	В	12	7	22	6	18	12
FES 30B	36	4.17	В	12	7	22	6	18	12
FES 400A	18	3.25	В	12	2	7	3	9	6

Calculations were determined from NCDOT Detail 876.02 Guide for Rip Rap at Pipe Outlets


Values shown in table above are minimum quantities and dimensions

## **Culvert Report**

Hydraflow Express Extension for AutoCAD® Civil 3D® 2012 by Autodesk, Inc.

#### **Crossing A**

Invert Elev Dn (ft)	= 371.00	Calculations	
Pipe Length (ft)	= 70.00	Qmin (cfs)	= 90.00
Slope (%)	= 0.71	Qmax (cfs)	= 90.00
Invert Èlev Up (ft)	= 371.50	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 48.0		
Shape	= Cir	Highlighted	
Span (in)	= 48.0	Qtotal (cfs)	= 90.00
No. Barrels	= 2	Qpipe (cfs)	= 90.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Inlet Edge	= Beveled	Veloc Dn (ft/s)	= 4.44
Coeff. K,M,c,Y,k	= 0.0018, 2.5, 0.03, 0.74, 0.2	Veloc Up (ft/s)	= 5.67
		HGL Dn (ft)	= 374.01
Embankment		HGL Up (ft)	= 373.92
Top Elevation (ft)	= 382.00	Hw Elev (ft)	= 374.33
Top Width (ft)	= 50.00	Hw/D (ft)	= 0.71
Crest Width (ft)	= 200.00	Flow Regime	= Inlet Control



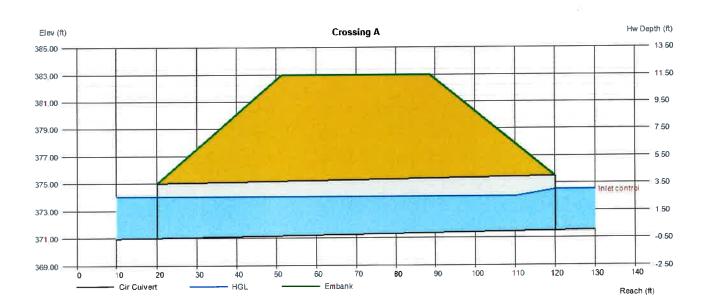
10 Yr. FLW

10-YEAR

Thursday, May 18 2017

## **Culvert Report**

Hydraflow Express Extension for AutoCAD® Civil 3D® 2012 by Autodesk, Inc.


#### **Crossing A**

Invert Elev Dn (ft)	= 371.00	Calculations	
Pipe Length (ft)	= 100.00	Qmin (cfs)	= 95.00
Slope (%)	= 0.50	Qmax (cfs)	= 150.00
Invert Elev Up (ft)	= 371.50	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 48.0		
Shape	= Cir	Highlighted	
Span (in)	= 48.0	Qtotal (cfs)	= 95.00
No. Barrels	= 2	Qpipe (cfs)	= 95.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Inlet Edge	= Sq Edge	Veloc Dn (ft/s)	= 4.64
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	Veloc Up (ft/s)	= 5.72
		HGL Dn (ft)	= 374.04
Embankment		HGL Up (ft)	= 374.01
Top Elevation (ft)	= 383.00	Hw Elev (ft)	= 374.52
Top Width (ft)	= 37.00	Hw/D (ft)	= 0.76

Crest Width ( $\pi$ )

= 383.00	
= 37.00	
= 100.00	

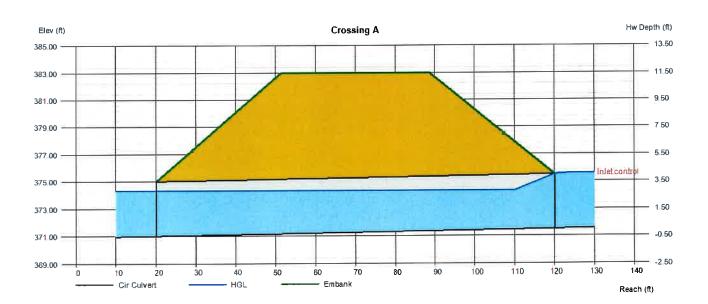
Flow Regime = Inlet Control



Tuesday, Apr 18 2017

## **Culvert Report**

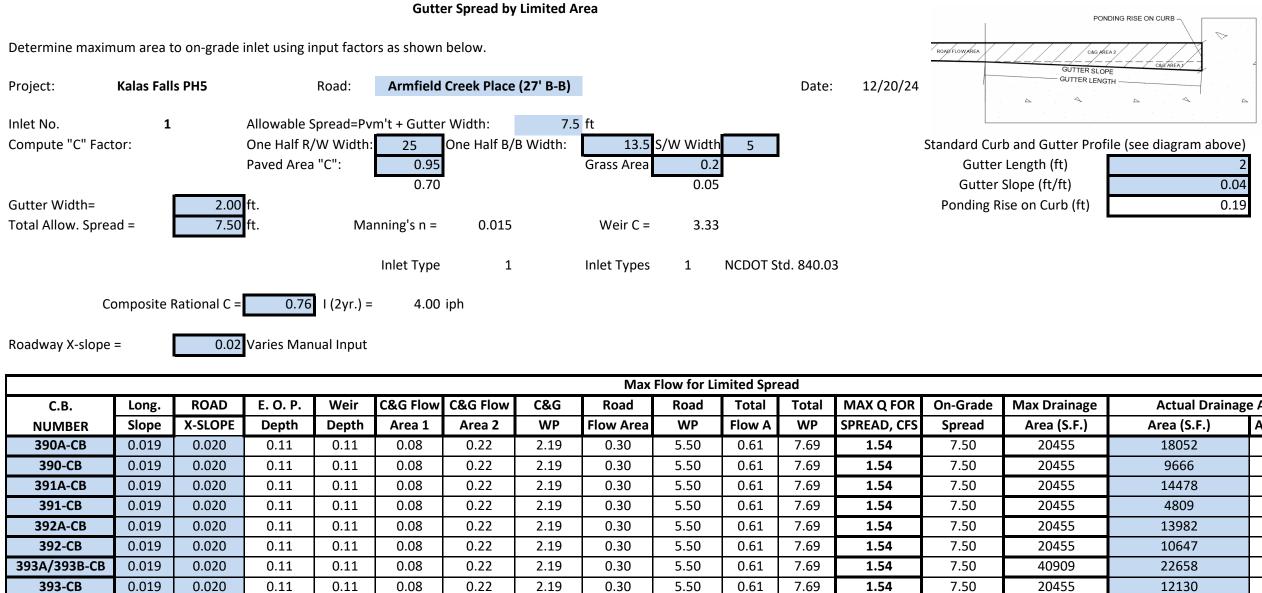
Hydraflow Express Extension for AutoCAD® Civil 3D® 2012 by Autodesk, Inc.


## **Crossing A**

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 371.00 = 100.00 = 0.50 = 371.50 = 48.0	<b>Calculations</b> Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 150.00 = 150.00 = (dc+D)/2
Shape	= Cir	Highlighted	
Span (in)	= 48.0	Qtotal (cfs)	= 150.00
No. Barrels	= 2	Qpipe (cfs)	= 150.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Inlet Edge	= Sq Edge	Veloc Dn (ft/s)	= 6.74
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	Veloc Up (ft/s)	= 7.91
		HGL Dn (ft)	= 374.31
Embankment		HGL Up (ft)	= 374.32
Top Elevation (ft)	= 383.00	Hw Elev (ft)	= 375.62

	•)
Top Width (ft)	
Crest Width (ft)	

= 383.00	
= 37.00	
= 100.00	


= 7.91
= 374.31
= 374.32
= 375.62
= 1.03
= Inlet Control



----

**100-YEAR** 

Tuesday, Apr 18 2017



E. O. P. - Edge of Pavement C&G - Curb and gutter WP - Wetted Perimeter (ft.)

395A-CB

395-CB

396A-CB

396B-CB

396-CB

A - Area (s. f.) V - Velocity (fps)

0.11

0.11

0.11

0.11

0.11

0.08

0.08

0.08

0.08

0.08

0.22

0.22

0.22

0.22

0.22

2.19

2.19

2.19

2.19

2.19

0.30

0.30

0.30

0.30

0.30

Note: Program uses Manning's formula for open channel flow.

5.50

5.50

5.50

5.50

5.50

0.61

0.61

0.61

0.61

0.61

7.69

7.69

7.69

7.69

7.69

1.01

1.01

1.01

1.01

1.01

7.50

7.50

7.50

7.50

7.50

13460

13460

13460

13460

13460

Z:\Jobs\9900\Watkins Property\Documents\Schedules\Gutter Spread Calcs

0.008

0.008

0.008

0.008

0.008

0.020

0.020

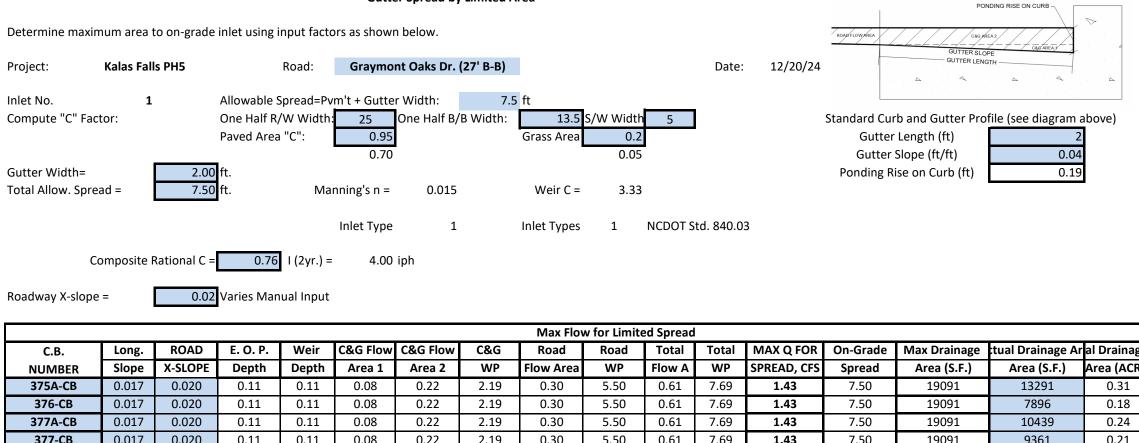
0.020

0.020

0.020

0.11

0.11


0.11

0.11

0.11

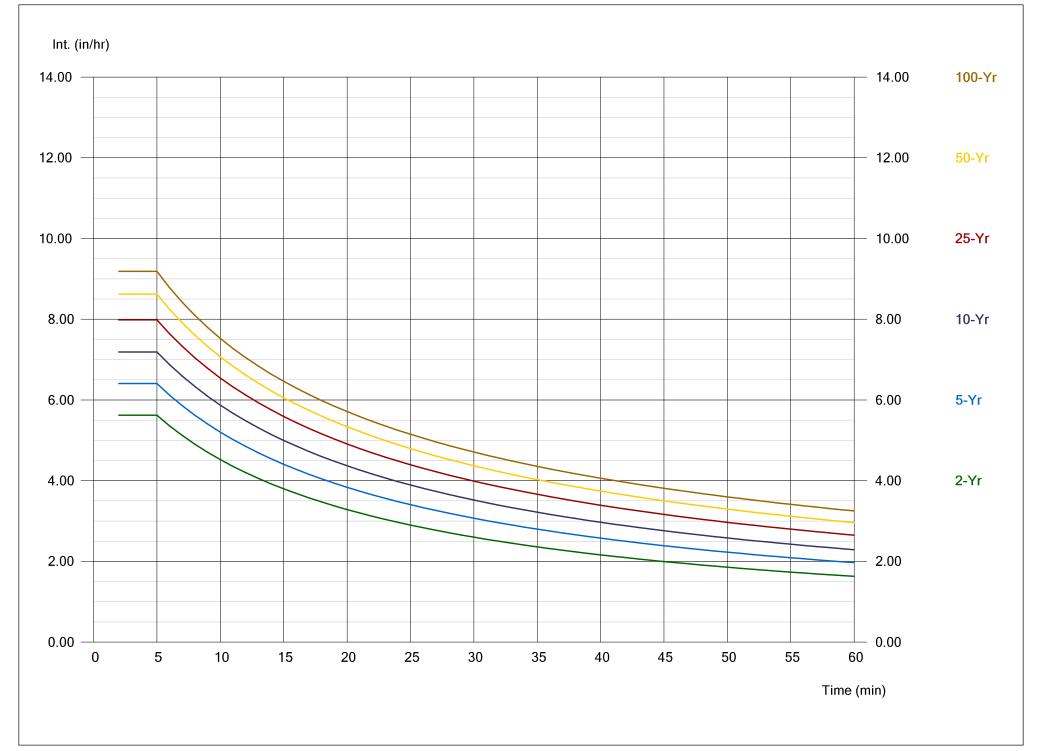
ee diagram	above)
	2
	0.04
	0.19

Actual Drainag	e Area	Check	
Area (S.F.)	Area (ACRE)		
18052	0.41	GOOD	
9666	0.22	GOOD	
14478	0.33	GOOD	
4809	0.11	GOOD	
13982	0.32	GOOD	
10647	0.24	GOOD	
22658	0.52	GOOD	*Double
12130	0.28	GOOD	
4586	0.11	GOOD	
3179	0.07	GOOD	
9273	0.21	GOOD	
6744	0.15	GOOD	
10609	0.24	GOOD	

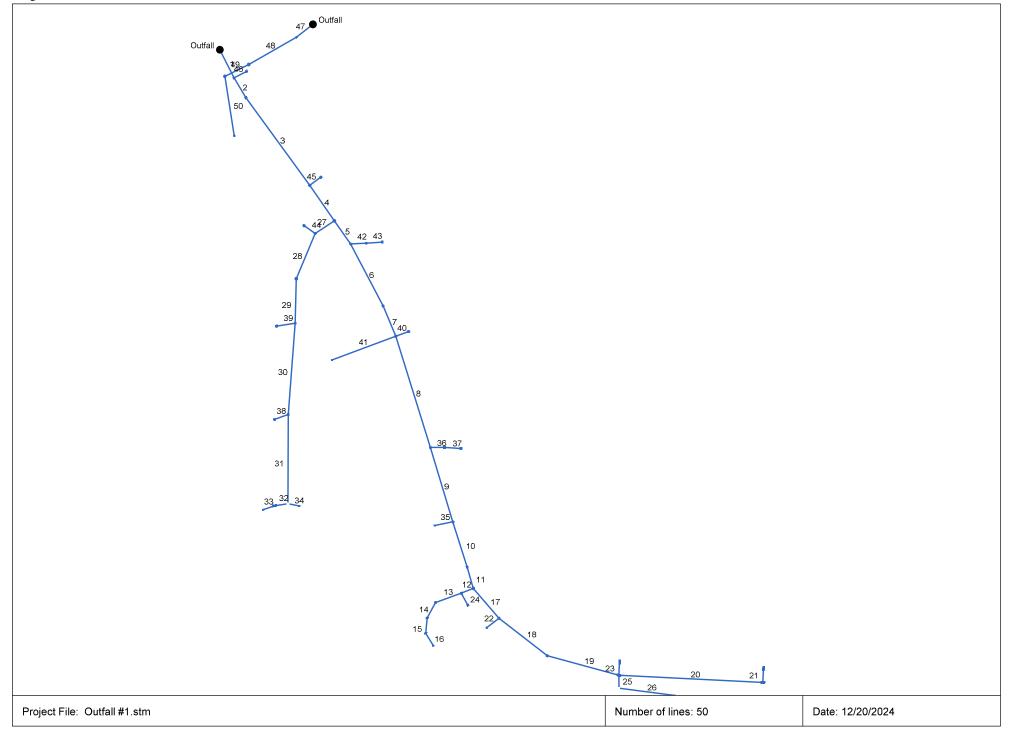


**Gutter Spread by Limited Area** 

377A-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	10439	0.24
377-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	9361	0.21
378A-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	8896	0.20
378B-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	4939	0.11
378-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	8137	0.19
379-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	3059	0.07
380A-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	15026	0.34
380-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	13389	0.31
381A-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	17358	0.40
381B-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	5036	0.12
381-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	8877	0.20
381C-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	3965	0.09
382-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	3553	0.08
383-CB	0.005	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	0.78	7.50	10384	281	0.01
384-CB	0.005	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	0.78	7.50	10384	5116	0.12
385/385A-CB	0.005	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	0.78	7.50	20769	13125	0.30
385B/385C-CB	0.005	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	0.78	7.50	20769	13958	0.32
386/386A-CB	0.005	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	0.78	7.50	20769	20662	0.47
386B/386C-CB	0.005	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	0.78	7.50	20769	14052	0.32
EX. 375-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	1103	0.03


E. O. P. - Edge of Pavement C&G - Curb and gutter WP - Wetted Perimeter (ft.) A - Area (s. f.) V - Velocity (fps) Note: Program uses Manning's formula for open channel flow.

Z:\Jobs\9900\Watkins Property\Documents\Schedules\Gutter Spread Calcs


ge	Check
RE)	
	GOOD

#### **Storm Sewer IDF Curves**

IDF file: 20241113 Kalas 5.IDF



## Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan 10-Year Report



Line	Alignment Flow Data					Flow	Data					Physical	Data				Line ID
No.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	57.000	63.252	Comb	0.00	0.01	0.59	10.0	357.90	0.68	358.29	36	Cir	0.013	1.50	364.82	Ex. 375 Out
2	1	41.866	-4.047	Comb	0.00	0.18	0.59	10.0	358.40	1.07	358.85	36	Cir	0.013	0.50	365.27	Pipe - (20)
3	2	196.394	-5.160	Comb	0.00	0.21	0.59	10.0	358.95	1.64	362.17	36	Cir	0.013	1.50	368.56	Pipe - (19)
4	3	78.359	1.332	мн	0.00	0.01	0.59	10.0	362.27	1.57	363.50	36	Cir	0.013	1.00	370.06	Pipe - (18)
5	4	51.020	-0.352	Comb	0.00	0.19	0.59	10.0	364.00	1.90	364.97	30	Cir	0.013	1.30	370.73	Pipe - (16)
6	5	126.897	7.290	Comb	0.00	0.07	0.59	10.0	365.07	1.42	366.87	30	Cir	0.013	0.50	372.89	Pipe - (15)
7	6	59.532	5.165	Comb	0.00	0.31	0.59	10.0	366.97	1.73	368.00	30	Cir	0.013	1.50	373.89	Pipe - (14)
8	7	210.964	5.328	Comb	0.00	0.20	0.59	10.0	368.10	1.73	371.75	30	Cir	0.013	1.44	377.52	Pipe - (13)
9	8	140.875	0.547	Comb	0.00	0.09	0.59	10.0	371.86	0.65	372.77	30	Cir	0.013	1.50	379.89	Pipe - (12) (1)
10	9	86.180	-0.829	Comb	0.00	0.08	0.59	10.0	373.07	0.61	373.60	30	Cir	0.013	0.50	381.39	Pipe - (12)
11	10	40.124	1.547	мн	0.00	0.01	0.59	10.0	373.70	0.75	374.00	24	Cir	0.013	1.00	381.95	Pipe - (51)
12	11	23.025	83.735	Comb	0.00	0.07	0.59	10.0	375.70	0.52	375.82	24	Cir	0.013	1.50	382.14	Pipe - (50) (1)
13	12	49.905	2.092	Comb	0.00	0.24	0.59	10.0	376.02	0.56	376.30	24	Cir	0.013	1.07	382.55	Pipe - (50)
14	13	31.516	-41.901	Comb	0.00	0.21	0.59	10.0	376.40	0.98	376.71	24	Cir	0.013	0.65	382.87	Pipe - (49)
15	14	27.860	-22.271	Comb	0.00	0.15	0.59	10.0	376.81	0.57	376.97	24	Cir	0.013	0.99	382.23	Pipe - (48)
16	15	25.968	-37.432	DrGrt	0.00	4.70	0.32	10.0	377.47	0.89	377.70	18	Cir	0.013	1.00	380.79	Pipe - (58)
17	11	71.389	-24.767	Comb	0.00	0.01	0.59	10.0	374.10	0.53	374.48	24	Cir	0.013	1.50	382.72	Pipe - (11)
18	17	110.816	-11.425	Comb	0.00	0.12	0.59	10.0	374.58	0.50	375.13	24	Cir	0.013	0.66	382.29	Pipe - (10)
19	18	133.897	-22.601	Comb	0.00	0.30	0.59	10.0	375.23	0.50	375.90	24	Cir	0.013	2.18	381.56	Pipe - (9)
20	19	260.141	-12.381	Comb	0.00	0.47	0.59	10.0	377.00	0.50	378.30	18	Cir	0.013	1.50	382.86	Pipe - (8)
21	20	25.751	-90.000	Comb	0.00	0.32	0.59	10.0	378.55	0.66	378.72	15	Cir	0.013	1.00	382.92	Pipe - (7)
22	17	28.157	93.178	DrGrt	0.00	0.61	0.59	10.0	376.03	2.24	376.66	15	Cir	0.013	1.00	380.41	Pipe - (59)
23	19	24.491	-102.38	2 Comb	0.00	0.32	0.59	10.0	377.45	0.53	377.58	15	Cir	0.013	1.00	381.56	Pipe - (55)
Project	Project File: Outfall #1.stm										Number	of lines: 50			Date: 1	2/20/2024	

Line	Alignment Flow Data										Line ID						
No.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
24	12	24.507	-95.925	Comb	0.00	0.11	0.59	10.0	376.87	0.73	377.05	15	Cir	0.013	1.00	382.14	Pipe - (70)
25	19	23.549	74.368	DrGrt	0.00	0.66	0.32	10.0	376.05	0.72	376.22	15	Cir	0.013	1.49	381.51	Pipe - (60)
26	25	100.850	-82.180	DrGrt	0.00	0.43	0.32	10.0	376.32	0.53	376.85	15	Cir	0.013	1.00	377.88	Pipe - (71)
27	4	41.676	91.283	Comb	0.00	0.22	0.59	10.0	364.00	0.84	364.35	24	Cir	0.013	1.42	370.22	Pipe - (57)
28	27	88.898	-34.214	мн	0.00	0.01	0.59	10.0	364.75	2.25	366.75	24	Cir	0.013	0.41	372.10	Pipe - (56)
29	28	80.422	-21.032	Comb	0.00	0.11	0.59	10.0	366.95	2.00	368.56	24	Cir	0.013	1.48	373.82	Pipe - (39)
30	29	166.115	2.964	Comb	0.00	0.24	0.59	10.0	369.06	1.57	371.67	18	Cir	0.013	1.39	376.92	Pipe - (37)
31	30	161.824	-4.236	Comb	0.00	0.28	0.59	10.0	371.77	1.93	374.90	18	Cir	0.013	2.22	380.04	Pipe - (36)
32	31	24.500	81.321	Comb	0.00	0.52	0.59	10.0	375.00	0.69	375.17	18	Cir	0.013	0.50	380.20	Pipe - (42)
33	32	22.252	-10.400	DrGrt	0.00	2.63	0.32	10.0	375.42	0.99	375.64	15	Cir	0.013	1.00	378.27	Pipe - (61)
34	31	20.817	-78.889	DrGrt	0.00	0.11	0.59	10.0	375.15	0.72	375.30	15	Cir	0.013	1.00	379.93	Pipe - (62)
35	9	32.881	95.114	DrGrt	0.00	0.25	0.59	10.0	374.07	1.09	374.43	18	Cir	0.013	1.00	377.38	Pipe - (69)
36	8	25.642	-72.321	Comb	0.00	0.40	0.59	10.0	372.50	0.70	372.68	15	Cir	0.013	0.50	377.65	Pipe - (54)
37	36	29.330	3.216	Comb	0.00	0.12	0.59	10.0	372.80	3.00	373.68	15	Cir	0.013	1.00	378.77	Pipe - (22)
38	30	26.271	65.734	Comb	0.00	0.32	0.59	10.0	371.92	1.45	372.30	15	Cir	0.013	1.00	377.11	Pipe - (41)
39	29	34.056	79.521	Comb	0.00	0.33	0.59	10.0	368.91	0.65	369.13	15	Cir	0.013	1.00	373.82	Pipe - (40)
40	7	24.427	-88.012	Comb	0.00	0.34	0.59	10.0	368.75	1.06	369.01	15	Cir	0.013	1.00	374.05	Pipe - (43)
41	7	123.325	91.973	DrGrt	0.00	1.30	0.59	10.0	368.30	0.54	368.97	18	Cir	0.013	1.00	372.49	Pipe - (63)
42	5	28.012	-57.519	Comb	0.00	0.20	0.59	10.0	365.72	1.36	366.10	15	Cir	0.013	0.50	371.06	Pipe - (24)
43	42	29.509	-1.479	Comb	0.00	0.11	0.59	10.0	366.20	0.51	366.35	15	Cir	0.013	1.00	371.27	Pipe - (53)
44	27	24.451	69.302	Comb	0.00	0.41	0.59	10.0	364.85	1.02	365.10	18	Cir	0.013	1.00	370.23	Pipe - (17)
45	3	24.503	-90.507	Comb	0.00	0.24	0.59	10.0	363.42	0.94	363.65	15	Cir	0.013	1.00	368.56	Pipe - (28)
46	1	25.748	-90.230	Comb	0.00	0.31	0.59	10.0	359.79	0.66	359.96	18	Cir	0.013	1.00	364.57	Pipe - (26)
Project	t File: Outf	all #1.stm										Number o	of lines: 50			Date: 1	2/20/2024

## **Storm Sewer Inventory Report**

Line	Alignment Flow Data												Line ID				
No.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	-
47	End	38.074	141.899	) DrGrt	0.00	1.07	0.32	10.0	353.31	0.50	353.50	36	Cir	0.013	0.50	359.06	Pipe - (67)
48	47	98.975	8.202	мн	0.00	0.01	0.59	10.0	353.61	0.50	354.10	30	Cir	0.013	0.15	364.91	Pipe - (66)
49	48	48.268	3.525	мн	0.00	0.01	0.59	10.0	354.21	0.99	354.69	30	Cir	0.013	0.96	364.48	Pipe - (65)
50	49	109.030	-72.571	DrGrt	0.00	7.18	0.32	10.0	355.19	2.35	357.75	24	Cir	0.013	1.00	360.04	Pipe - (29)
Projec	ct File: Out	tfall #1.stm										Number	of lines: 50			Date: 1	12/20/2024

## **Structure Report**

Page 1	
--------	--

Struct	Structure ID	Junction	Rim		Structure			Line Ou	t		Line In			
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)		
1	EX. CB 375	Combination	364.82	Rect	4.00	4.00	36	Cir	358.29	36 18	Cir Cir	358.40 359.79		
2	376	Combination	365.27	Rect	4.00	4.00	36	Cir	358.85	36	Cir	358.95		
3	377	Combination	368.56	Rect	4.00	4.00	36	Cir	362.17	36 15	Cir Cir	362.27 363.42		
4	377B	Manhole	370.06	Cir	4.00	4.00	36	Cir	363.50	30 24	Cir Cir	364.00 364.00		
5	378	Combination	370.73	Rect	4.00	4.00	30	Cir	364.97	30 15	Cir Cir	365.07 365.72		
6	379	Combination	372.89	Rect	4.00	4.00	30	Cir	366.87	30	Cir	366.97		
7	380	Combination	373.89	Rect	4.00	4.00	30	Cir	368.00	30 15 18	Cir Cir Cir	368.10 368.75 368.30		
8	381	Combination	377.52	Rect	4.00	4.00	30	Cir	371.75	30 15	Cir Cir	371.86 372.50		
9	381C	Combination	379.89	Rect	4.00	4.00	30	Cir	372.77	30 18	Cir Cir	373.07 374.07		
10	382	Combination	381.39	Rect	4.00	4.00	30	Cir	373.60	24	Cir	373.70		
11	382A	Manhole	381.95	Cir	4.00	4.00	24	Cir	374.00	24 24	Cir Cir	375.70 374.10		
12	395	Combination	382.14	Rect	4.00	4.00	24	Cir	375.82	24 15	Cir Cir	376.02 376.87		
13	396	Combination	382.55	Rect	4.00	4.00	24	Cir	376.30	24	Cir	376.40		
14	396A	Combination	382.87	Rect	4.00	4.00	24	Cir	376.71	24	Cir	376.81		
15	396B	Combination	382.23	Rect	4.00	4.00	24	Cir	376.97	18	Cir	377.47		
16	396C	DropGrate	380.79	Rect	3.00	3.00	18	Cir	377.70					
17	383	Combination	382.72	Rect	4.00	4.00	24	Cir	374.48	24 15	Cir Cir	374.58 376.03		
Proiect	⊥ File: Outfall #1.stm	I						umber of Struct	ures: 50	Rur	Date: 12/20/20	)24		

## **Structure Report**

10-Year Report

Struct No.	Structure ID	Junction	Rim		Structure			Line Out		Line In			
NO.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)	
18	384	Combination	382.29	Rect	4.00	4.00	24	Cir	375.13	24	Cir	375.23	
19	385	Combination	381.56	Rect	8.00	4.00	24	Cir	375.90	18 15 15	Cir Cir Cir	377.00 377.45 376.05	
20	386	Combination	382.86	Rect	8.00	4.00	18	Cir	378.30	15	Cir	378.55	
21	386A	Combination	382.92	Rect	8.00	4.00	15	Cir	378.72				
22	383A	DropGrate	380.41	Rect	3.00	3.00	15	Cir	376.66				
23	385A	Combination	381.56	Rect	8.00	4.00	15	Cir	377.58				
24	395A	Combination	382.14	Rect	4.00	4.00	15	Cir	377.05				
25	385B	DropGrate	381.51	Rect	3.00	3.00	15	Cir	376.22	15	Cir	376.32	
26	385C	DropGrate	377.88	Rect	3.00	3.00	15	Cir	376.85				
27	390	Combination	370.22	Rect	4.00	4.00	24	Cir	364.35	24 18	Cir Cir	364.75 364.85	
28	390B	Manhole	372.10	Cir	4.00	4.00	24	Cir	366.75	24	Cir	366.95	
29	391	Combination	373.82	Rect	4.00	4.00	24	Cir	368.56	18 15	Cir Cir	369.06 368.91	
30	392	Combination	376.92	Rect	4.00	4.00	18	Cir	371.67	18 15	Cir Cir	371.77 371.92	
31	393	Combination	380.04	Rect	4.00	4.00	18	Cir	374.90	18 15	Cir Cir	375.00 375.15	
32	393A	Combination	380.20	Rect	8.00	4.00	18	Cir	375.17	15	Cir	375.42	
33	393B	DropGrate	378.27	Rect	3.00	3.00	15	Cir	375.64				
34	393C	DropGrate	379.93	Rect	3.00	3.00	15	Cir	375.30				
35	381D	DropGrate	377.38	Rect	3.00	3.00	18	Cir	374.43				
36	381A	Combination	377.65	Rect	4.00	4.00	15	Cir	372.68	15	Cir	372.80	
37	381B	Combination	378.77	Rect	4.00	4.00	15	Cir	373.68				
Project F	File: Outfall #1.stm	N	umber of Structu	res: 50	Run I	Run Date: 12/20/2024							

## **Structure Report**

10-Year Report

Struct No.	Structure ID	Junction	Rim		Structure			Line Out		Line In			
NO.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)	
38	392A	Combination	377.11	Rect	4.00	4.00	15	Cir	372.30				
39	391A	Combination	373.82	Rect	4.00	4.00	15	Cir	369.13				
40	380A	Combination	374.05	Rect	4.00	4.00	15	Cir	369.01				
41	380B	DropGrate	372.49	Rect	3.00	3.00	18	Cir	368.97				
42	378A	Combination	371.06	Rect	4.00	4.00	15	Cir	366.10	15	Cir	366.20	
43	378B	Combination	371.27	Rect	4.00	4.00	15	Cir	366.35				
44	390A	Combination	370.23	Rect	4.00	4.00	18	Cir	365.10				
45	377A	Combination	368.56	Rect	4.00	4.00	15	Cir	363.65				
46	375A	Combination	364.57	Rect	4.00	4.00	18	Cir	359.96				
47	31A	DropGrate	359.06	Rect	3.00	3.00	36	Cir	353.50	30	Cir	353.61	
48	EX. 31	Manhole	364.91	Cir	4.00	4.00	30	Cir	354.10	30	Cir	354.21	
49	EX. 32	Manhole	364.48	Cir	4.00	4.00	30	Cir	354.69	24	Cir	355.19	
50	32A	DropGrate	360.04	Rect	3.00	3.00	24	Cir	357.75				
Project F	∣ File: Outfall #1.stm		Number of Structu	res: 50	Run Date: 12/20/2024								

## Storm Sewer Summary Report

10-Year Report

Page 1
--------

.ine No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	Ex. 375 Out	38.57	36	Cir	57.000	357.90	358.29	0.684	360.59	360.31	1.35	360.31	End	Combination
2	Pipe - (20)	37.85	36	Cir	41.866	358.40	358.85	1.075	360.31	360.85	0.44	360.85	1	Combination
3	Pipe - (19)	37.96	36	Cir	196.394	358.95	362.17	1.640	360.85	364.17	n/a	364.17	2	Combination
4	Pipe - (18)	36.99	36	Cir	78.359	362.27	363.50	1.570	364.17	365.48	0.87	365.48	3	Manhole
5	Pipe - (16)	26.35	30	Cir	51.020	364.00	364.97	1.901	365.48	366.72	1.04	366.72	4	Combination
6	Pipe - (15)	25.26	30	Cir	126.897	365.07	366.87	1.418	366.72	368.58	0.39	368.58	5	Combination
7	Pipe - (14)	25.19	30	Cir	59.532	366.97	368.00	1.730	368.58	369.71	n/a	369.71	6	Combination
8	Pipe - (13)	20.28	30	Cir	210.964	368.10	371.75	1.730	369.71	373.28	n/a	373.28 j	7	Combination
9	Pipe - (12) (1)	18.55	30	Cir	140.875	371.86	372.77	0.646	373.28	374.23	0.91	374.23	8	Combination
10	Pipe - (12)	17.77	30	Cir	86.180	373.07	373.60	0.615	374.40	375.03	n/a	375.03	9	Combination
11	Pipe - (51)	17.60	24	Cir	40.124	373.70	374.00	0.747	375.18	375.51	0.74	375.51	10	Manhole
12	Pipe - (50) (1)	11.02	24	Cir	23.025	375.70	375.82	0.521	376.90	377.02	0.73	377.75	11	Combination
13	Pipe - (50)	10.76	24	Cir	49.905	376.02	376.30	0.561	377.75	377.47	0.52	377.47	12	Combination
14	Pipe - (49)	9.99	24	Cir	31.516	376.40	376.71	0.984	377.47	377.84	0.30	377.84	13	Combination
15	Pipe - (48)	9.32	24	Cir	27.860	376.81	376.97	0.574	377.86	378.06	0.44	378.06	14	Combination
16	Pipe - (58)	8.83	18	Cir	25.968	377.47	377.70	0.886	378.58	378.85	0.57	378.85	15	DropGrate
17	Pipe - (11)	8.03	24	Cir	71.389	374.10	374.48	0.532	375.51	375.49	n/a	375.49	11	Combination
18	Pipe - (10)	6.37	24	Cir	110.816	374.58	375.13	0.496	375.49	376.02	n/a	376.02 j	17	Combination
19	Pipe - (9)	6.21	24	Cir	133.897	375.23	375.90	0.500	376.10	376.78	0.73	376.78	18	Combination
20	Pipe - (8)	2.69	18	Cir	260.141	377.00	378.30	0.500	377.62	378.93	0.35	379.27	19	Combination
21	Pipe - (7)	1.11	15	Cir	25.751	378.55	378.72	0.660	379.27	379.13	0.15	379.13	20	Combination
22	Pipe - (59)	2.11	15	Cir	28.157	376.03	376.66	2.237	376.43	377.24	n/a	377.24	17	DropGrate
23	Pipe - (55)	1.11	15	Cir	24.491	377.45	377.58	0.531	377.86	377.99	0.15	377.99	19	Combination
24	Pipe - (70)	0.38	15	Cir	24.507	376.87	377.05	0.734	377.75	377.29	n/a	377.29	12	Combination
Proied	t File: Outfall #1.stm								Number o	of lines: 50		Run	Date: 12/2	0/2024

NOTES: Return period = 10 Yrs. ; j - Line contains hyd. jump.

## **Storm Sewer Summary Report**

10-Year Report

₋ine No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
25	Pipe - (60)	1.88	15	Cir	23.549	376.05	376.22	0.722	376.78	376.76	n/a	376.76 j	19	DropGrate
26	Pipe - (71)	0.81	15	Cir	100.850	376.32	376.85	0.525	376.76	377.20	n/a	377.20 j	25	DropGrate
27	Pipe - (57)	12.44	24	Cir	41.676	364.00	364.35	0.840	365.48	365.62	n/a	365.62 j	4	Combination
28	Pipe - (56)	10.62	24	Cir	88.898	364.75	366.75	2.250	365.62	367.92	n/a	367.92	27	Manhole
29	Pipe - (39)	10.72	24	Cir	80.422	366.95	368.56	2.002	367.92	369.73	n/a	369.73	28	Combination
30	Pipe - (37)	9.46	18	Cir	166.115	369.06	371.67	1.571	370.00	372.86	n/a	372.86	29	Combination
31	Pipe - (36)	7.79	18	Cir	161.824	371.77	374.90	1.934	372.86	375.98	n/a	375.98 j	30	Combination
32	Pipe - (42)	6.72	18	Cir	24.500	375.00	375.17	0.694	375.99	376.17	0.22	376.17	31	Combination
33	Pipe - (61)	4.94	15	Cir	22.252	375.42	375.64	0.989	376.24	376.54	n/a	376.54	32	DropGrate
34	Pipe - (62)	0.38	15	Cir	20.817	375.15	375.30	0.721	375.98	375.54	n/a	375.54	31	DropGrate
35	Pipe - (69)	0.87	18	Cir	32.881	374.07	374.43	1.095	374.36	374.78	0.12	374.78	9	DropGrate
36	Pipe - (54)	1.71	15	Cir	25.642	372.50	372.68	0.702	373.28	373.20	n/a	373.20	8	Combination
37	Pipe - (22)	0.42	15	Cir	29.330	372.80	373.68	3.000	373.20	373.93	n/a	373.93 j	36	Combination
38	Pipe - (41)	1.11	15	Cir	26.271	371.92	372.30	1.446	372.86	372.71	0.15	372.71	30	Combination
39	Pipe - (40)	1.14	15	Cir	34.056	368.91	369.13	0.646	369.73	369.55	n/a	369.55	29	Combination
40	Pipe - (43)	1.18	15	Cir	24.427	368.75	369.01	1.064	369.71	369.44	0.16	369.44	7	Combination
41	Pipe - (63)	4.50	18	Cir	123.325	368.30	368.97	0.543	369.71	369.90	0.24	370.14	7	DropGrate
42	Pipe - (24)	1.02	15	Cir	28.012	365.72	366.10	1.357	366.72	366.50	0.07	366.50	5	Combination
43	Pipe - (53)	0.38	15	Cir	29.509	366.20	366.35	0.508	366.50	366.59	n/a	366.67 j	42	Combination
44	Pipe - (17)	1.42	18	Cir	24.451	364.85	365.10	1.022	365.62	365.55	0.16	365.55	27	Combination
45	Pipe - (28)	0.83	15	Cir	24.503	363.42	363.65	0.939	364.17	364.01	n/a	364.01	3	Combination
46	Pipe - (26)	1.07	18	Cir	25.748	359.79	359.96	0.661	360.31	360.35	n/a	360.35 j	1	Combination
47	Pipe - (67)	14.87	36	Cir	38.074	353.31	353.50	0.499	355.42	354.73	0.23	354.73	End	DropGrate
48	Pipe - (66)	13.22	30	Cir	98.975	353.61	354.10	0.495	354.80	355.32	n/a	355.32	47	Manhole
Project	 : File: Outfall #1.stm								Number	of lines: 50		Run	Date: 12/2	20/2024

NOTES: Return period = 10 Yrs. ; j - Line contains hyd. jump.

## Storm Sewer Summary Report

10-Year Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
49	Pipe - (65)	13.33	30	Cir	48.268	354.21	354.69	0.994	355.32	355.92	n/a	355.92	48	Manhole
50	Pipe - (29)	13.49	24	Cir	109.030	355.19	357.75	2.348	356.06	359.07	n/a	359.07	49	DropGrate
Project	File: Outfall #1.stm								Number o	f lines: 50		Run	Date: 12/20	0/2024
NOTES	: Return period = 10 Yrs. ; j - Line	contains h	yd. jump.											

#### **Inlet Report**

10-Year Report

Page 1

Line No	Inlet ID	Q =	Q	Q	Q	Junc	Curb Ir	nlet	Gra	te Inlet				G	utter					Inlet		Byp
NO		CIA (cfs)	carry (cfs)	capt (cfs)	Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n		Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	–Line No
1	EX. CB 375	0.03	0.00	0.03	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.07	1.08	0.00	0.00	0.0	Off
2	376	0.62	0.00	0.56	0.06	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.18	5.21	0.08	1.35	0.0	Off
3	377	0.73	0.00	0.64	0.09	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.19	5.66	0.09	1.55	0.0	Off
4	377B	0.03	0.00	0.00	0.03	мн	6.0	0.00	0.00	3.00	2.50	Sag	2.00	0.060	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
5	378	0.66	0.00	0.59	0.07	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.19	5.37	0.09	1.42	0.0	Off
6	379	0.24	0.00	0.24	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.13	2.73	0.02	0.28	0.0	Off
7	380	1.07	0.00	0.87	0.20	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	6.88	0.13	2.32	0.0	Off
8	381	0.69	0.00	0.61	0.08	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.19	5.52	0.09	1.49	0.0	Off
9	381C	0.31	0.00	0.31	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.15	3.35	0.03	0.55	0.0	Off
10	382	0.28	0.00	0.27	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.14	3.06	0.03	0.43	0.0	Off
11	382A	0.03	0.00	0.00	0.03	мн	6.0	0.00	0.00	3.00	2.50	Sag	2.00	0.060	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
12	395	0.24	0.00	0.24	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.13	2.73	0.02	0.28	0.0	Off
13	396	0.83	0.00	0.71	0.12	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.20	6.07	0.10	1.74	0.0	Off
14	396A	0.73	0.00	0.64	0.09	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.19	5.66	0.09	1.55	0.0	Off
15	396B	0.52	0.00	0.48	0.04	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.17	4.70	0.07	1.13	0.0	Off
16	396C	8.83	0.00	8.83	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.51	104.68	0.51	104.68	0.0	Off
17	383	0.03	0.00	0.03	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.07	1.08	0.00	0.00	0.0	Off
18	384	0.42	0.00	0.40	0.02	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.16	4.09	0.05	0.87	0.0	Off
19	385	1.04	0.00	0.96	0.08	Comb	6.0	1.50	0.00	6.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	6.78	0.09	1.50	0.0	Off
20	386	1.63	0.00	1.43	0.20	Comb	6.0	1.50	0.00	6.00	2.50	0.005	2.00	0.060	0.020	0.013	0.25	8.34	0.12	2.22	0.0	Off
21	386A	1.11	0.00	1.01	0.09	Comb	6.0	1.50	0.00	6.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	6.99	0.09	1.58	0.0	Off
22	383A	2.11	0.00	2.11	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.20	41.56	0.20	41.56	0.0	Off
23	385A	1.11	0.00	1.01	0.09	Comb	6.0	1.50	0.00	6.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	6.99	0.09	1.58	0.0	Off
Projec	t File: Outfall #1.stn	יייי ו		I		1	1	1	1			1		Number	of lines:	50		R	un Date:	12/20/20	24	

NOTES: Inlet N-Values = 0.016; Intensity = 72.00 / (Inlet time + 12.50) ^ 0.80; Return period = 10 Yrs.; * Indicates Known Q added. All curb inlets are throat.

#### **Inlet Report**

10-Year Report

Page 2

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb l	nlet	Gra	ate Inlet				G	utter					Inlet		Вур
No		CIA (cfs)	carry (cfs)	capt (cfs)	Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	Line No
24	395A	0.38	0.00	0.37	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.16	3.87	0.05	0.77	0.0	Off
25	385B	1.24	0.00	1.24	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.14	29.72	0.14	29.72	0.0	Off
26	385C	0.81	0.00	0.81	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.020	0.020	0.013	0.10	12.42	0.10	12.42	0.0	Off
27	390	0.76	0.00	0.66	0.10	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.20	5.80	0.10	1.62	0.0	Off
28	390B	0.03	0.00	0.00	0.03	мн	6.0	0.00	0.00	3.00	2.50	Sag	2.00	0.060	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
29	391	0.38	0.00	0.37	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.16	3.87	0.05	0.77	0.0	Off
30	392	0.83	0.00	0.71	0.12	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.20	6.07	0.10	1.74	0.0	Off
31	393	0.97	0.00	0.80	0.17	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.21	6.55	0.12	1.95	0.0	Off
32	393A	1.80	0.00	1.57	0.23	Comb	6.0	1.50	0.00	6.00	2.50	0.005	2.00	0.060	0.020	0.013	0.25	8.73	0.13	2.65	0.0	Off
33	393B	4.94	0.00	4.94	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.35	71.71	0.35	71.71	0.0	Off
34	393C	0.38	0.00	0.38	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.06	14.62	0.06	14.62	0.0	Off
35	381D	0.87	0.00	0.87	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.11	23.82	0.11	23.82	0.0	Off
36	381A	1.39	0.00	1.06	0.33	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.24	7.76	0.15	3.46	0.0	Off
37	381B	0.42	0.00	0.40	0.02	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.16	4.09	0.05	0.87	0.0	Off
38	392A	1.11	0.00	0.89	0.22	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	6.99	0.13	2.46	0.0	Off
39	391A	1.14	0.00	0.91	0.23	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	7.09	0.13	2.60	0.0	Off
40	380A	1.18	0.00	0.94	0.24	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	7.19	0.13	2.73	0.0	Off
41	380B	4.50	0.00	4.50	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.33	67.53	0.33	67.53	0.0	Off
42	378A	0.69	0.00	0.61	0.08	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.19	5.52	0.09	1.49	0.0	Off
43	378B	0.38	0.00	0.37	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.16	3.87	0.05	0.77	0.0	Off
44	390A	1.42	0.00	1.08	0.34	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.24	7.85	0.15	3.57	0.0	Off
45	377A	0.83	0.00	0.71	0.12	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.20	6.07	0.10	1.74	0.0	Off
46	375A	1.07	0.00	0.87	0.20	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	6.88	0.13	2.32	0.0	Off
Projec	t File: Outfall #1.s	tm	1			I		1	1	1	1	1		Number	of lines:	50	I	R	un Date:	12/20/20	24	

NOTES: Inlet N-Values = 0.016; Intensity = 72.00 / (Inlet time + 12.50) ^ 0.80; Return period = 10 Yrs.; * Indicates Known Q added. All curb inlets are throat.

### **Inlet Report**

10-Year Report

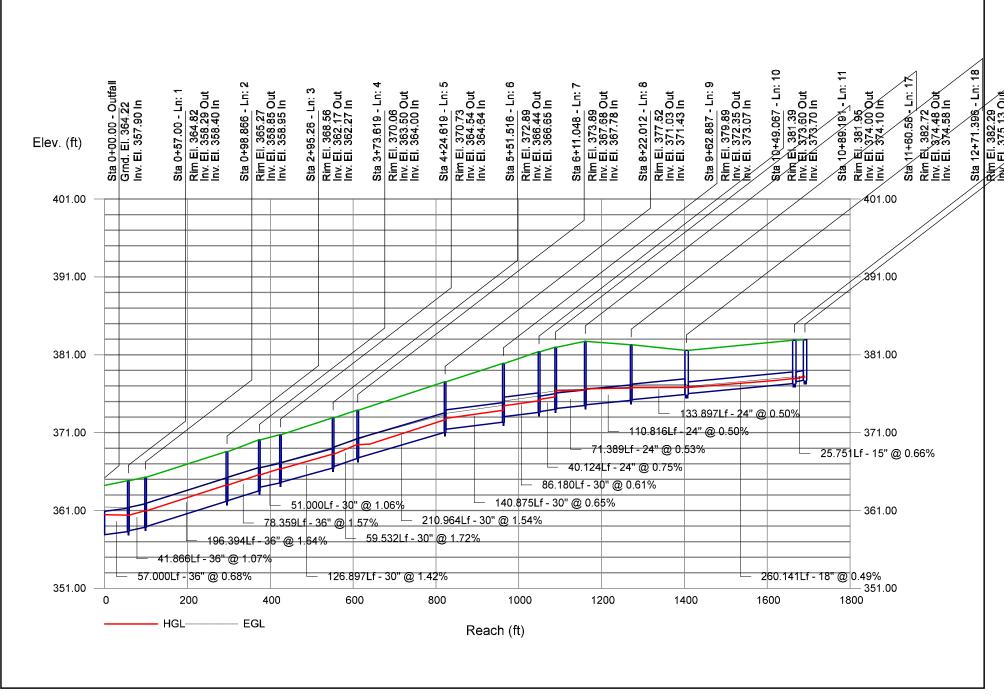
Line	Inlet ID	Q =	Q		Q	Junc	Curb Ir	nlet	Gra	ate Inlet				G	utter					Inlet		Вур
No		CIA (cfs)	carry (cfs)		Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	Line No
47	31A	2.01	0.00	2.01	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.19	40.27	0.19	40.27	0.0	Off
48	EX. 31	0.03	0.00	0.00	0.03	мн	6.0	0.00	0.00	3.00	2.50	Sag	2.00	0.060	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
49	EX. 32	0.03	0.00	0.00	0.03	мн	6.0	0.00	0.00	3.00	2.50	Sag	2.00	0.060	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
50	32A	13.49	0.00	13.49	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.68	138.22	0.68	138.22	0.0	Off
Projec	L ct File: Outfall #1.str													Number	of lines	50		   R	un Date:	12/20/20	24	
	ES: Inlet N-Values =													Humber					un Date.	12/20/20		

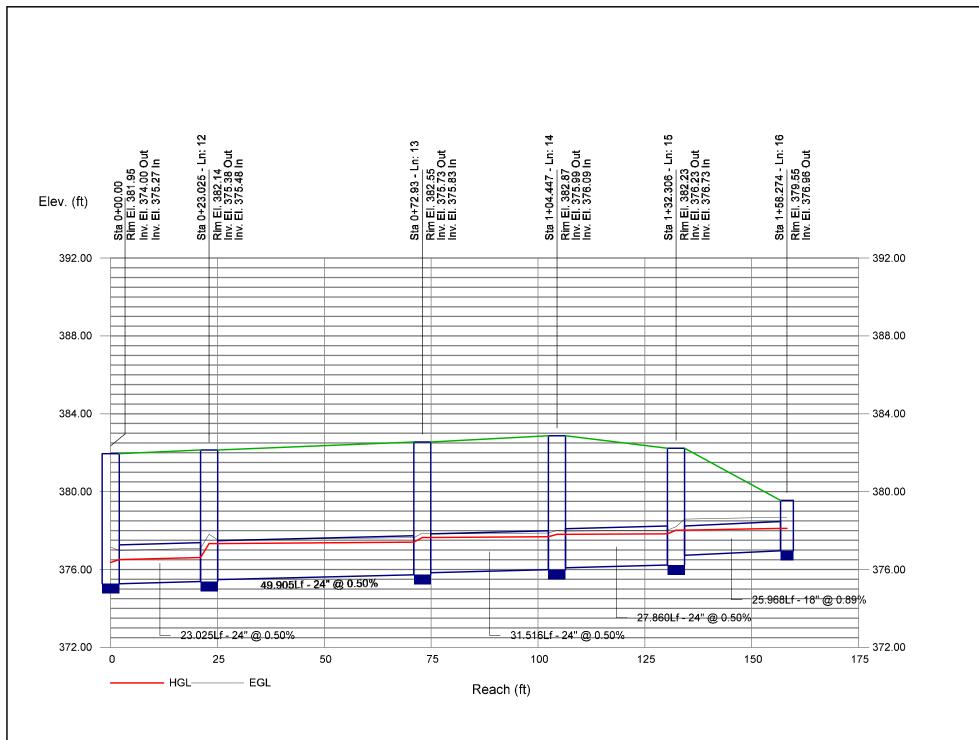
## Hydraulic Grade Line Computations

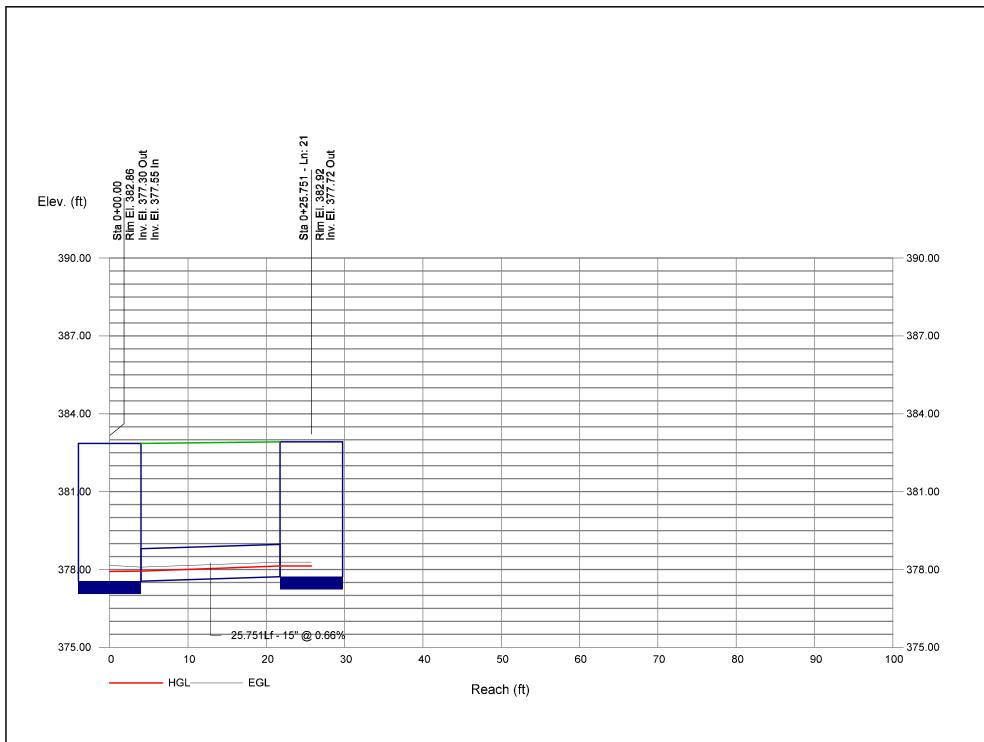
10-Year Report

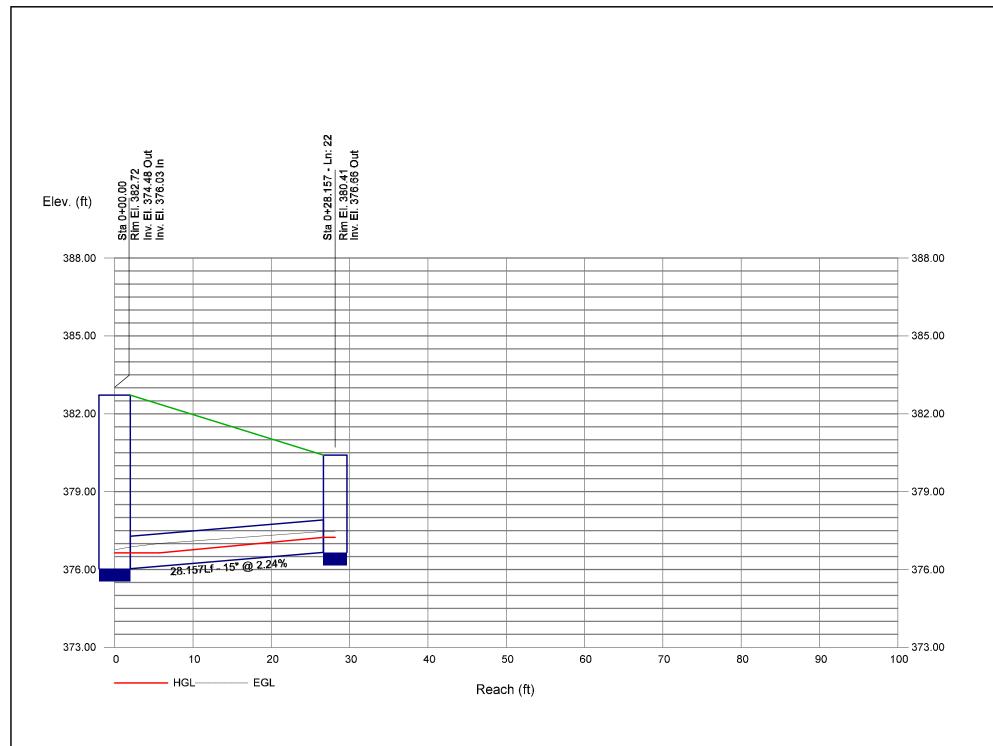
(cfs 38. 37.	elev s) (ft)	e e	elev	Line Size Q Downstream Len Upstream Check JL Minor Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy coeff loss																		
			ft)	(ft)	(sqft)	(ft/s)	head (ft)	elev (ft)		(ft)	Invert elev (ft)	HGL elev (ft)	Depth (ft)		Vel (ft/s)	Vel head (ft)	EGL elev (ft)		Ave Sf (%)	Enrgy loss (ft)	(K)	(ft)
37.	5.57 357	.90 3	360.59	2.69	5.06	5.77	0.90	361.49	0.000	57.000	358.29	360.31	2.02**	5.06	7.62	0.90	361.21	0.000	0.000	n/a	1.50	1.35
	.85 358	.40 3	360.31	1.91	4.75	7.97	0.89	361.20	0.000	41.866	358.85	360.85	2.00**	5.01	7.56	0.89	361.74	0.000	0.000	n/a	0.50	0.44
37.	.96 358	.95 3	360.85	1.90	4.72	8.04	0.89	361.74	0.000	196.39	4362.17	364.17	2.00**	5.01	7.57	0.89	365.06	0.000	0.000	n/a	1.50	n/a
36.	.99 362	2.27 3	364.17	1.90	4.73	7.82	0.87	365.04	0.000	78.359	363.50	365.48	1.98**	4.94	7.49	0.87	366.35	0.000	0.000	n/a	1.00	0.87
26.	.35 364	.00 3	365.48	1.48	3.02	8.73	0.80	366.28	0.000	51.020	364.97	366.72	1.75**	3.67	7.19	0.80	367.52	0.000	0.000	n/a	1.30	1.04
25.	.26 365	6.07 3	366.72	1.65	3.43	7.36	0.77	367.49	0.000	126.89	7366.87	368.58	1.71**	3.58	7.06	0.77	369.36	0.000	0.000	n/a	0.50	0.39
25.	.19 366	6.97 3	368.58	1.61	3.34	7.53	0.77	369.35	0.000	59.532	368.00	369.71	1.71**	3.58	7.05	0.77	370.48	0.000	0.000	n/a	1.50	n/a
20.	.28 368	10 3	369.71	1.61	3.14	6.07	0.65	370.36	0.000	210.96	4371.75	373.28 j	1.53**	3.14	6.45	0.65	373.92	0.000	0.000	n/a	1.44	n/a
18.	.55 371	.86 3	373.28	1.42	2.87	6.46	0.61	373.88	0.000	140.87	5372.77	374.23	1.46**	2.97	6.24	0.61	374.83	0.000	0.000	n/a	1.50	0.91
17.	7.77 373	.07 3	374.40	1.33*	2.65	6.71	0.59	374.98	0.000	86.180	373.60	375.03	1.43**	2.89	6.14	0.59	375.61	0.000	0.000	n/a	0.50	n/a
. 17.	.60 373	.70 3	375.18	1.48*	2.50	7.04	0.74	375.93	0.000	40.124	374.00	375.51	1.51**	2.55	6.91	0.74	376.25	0.000	0.000	n/a	1.00	0.74
. 11.	.02 375	6.70 3	376.90	1.20*	1.98	5.58	0.48	377.39	0.521	23.025	375.82	377.02	1.20	1.98	5.58	0.48	377.51	0.520	0.521	0.120	1.50	0.73
. 10.	.76 376	i.02 3	377.75	1.73	1.92	3.73	0.49	378.24	0.000	49.905	376.30	377.47	1.17**	1.92	5.61	0.49	377.96	0.000	0.000	n/a	1.07	0.52
. 9.9	99 376	6.40 3	377.47	1.07	1.72	5.81	0.46	377.94	0.000	31.516	376.71	377.84	1.13**	1.83	5.46	0.46	378.30	0.000	0.000	n/a	0.65	0.30
9.3	32 376	6.81 3	377.86	1.05*	1.67	5.57	0.44	378.30	0.000	27.860	376.97	378.06	1.09**	1.75	5.33	0.44	378.50	0.000	0.000	n/a	0.99	0.44
8.8	83 377	.47 3	378.58	1.11*	1.40	6.32	0.57	379.15	0.000	25.968	377.70	378.85	1.15**	1.45	6.08	0.57	379.42	0.000	0.000	n/a	1.00	0.57
8.0	03 374	.10 3	375.51	1.41	1.59	3.39	0.40	375.91	0.000	71.389	374.48	375.49	1.01**	1.59	5.06	0.40	375.89	0.000	0.000	n/a	1.50	n/a
6.3	37 374	.58 3	375.49	0.91	1.36	4.59	0.34	375.83	0.000	110.81	6375.13	376.02 j	0.89**	1.36	4.69	0.34	376.37	0.000	0.000	n/a	0.66	0.23
6.2	21 375	.23 3	376.10	0.87*	1.30	4.77	0.34	376.43	0.000	133.89	7375.90	376.78	0.88**	1.33	4.66	0.34	377.12	0.000	0.000	n/a	2.18	0.73
2.6	59 377	.00 3	377.62	0.62*	0.69	3.86	0.23	377.86	0.500	260.14	1378.30	378.93	0.63**	0.70	3.86	0.23	379.16	0.497	0.499	1.297	1.50	0.35
5 1.1	11 378	.55 3	379.27	0.72	0.36	1.51	0.15	379.42	0.000	25.751	378.72	379.13	0.41**	0.36	3.12	0.15	379.29	0.000	0.000	n/a	1.00	0.15
2.1	11 376	6.03 3	376.43	0.40*	0.34	6.30	0.22	376.65	0.000	28.157	376.66	377.24	0.58**	0.56	3.80	0.22	377.46	0.000	0.000	n/a	1.00	n/a
15       2.11       376.03       376.43       0.40*       0.34       6.30       0.22       376.65       0.000       28.157       376.66       377.24       0														umber o	lines: 5	0		Run	Date: 1	2/20/20	24	
5 1		.11 378 .11 376	.11 378.55 3 .11 376.03	.11         378.55         379.27           .11         376.03         376.43	.11         378.55         379.27         0.72           .11         376.03         376.43         0.40*	.11         378.55         379.27         0.72         0.36           .11         376.03         376.43         0.40*         0.34	.11       378.55       379.27       0.72       0.36       1.51         .11       376.03       376.43       0.40*       0.34       6.30	.11       378.55       379.27       0.72       0.36       1.51       0.15         .11       376.03       376.43       0.40*       0.34       6.30       0.22	.11 378.55 379.27 0.72 0.36 1.51 0.15 379.42	.11       378.55       379.27       0.72       0.36       1.51       0.15       379.42       0.000         .11       376.03       376.43       0.40*       0.34       6.30       0.22       376.65       0.000	.11       378.55       379.27       0.72       0.36       1.51       0.15       379.42       0.000       25.751         .11       376.03       376.43       0.40*       0.34       6.30       0.22       376.65       0.000       28.157	.11       378.55       379.27       0.72       0.36       1.51       0.15       379.42       0.000       25.751       378.72         .11       376.03       376.43       0.40*       0.34       6.30       0.22       376.65       0.000       28.157       376.66	.11       378.55       379.27       0.72       0.36       1.51       0.15       379.42       0.000       25.751       378.72       379.13         .11       376.03       376.43       0.40*       0.34       6.30       0.22       376.65       0.000       28.157       376.66       377.24	.11       378.55       379.27       0.72       0.36       1.51       0.15       379.42       0.000       25.751       378.72       379.13       0.41**         .11       376.03       376.43       0.40*       0.34       6.30       0.22       376.65       0.000       28.157       376.66       377.24       0.58**	.11       378.55       379.27       0.72       0.36       1.51       0.15       379.42       0.000       25.751       378.72       379.13       0.41**       0.36         .11       376.03       376.43       0.40*       0.34       6.30       0.22       376.65       0.000       28.157       376.66       377.24       0.58**       0.56	.11       378.55       379.27       0.72       0.36       1.51       0.15       379.42       0.000       25.751       378.72       379.13       0.41**       0.36       3.12         .11       376.03       376.43       0.40*       0.34       6.30       0.22       376.65       0.000       28.157       376.66       377.24       0.58**       0.56       3.80	.11       378.55       379.27       0.72       0.36       1.51       0.15       379.42       0.000       25.751       378.72       379.13       0.41**       0.36       3.12       0.15         .11       376.03       376.43       0.40*       0.34       6.30       0.22       376.65       0.000       28.157       376.66       377.24       0.58**       0.56       3.80       0.22	.11       378.55       379.27       0.72       0.36       1.51       0.15       379.42       0.000       25.751       378.72       379.13       0.41**       0.36       3.12       0.15       379.29         .11       376.03       376.43       0.40*       0.34       6.30       0.22       376.65       0.000       28.157       376.66       377.24       0.58**       0.56       3.80       0.22       377.46	.11       378.55       379.27       0.72       0.36       1.51       0.15       379.42       0.000       25.751       378.72       379.13       0.41**       0.36       3.12       0.15       379.29       0.000         .11       376.03       376.43       0.40*       0.34       6.30       0.22       376.65       0.000       28.157       376.66       377.24       0.58**       0.56       3.80       0.22       377.46       0.000	.11       378.55       379.27       0.72       0.36       1.51       0.15       379.42       0.000       25.751       378.72       379.13       0.41**       0.36       3.12       0.15       379.29       0.000       0.000         .11       376.03       376.43       0.40*       0.34       6.30       0.22       376.65       0.000       28.157       376.66       377.24       0.56       3.80       0.22       377.46       0.000       0.000	.11       378.55       379.27       0.72       0.36       1.51       0.15       379.42       0.000       25.751       378.72       379.13       0.41**       0.36       3.12       0.15       379.29       0.000       0.000       n/a         .11       376.03       376.43       0.40*       0.34       6.30       0.22       376.65       0.000       28.157       376.66       377.24       0.58**       0.56       3.80       0.22       377.46       0.000       n/a                                                                     <	.11       378.55       379.27       0.72       0.36       1.51       0.15       379.42       0.000       25.751       378.72       379.13       0.41**       0.36       3.12       0.15       379.29       0.000       0.000       n/a       1.00         .11       376.03       376.43       0.40*       0.34       6.30       0.22       376.65       0.000       28.157       376.66       377.24       0.58**       0.56       3.80       0.22       377.46       0.000       n/a       1.00

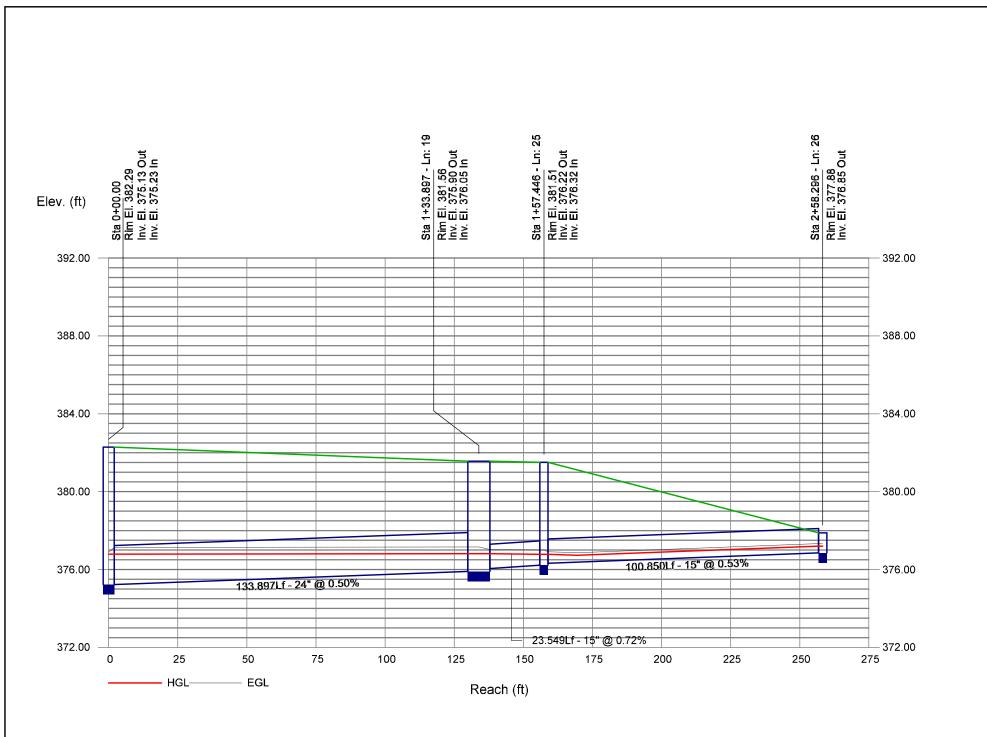
## Hydraulic Grade Line Computations

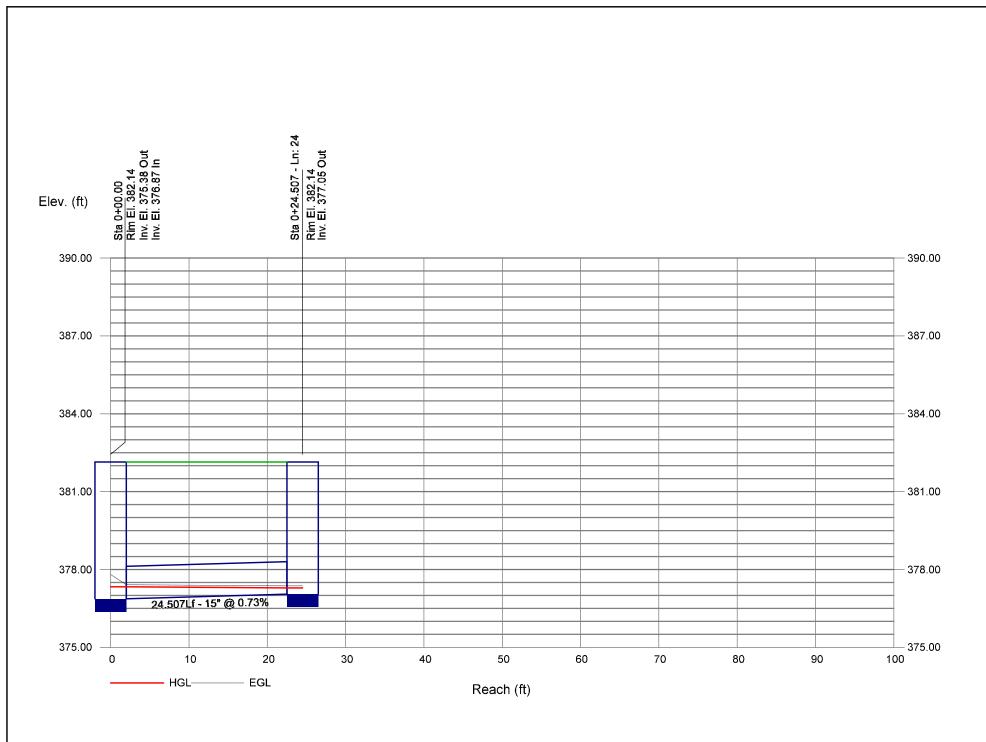

10-Year Report

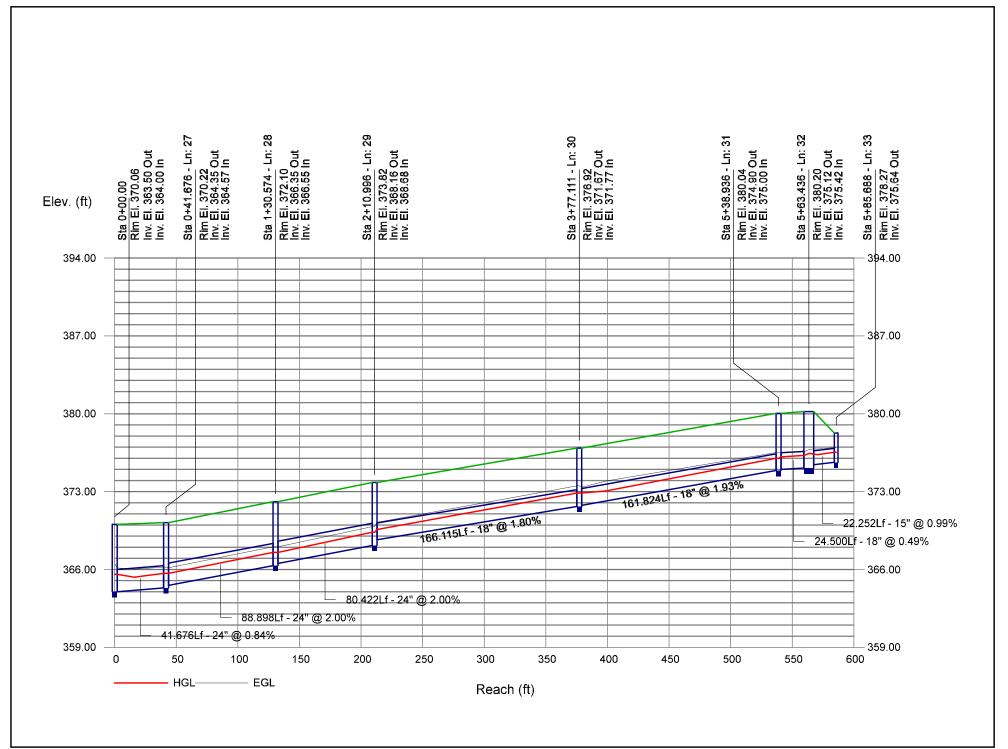

.ine	Size	Q			D	ownstre	eam				Len				Upsti	ream				Chec	k	JL	Mino
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	coeff (K)	loss (ft)
																							1
23	15	1.11	377.45	377.86	0.41*	0.35	3.13	0.15	378.01	0.000	24.491	377.58	377.99	0.41**	0.36	3.12	0.15	378.15	0.000	0.000	n/a	1.00	0.1
24	15	0.38	376.87	377.75	0.88	0.16	0.41	0.08	377.83	0.000	24.507	377.05	377.29	0.24**	0.16	2.32	0.08	377.37	0.000	0.000	n/a	1.00	n/a
25	15	1.88	376.05	376.78	0.73	0.51	2.52	0.21	376.99	0.000	23.549	376.22	376.76 j	0.54**	0.51	3.66	0.21	376.97	0.000	0.000	n/a	1.49	n/a
26	15	0.81	376.32	376.76	0.44	0.28	2.07	0.13	376.89	0.000	100.85	0376.85	377.20 j	0.35**	0.28	2.85	0.13	377.33	0.000	0.000	n/a	1.00	0.1
27	24	12.44	364.00	365.48	1.48	2.10	5.00	0.55	366.02	0.000	41.676	364.35	365.62 j	1.27**	2.10	5.93	0.55	366.16	0.000	0.000	n/a	1.42	n/a
28	24	10.62	364.75	365.62	0.87	1.31	8.13	0.48	366.10	0.000	88.898	366.75	367.92	1.17**	1.90	5.58	0.48	368.40	0.000	0.000	n/a	0.41	n/a
29	24	10.72	366.95	367.92	0.97	1.50	7.13	0.49	368.40	0.000	80.422	368.56	369.73	1.17**	1.91	5.60	0.49	370.22	0.000	0.000	n/a	1.48	n/a
30	18	9.46	369.06	370.00	0.94*	1.17	8.10	0.62	370.62	0.000	166.11	5371.67	372.86	1.19**	1.50	6.31	0.62	373.48	0.000	0.000	n/a	1.39	n/a
31	18	7.79	371.77	372.86	1.09	1.36	5.68	0.51	373.37	0.000	161.82	4374.90	375.98 j	1.08**	1.36	5.72	0.51	376.49	0.000	0.000	n/a	2.22	1.1
32	18	6.72	375.00	375.99	0.99*	1.23	5.46	0.45	376.43	0.000	24.500	375.17	376.17	1.00**	1.25	5.36	0.45	376.62	0.000	0.000	n/a	0.50	0.2
33	15	4.94	375.42	376.24	0.82*	0.86	5.77	0.42	376.67	0.000	22.252	375.64	376.54	0.90**	0.95	5.22	0.42	376.96	0.000	0.000	n/a	1.00	n/a
34	15	0.38	375.15	375.98	0.83	0.16	0.44	0.08	376.06	0.000	20.817	375.30	375.54	0.24**	0.16	2.32	0.08	375.62	0.000	0.000	n/a	1.00	n/a
35	18	0.87	374.07	374.36	0.28*	0.23	3.71	0.12	374.48	0.000	32.881	374.43	374.78	0.35**	0.31	2.81	0.12	374.90	0.000	0.000	n/a	1.00	0.1
36	15	1.71	372.50	373.28	0.78	0.48	2.14	0.20	373.47	0.000	25.642	372.68	373.20	0.52**	0.48	3.55	0.20	373.40	0.000	0.000	n/a	0.50	n/a
37	15	0.42	372.80	373.20	0.40	0.18	1.23	0.09	373.29	0.000	29.330	373.68	373.93 j	0.25**	0.18	2.37	0.09	374.02	0.000	0.000	n/a	1.00	0.0
38	15	1.11	371.92	372.86	0.94	0.36	1.12	0.15	373.01	0.000	26.271	372.30	372.71	0.41**	0.36	3.12	0.15	372.87	0.000	0.000	n/a	1.00	0.1
39	15	1.14	368.91	369.73	0.82	0.36	1.34	0.15	369.89	0.000	34.056	369.13	369.55	0.42**	0.36	3.15	0.15	369.71	0.000	0.000	n/a	1.00	n/a
40	15	1.18	368.75	369.71	0.96	0.37	1.17	0.16	369.87	0.000	24.427	369.01	369.44	0.43**	0.37	3.18	0.16	369.59	0.000	0.000	n/a	1.00	0.1
41	18	4.50	368.30	369.71	1.41	1.72	2.61	0.11	369.82	0.159	123.32	5368.97	369.90	0.93	1.15	3.90	0.24	370.14	0.367	0.263	0.324	1.00	0.2
42	15	1.02	365.72	366.72	1.00	0.33	0.97	0.14	366.86	0.000	28.012	366.10	366.50	0.40**	0.33	3.04	0.14	366.64	0.000	0.000	n/a	0.50	0.0
43	15	0.38	366.20	366.50	0.30	0.16	1.71	0.05	366.54	0.230	29.509	366.35	366.59 j	0.24**	0.17	2.29	0.08	366.67	0.519	0.375	0.111	1.00	0.0
44	18	1.42	364.85	365.62	0.77	0.44	1.56	0.16	365.78			365.10	365.55			3.22	0.16	365.71		0.000		1.00	0.1
Proj	ect File: 0	_ Dutfall #1	.stm	1	1	I	1	1	1	1		1	<u>I</u>	N	umber o	f lines: 5	0	I	Rur	Date: 1	12/20/20	24	

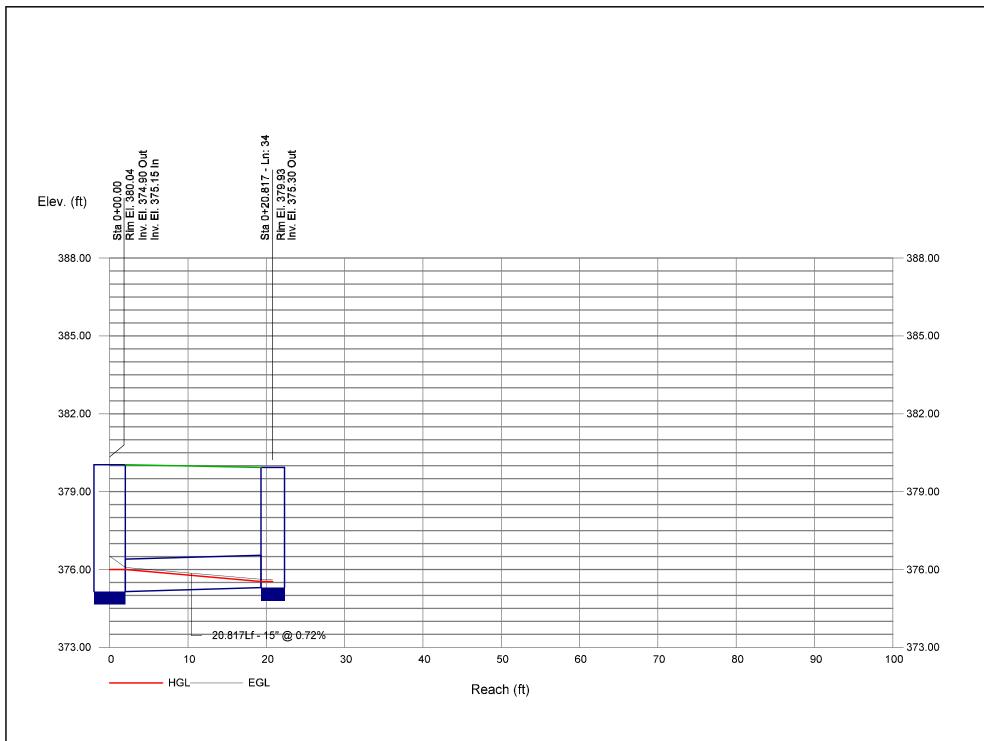

## Hydraulic Grade Line Computations

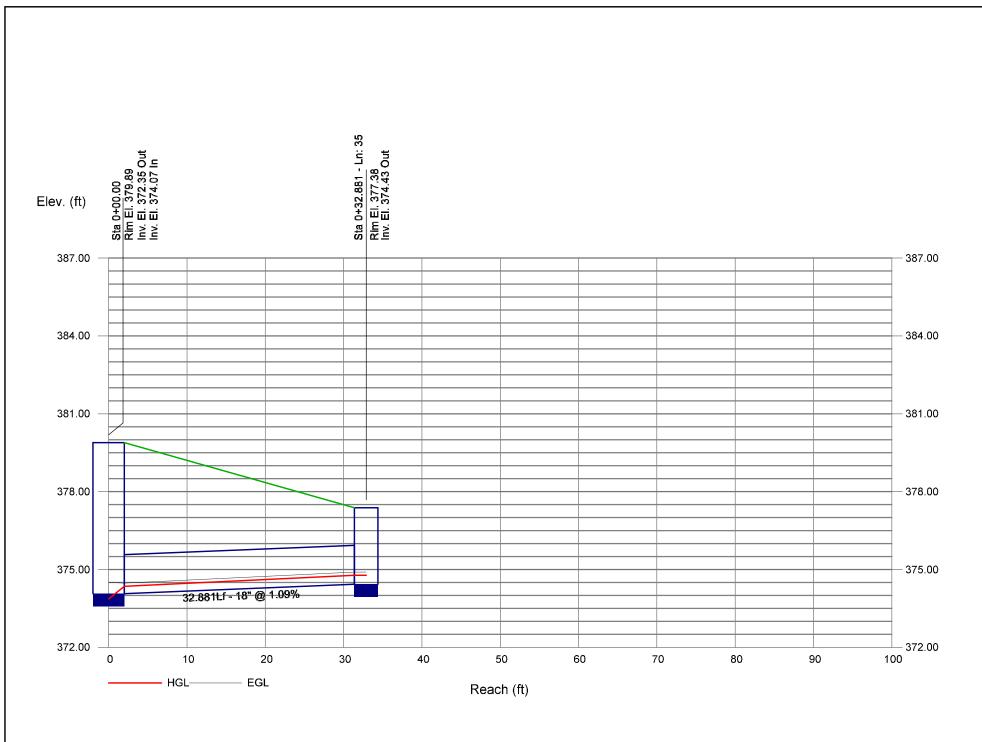

10-Year Report

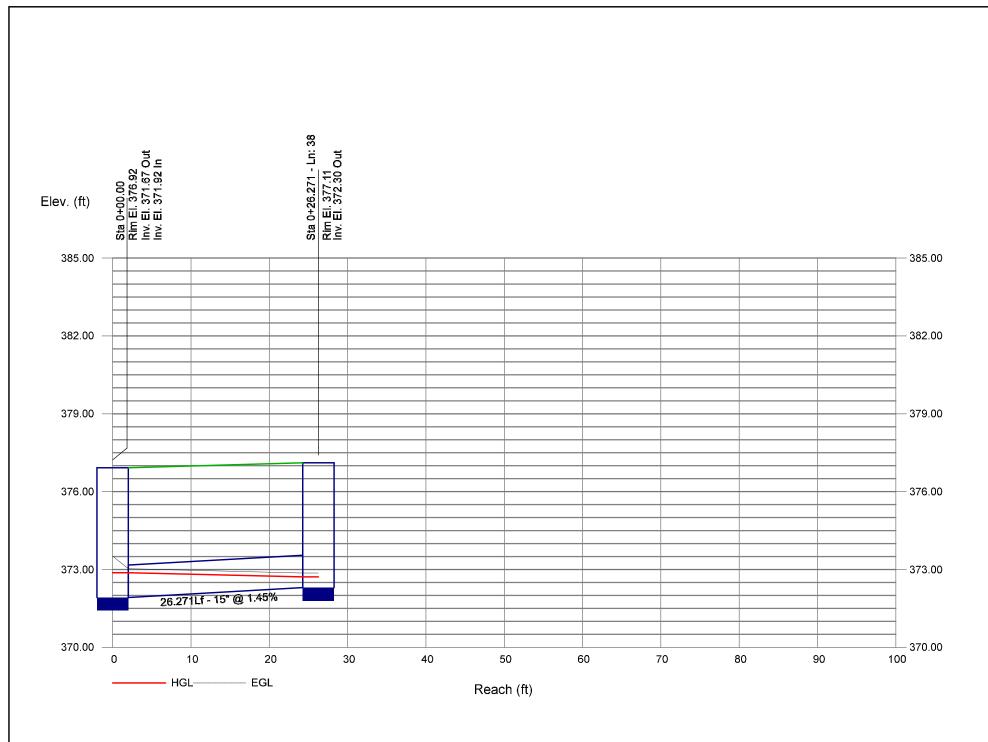

ine Size	e	Q			D	ownstre	am				Len				Upstr	eam				Checl		JL	Minor
(in)	)		Invert elev (ft)	elev	Depth (ft)			head	elev	Sf (%)		lnvert elev (ft)	elev		Area (sqft)		Vel head (ft)	EGL elev (ft)		Sf	Enrgy loss	coeff (K)	loss (ft)
45 [~]	15	0.83	363.42	364.17	0.75	0.29	1.08	0.13	364.30	0.000	24.503	363.65	364.01	0.36**	0.29	2.87	0.13	364.14	0.000	0.000	n/a	1.00	n/a
46 ⁻	18	1.07	359.79	360.31	0.52	0.36	1.98	0.14	360.45	0.000	25.748	359.96	360.35 j	0.39**	0.36	2.98	0.14	360.48	0.000	0.000	n/a	1.00	n/a
47 3	36	14.87	353.31	355.42	2.11	2.72	2.79	0.46	355.89	0.000	38.074	353.50	354.73	1.23**	2.72	5.46	0.46	355.19	0.000	0.000	n/a	0.50	0.23
48 3	30	13.22	353.61	354.80	1.19*	2.30	5.75	0.48	355.28	0.000	98.975	354.10	355.32	1.22**	2.38	5.55	0.48	355.80	0.000	0.000	n/a	0.15	n/a
49 3	30	13.33	354.21	355.32	1.11	2.11	6.32	0.48	355.80	0.000	48.268	354.69	355.92	1.23**	2.40	5.56	0.48	356.40	0.000	0.000	n/a	0.96	n/a
50 2	24	13.49	355.19	356.06	0.87*	1.30	10.34	0.58	356.64	0.000	109.03	0357.75	359.07	1.32**	2.20	6.13	0.58	359.66	0.000	0.000	n/a	1.00	n/a
Project F	File: O	utfall #1	.stm											N	umber o	f lines: 5	0		Run	Date: 1	2/20/202	24	

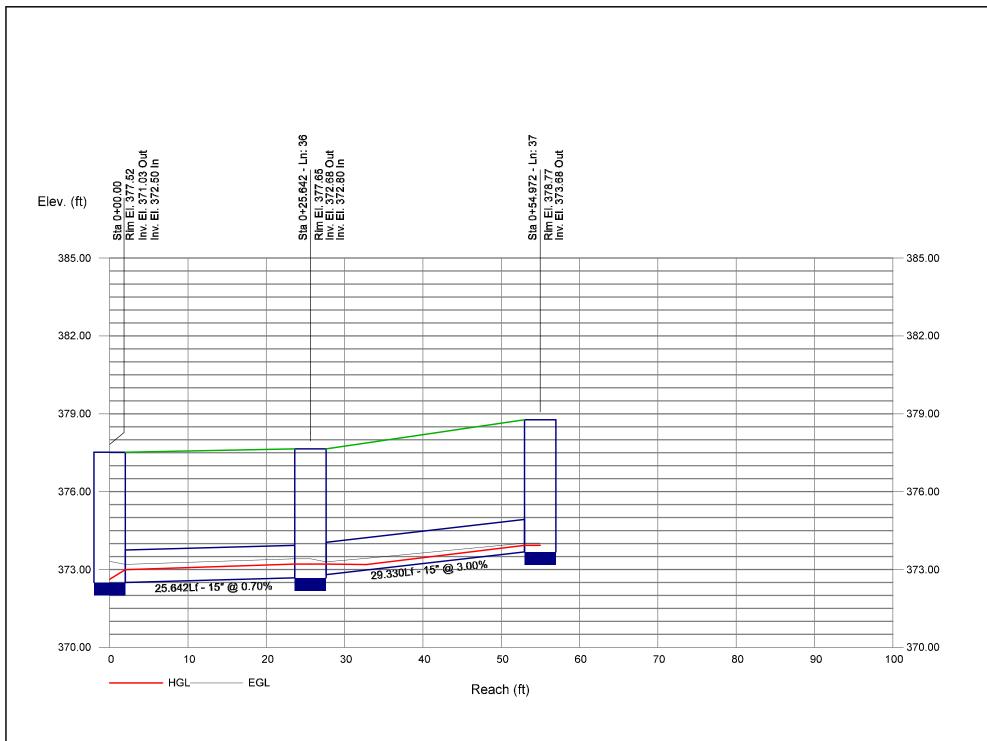


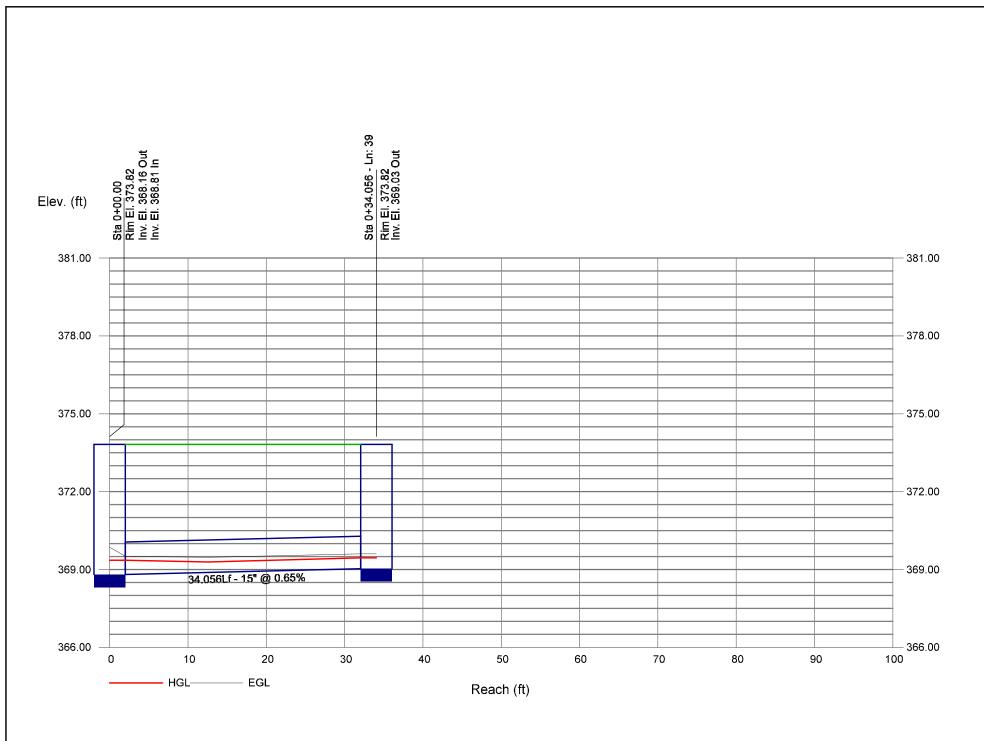



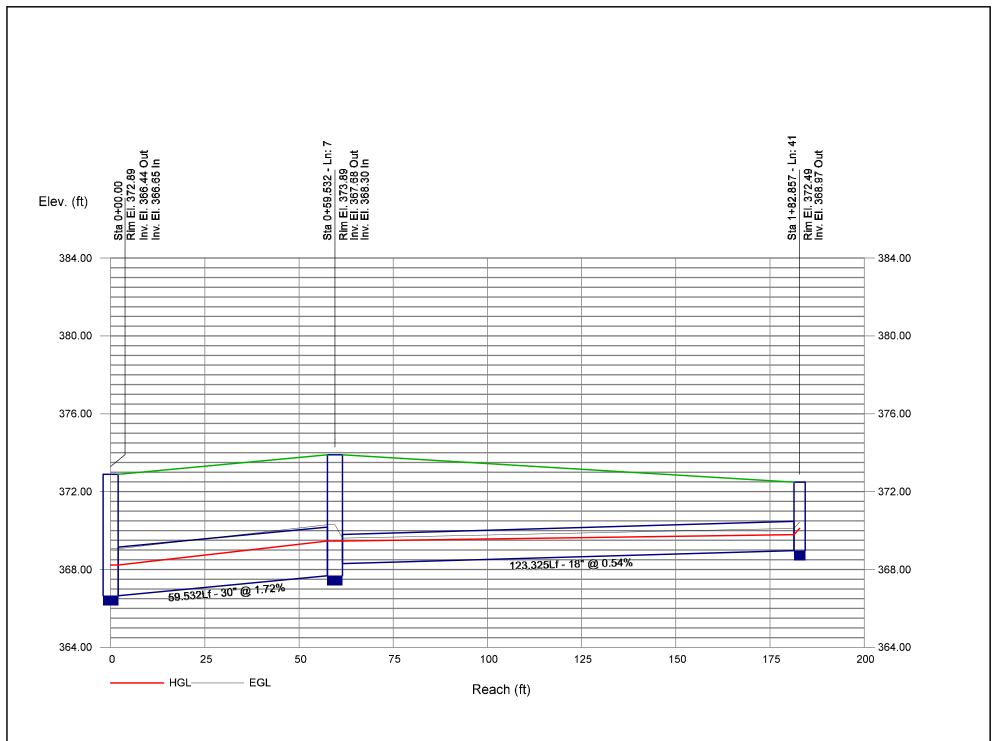



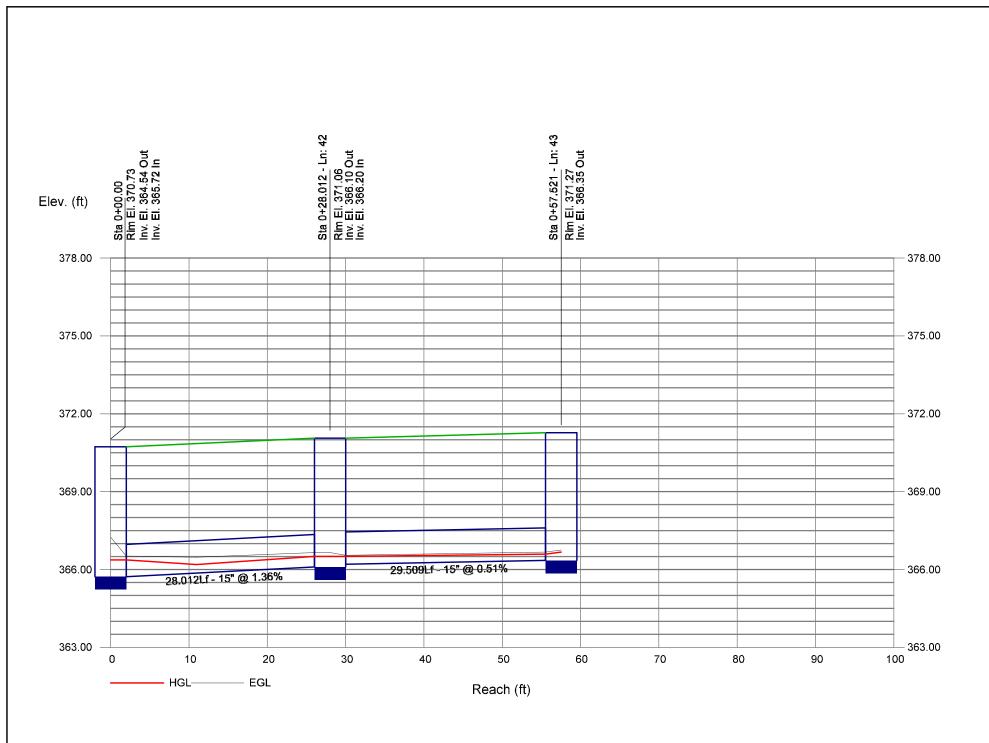



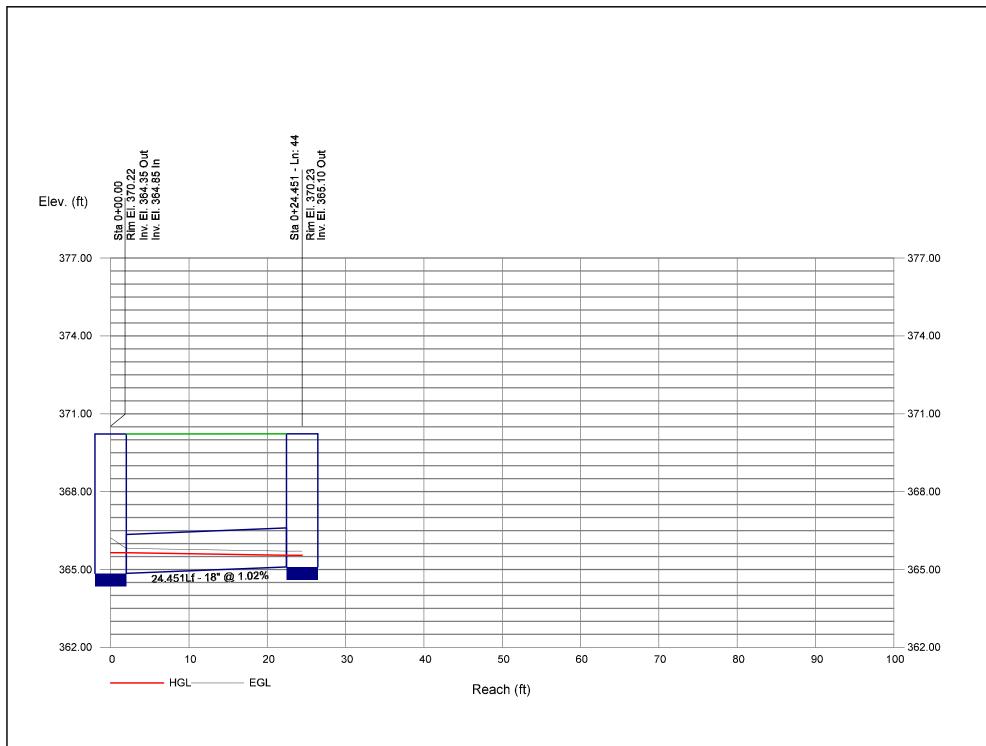



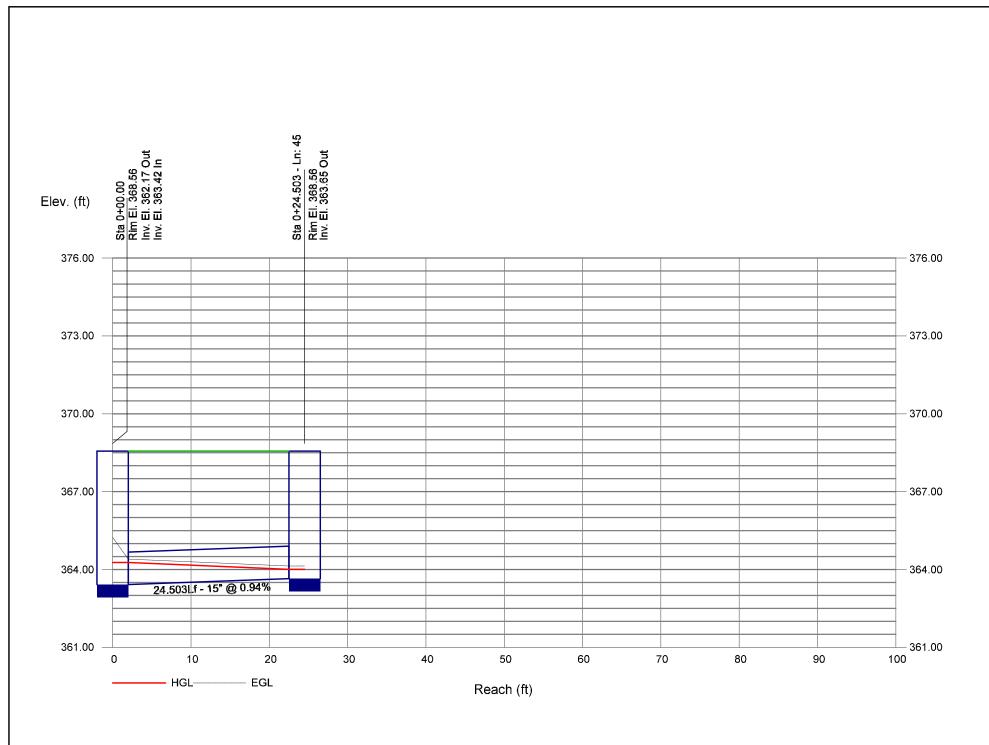



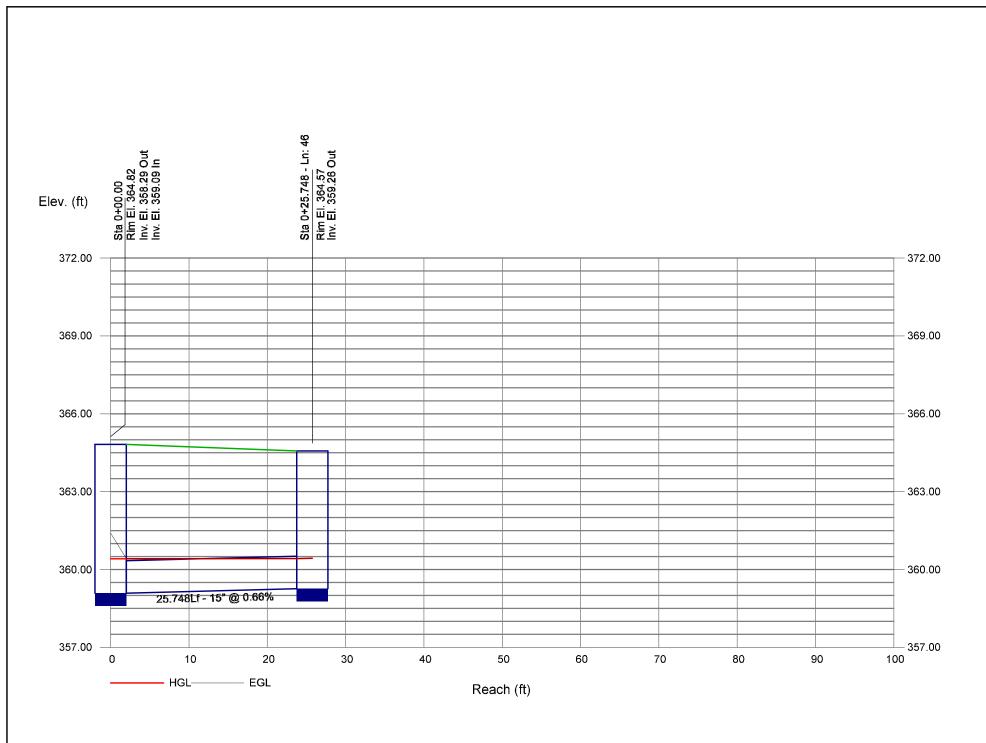



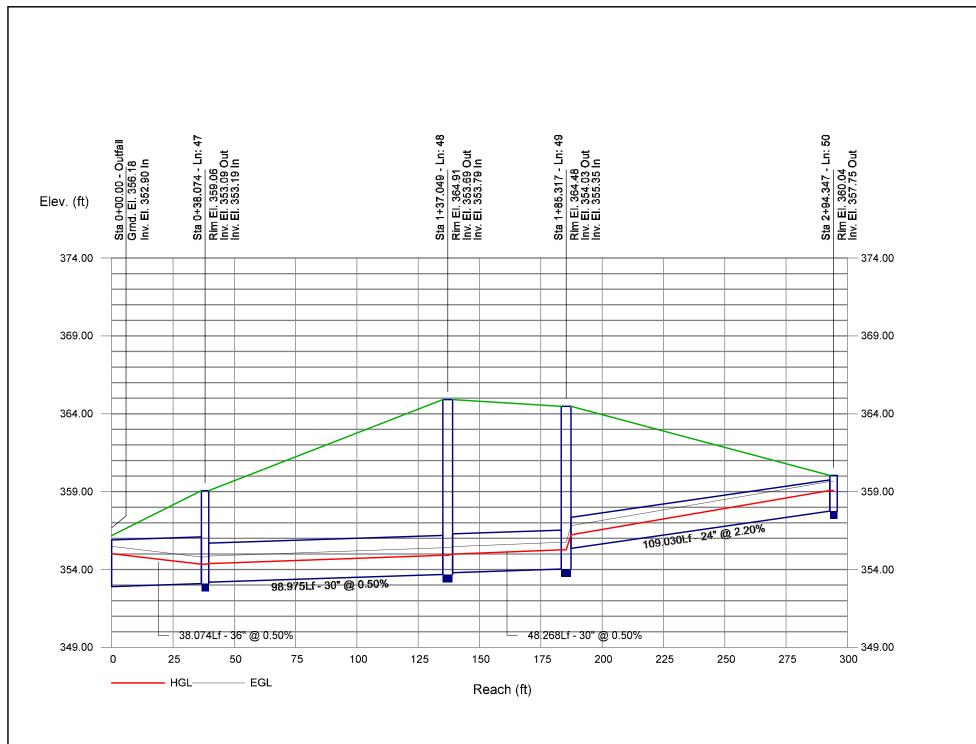



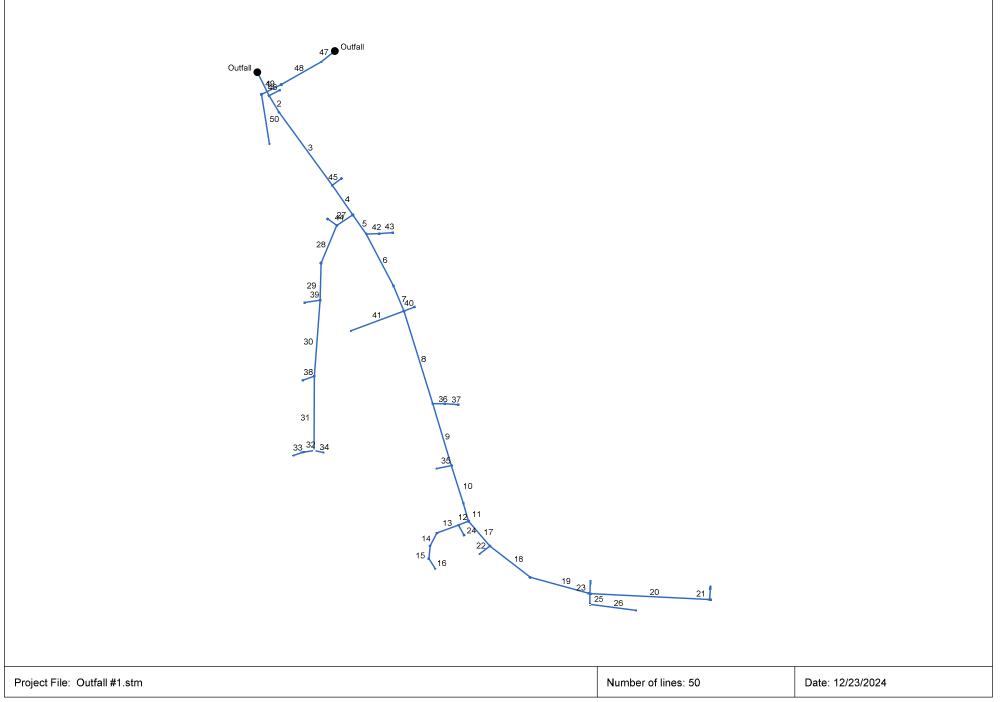












### Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan ^{25-Year Report}



25-Year Report

Line		Align	ment			Flow	Data					Physical	Data				Line ID
No.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	57.000	63.252	Comb	0.00	0.01	0.59	10.0	357.90	0.68	358.29	36	Cir	0.013	1.50	364.82	Ex. 375 Out
2	1	41.866	-4.047	Comb	0.00	0.18	0.59	10.0	358.40	1.07	358.85	36	Cir	0.013	0.50	365.27	Pipe - (20)
3	2	196.394	-5.160	Comb	0.00	0.21	0.59	10.0	358.95	1.64	362.17	36	Cir	0.013	1.50	368.56	Pipe - (19)
4	3	78.359	1.332	мн	0.00	0.01	0.59	10.0	362.27	1.57	363.50	36	Cir	0.013	1.00	370.06	Pipe - (18)
5	4	51.000	-0.352	Comb	0.00	0.19	0.59	10.0	364.00	1.06	364.54	30	Cir	0.013	1.30	370.73	Pipe - (16)
6	5	126.897	7.290	Comb	0.00	0.07	0.59	10.0	364.64	1.42	366.44	30	Cir	0.013	0.50	372.89	Pipe - (15)
7	6	59.532	5.165	Comb	0.00	0.31	0.59	10.0	366.65	1.72	367.68	30	Cir	0.013	1.50	373.89	Pipe - (14)
8	7	210.964	5.328	Comb	0.00	0.20	0.59	10.0	367.78	1.54	371.03	30	Cir	0.013	1.44	377.52	Pipe - (13)
9	8	140.875	0.547	Comb	0.00	0.09	0.59	10.0	371.43	0.65	372.35	30	Cir	0.013	1.50	379.89	Pipe - (12) (1)
10	9	86.180	-0.829	Comb	0.00	0.08	0.59	10.0	373.07	0.61	373.60	30	Cir	0.013	0.50	381.39	Pipe - (12)
11	10	40.124	1.547	мн	0.00	0.01	0.59	10.0	373.70	0.75	374.00	24	Cir	0.013	1.00	381.95	Pipe - (51)
12	11	23.025	83.735	Comb	0.00	0.07	0.59	10.0	375.27	0.50	375.38	24	Cir	0.013	1.50	382.14	Pipe - (50) (1)
13	12	49.905	2.092	Comb	0.00	0.24	0.59	10.0	375.48	0.50	375.73	24	Cir	0.013	1.07	382.55	Pipe - (50)
14	13	31.516	-41.901	Comb	0.00	0.21	0.59	10.0	375.83	0.50	375.99	24	Cir	0.013	0.65	382.87	Pipe - (49)
15	14	27.860	-22.271	Comb	0.00	0.15	0.59	10.0	376.09	0.50	376.23	24	Cir	0.013	0.99	382.23	Pipe - (48)
16	15	25.968	-37.432	DrGrt	0.00	4.70	0.32	10.0	376.73	0.89	376.96	18	Cir	0.013	1.00	379.55	Pipe - (58)
17	11	71.389	-24.767	Comb	0.00	0.01	0.59	10.0	374.10	0.53	374.48	24	Cir	0.013	1.50	382.72	Pipe - (11)
18	17	110.816	-11.425	Comb	0.00	0.12	0.59	10.0	374.58	0.50	375.13	24	Cir	0.013	0.66	382.29	Pipe - (10)
19	18	133.897	-22.601	Comb	0.00	0.30	0.59	10.0	375.23	0.50	375.90	24	Cir	0.013	2.18	381.56	Pipe - (9)
20	19	260.141	-12.381	Comb	0.00	0.47	0.59	10.0	376.02	0.49	377.30	18	Cir	0.013	1.50	382.86	Pipe - (8)
21	20	25.751	-90.000	Comb	0.00	0.32	0.59	10.0	377.55	0.66	377.72	15	Cir	0.013	1.00	382.92	Pipe - (7)
22	17	28.157	93.178	DrGrt	0.00	0.61	0.59	10.0	376.03	2.24	376.66	15	Cir	0.013	1.00	380.41	Pipe - (59)
23	19	24.491	-102.38	2 Comb	0.00	0.32	0.59	10.0	376.45	0.53	376.58	15	Cir	0.013	1.00	381.56	Pipe - (55)
Project	File: Outf	all #1.stm				•	•			•		Number o	f lines: 50		•	Date: 1	2/23/2024

25-Year Report

Line		Aligni	nent			Flow	Data					Physical	Data				Line ID
No.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
24	12	24.507	-95.925	Comb	0.00	0.11	0.59	10.0	376.87	0.73	377.05	15	Cir	0.013	1.00	382.14	Pipe - (70)
25	19	23.549	74.368	DrGrt	0.00	0.66	0.32	10.0	376.05	0.72	376.22	15	Cir	0.013	1.49	381.51	Pipe - (60)
26	25	100.850	-82.180	DrGrt	0.00	0.43	0.32	10.0	376.32	0.53	376.85	15	Cir	0.013	1.00	377.88	Pipe - (71)
27	4	41.676	91.283	Comb	0.00	0.22	0.59	10.0	364.00	0.84	364.35	24	Cir	0.013	1.42	370.22	Pipe - (57)
28	27	88.898	-34.214	мн	0.00	0.01	0.59	10.0	364.57	2.00	366.35	24	Cir	0.013	0.41	372.10	Pipe - (56)
29	28	80.422	-21.032	Comb	0.00	0.11	0.59	10.0	366.55	2.00	368.16	24	Cir	0.013	1.48	373.82	Pipe - (39)
30	29	166.115	2.964	Comb	0.00	0.24	0.59	10.0	368.68	1.80	371.67	18	Cir	0.013	1.39	376.92	Pipe - (37)
31	30	161.824	-4.236	Comb	0.00	0.28	0.59	10.0	371.77	1.93	374.90	18	Cir	0.013	2.22	380.04	Pipe - (36)
32	31	24.500	81.321	Comb	0.00	0.52	0.59	10.0	375.00	0.49	375.12	18	Cir	0.013	0.50	380.20	Pipe - (42)
33	32	22.252	-10.400	DrGrt	0.00	2.63	0.32	10.0	375.42	0.99	375.64	15	Cir	0.013	1.00	378.27	Pipe - (61)
34	31	20.817	-78.889	DrGrt	0.00	0.11	0.59	10.0	375.15	0.72	375.30	15	Cir	0.013	1.00	379.93	Pipe - (62)
35	9	32.881	95.114	DrGrt	0.00	0.25	0.59	10.0	374.07	1.09	374.43	18	Cir	0.013	1.00	377.38	Pipe - (69)
36	8	25.642	-72.321	Comb	0.00	0.40	0.59	10.0	372.50	0.70	372.68	15	Cir	0.013	0.50	377.65	Pipe - (54)
37	36	29.330	3.216	Comb	0.00	0.12	0.59	10.0	372.80	3.00	373.68	15	Cir	0.013	1.00	378.77	Pipe - (22)
38	30	26.271	65.734	Comb	0.00	0.32	0.59	10.0	371.92	1.45	372.30	15	Cir	0.013	1.00	377.11	Pipe - (41)
39	29	34.056	79.521	Comb	0.00	0.33	0.59	10.0	368.81	0.65	369.03	15	Cir	0.013	1.00	373.82	Pipe - (40)
40	7	24.427	-88.012	Comb	0.00	0.34	0.59	10.0	368.75	1.06	369.01	15	Cir	0.013	1.00	374.05	Pipe - (43)
41	7	123.325	91.973	DrGrt	0.00	1.30	0.59	10.0	368.30	0.54	368.97	18	Cir	0.013	1.00	372.49	Pipe - (63)
42	5	28.012	-57.519	Comb	0.00	0.20	0.59	10.0	365.72	1.36	366.10	15	Cir	0.013	0.50	371.06	Pipe - (24)
43	42	29.509	-1.479	Comb	0.00	0.11	0.59	10.0	366.20	0.51	366.35	15	Cir	0.013	1.00	371.27	Pipe - (53)
44	27	24.451	69.302	Comb	0.00	0.41	0.59	10.0	364.85	1.02	365.10	18	Cir	0.013	1.00	370.23	Pipe - (17)
45	3	24.503	-90.507	Comb	0.00	0.24	0.59	10.0	363.42	0.94	363.65	15	Cir	0.013	1.00	368.56	Pipe - (28)
46	1	25.748	-90.230	Comb	0.00	0.31	0.59	10.0	359.09	0.66	359.26	15	Cir	0.013	1.00	364.57	Pipe - (26)
Project	Project File: Outfall #1.stm					•		Number o	of lines: 50			Date: 1	2/23/2024				

## **Storm Sewer Inventory Report**

Line	D.										Physical	Data				Line ID	
No.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	-
47	End	38.074	141.899	DrGrt	0.00	1.07	0.32	10.0	352.90	0.50	353.09	36	Cir	0.013	0.50	359.06	Pipe - (67)
48	47	98.975	8.202	мн	0.00	0.01	0.59	10.0	353.19	0.50	353.69	30	Cir	0.013	0.15	364.91	Pipe - (66)
49	48	48.268	3.525	мн	0.00	0.01	0.59	10.0	353.79	0.50	354.03	30	Cir	0.013	0.96	364.48	Pipe - (65)
50	49	109.030	-72.571	DrGrt	0.00	7.18	0.32	10.0	355.35	2.20	357.75	24	Cir	0.013	1.00	360.04	Pipe - (29)
Project	: File: Outf	all #1.stm										Number c	of lines: 50			Date: 1	2/23/2024

25-Year Report

# Structure Report

25-Year Report

Struct No.	Structure ID	Junction	Rim		Structure			Line Out	t		Line In	
NO.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1	EX. CB 375	Combination	364.82	Rect	4.00	4.00	36	Cir	358.29	36 15	Cir Cir	358.40 359.09
2	376	Combination	365.27	Rect	4.00	4.00	36	Cir	358.85	36	Cir	358.95
3	377	Combination	368.56	Rect	4.00	4.00	36	Cir	362.17	36 15	Cir Cir	362.27 363.42
4	377В	Manhole	370.06	Cir	4.00	4.00	36	Cir	363.50	30 24	Cir Cir	364.00 364.00
5	378	Combination	370.73	Rect	4.00	4.00	30	Cir	364.54	30 15	Cir Cir	364.64 365.72
6	379	Combination	372.89	Rect	4.00	4.00	30	Cir	366.44	30	Cir	366.65
7	380	Combination	373.89	Rect	4.00	4.00	30	Cir	367.68	30 15 18	Cir Cir Cir	367.78 368.75 368.30
8	381	Combination	377.52	Rect	4.00	4.00	30	Cir	371.03	30 15	Cir Cir	371.43 372.50
9	381C	Combination	379.89	Rect	4.00	4.00	30	Cir	372.35	30 18	Cir Cir	373.07 374.07
10	382	Combination	381.39	Rect	4.00	4.00	30	Cir	373.60	24	Cir	373.70
11	382A	Manhole	381.95	Cir	4.00	4.00	24	Cir	374.00	24 24	Cir Cir	375.27 374.10
12	395	Combination	382.14	Rect	4.00	4.00	24	Cir	375.38	24 15	Cir Cir	375.48 376.87
13	396	Combination	382.55	Rect	4.00	4.00	24	Cir	375.73	24	Cir	375.83
14	396A	Combination	382.87	Rect	4.00	4.00	24	Cir	375.99	24	Cir	376.09
15	396B	Combination	382.23	Rect	4.00	4.00	24	Cir	376.23	18	Cir	376.73
16	396C	DropGrate	379.55	Rect	3.00	3.00	18	Cir	376.96			
17	383	Combination	382.72	Rect	4.00	4.00	24	Cir	374.48	24 15	Cir Cir	374.58 376.03
Project	File: Outfall #1.stm						Nu	Imber of Struct	ures: 50	Ru	n Date: 12/23/2	024

## **Structure Report**

25-Year Report

Struct No.	Structure ID	Junction	Rim		Structure			Line Out			Line In		
NO.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)	
18	384	Combination	382.29	Rect	4.00	4.00	24	Cir	375.13	24	Cir	375.23	
19	385	Combination	381.56	Rect	8.00	4.00	24	Cir	375.90	18 15 15	Cir Cir Cir	376.02 376.45 376.05	
20	386	Combination	382.86	Rect	8.00	4.00	18	Cir	377.30	15	Cir	377.55	
21	386A	Combination	382.92	Rect	8.00	4.00	15	Cir	377.72				
22	383A	DropGrate	380.41	Rect	3.00	3.00	15	Cir	376.66				
23	385A	Combination	381.56	Rect	8.00	4.00	15	Cir	376.58				
24	395A	Combination	382.14	Rect	4.00	4.00	15	Cir	377.05				
25	385B	DropGrate	381.51	Rect	3.00	3.00	15	Cir	376.22	15	Cir	376.32	
26	385C	DropGrate	377.88	Rect	3.00	3.00	15	Cir	376.85				
27	390	Combination	370.22	Rect	4.00	4.00	24	Cir	364.35	24 18	Cir Cir	364.57 364.85	
28	390B	Manhole	372.10	Cir	4.00	4.00	24	Cir	366.35	24	Cir	366.55	
29	391	Combination	373.82	Rect	4.00	4.00	24	Cir	368.16	18 15	Cir Cir	368.68 368.81	
30	392	Combination	376.92	Rect	4.00	4.00	18	Cir	371.67	18 15	Cir Cir	371.77 371.92	
31	393	Combination	380.04	Rect	4.00	4.00	18	Cir	374.90	18 15	Cir Cir	375.00 375.15	
32	393A	Combination	380.20	Rect	8.00	4.00	18	Cir	375.12	15	Cir	375.42	
33	393B	DropGrate	378.27	Rect	3.00	3.00	15	Cir	375.64				
34	393C	DropGrate	379.93	Rect	3.00	3.00	15	Cir	375.30				
35	381D	DropGrate	377.38	Rect	3.00	3.00	18	Cir	374.43				
36	381A	Combination	377.65	Rect	4.00	4.00	15	Cir	372.68	15	Cir	372.80	
37	381B	Combination	378.77	Rect	4.00	4.00	15	Cir	373.68				
Project F	- -ile: Outfall #1.stm						Nu	mber of Structu	res: 50	Rur	Date: 12/23/20	24	

# Structure Report

25-Year Report

Struct	Structure ID	Junction	Rim		Structure				Line Out			Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	;	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
38	392A	Combination	377.11	Rect	4.00	4.00	15		Cir	372.30			
39	391A	Combination	373.82	Rect	4.00	4.00	15		Cir	369.03			
40	380A	Combination	374.05	Rect	4.00	4.00	15		Cir	369.01			
41	380B	DropGrate	372.49	Rect	3.00	3.00	18		Cir	368.97			
42	378A	Combination	371.06	Rect	4.00	4.00	15		Cir	366.10	15	Cir	366.20
43	378B	Combination	371.27	Rect	4.00	4.00	15		Cir	366.35			
44	390A	Combination	370.23	Rect	4.00	4.00	18		Cir	365.10			
45	377A	Combination	368.56	Rect	4.00	4.00	15		Cir	363.65			
46	375A	Combination	364.57	Rect	4.00	4.00	15		Cir	359.26			
47	31A	DropGrate	359.06	Rect	3.00	3.00	36		Cir	353.09	30	Cir	353.19
48	EX. 31	Manhole	364.91	Cir	4.00	4.00	30		Cir	353.69	30	Cir	353.79
49	EX. 32	Manhole	364.48	Cir	4.00	4.00	30		Cir	354.03	24	Cir	355.35
50	32A	DropGrate	360.04	Rect	3.00	3.00	24		Cir	357.75			
Project I	File: Outfall #1.stm							Num	ber of Structur	res: 50	Run	Date: 12/23/20	24

## Storm Sewer Summary Report

25-Year Report

Page 1
--------

₋ine No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	Ex. 375 Out	46.35	36	Cir	57.000	357.90	358.29	0.684	360.90	361.13	1.05	362.17	End	Combination
2	Pipe - (20)	45.47	36	Cir	41.866	358.40	358.85	1.075	362.17*	362.37*	0.32	362.69	1	Combination
3	Pipe - (19)	45.44	36	Cir	196.394	358.95	362.17	1.640	362.69	364.36	n/a	364.36 j	2	Combination
4	Pipe - (18)	44.18	36	Cir	78.359	362.27	363.50	1.570	364.36	365.66	n/a	365.66	3	Manhole
5	Pipe - (16)	31.44	30	Cir	51.000	364.00	364.54	1.059	365.66	366.45	n/a	366.45	4	Combination
6	Pipe - (15)	30.05	30	Cir	126.897	364.64	366.44	1.418	366.45	368.31	0.45	368.31	5	Combination
7	Pipe - (14)	29.92	30	Cir	59.532	366.65	367.68	1.723	368.31	369.54	n/a	369.54	6	Combination
8	Pipe - (13)	23.91	30	Cir	210.964	367.78	371.03	1.539	369.54	372.69	n/a	372.69 j	7	Combination
9	Pipe - (12) (1)	21.73	30	Cir	140.875	371.43	372.35	0.653	372.91	373.93	1.02	373.93	8	Combination
10	Pipe - (12)	20.72	30	Cir	86.180	373.07	373.60	0.615	374.53	375.15	n/a	375.15	9	Combination
11	Pipe - (51)	20.51	24	Cir	40.124	373.70	374.00	0.747	375.45	375.75	0.77	376.52	10	Manhole
12	Pipe - (50) (1)	12.60	24	Cir	23.025	375.27	375.38	0.499	376.60	376.72	0.74	377.46	11	Combination
13	Pipe - (50)	12.01	24	Cir	49.905	375.48	375.73	0.501	377.46	377.57	0.26	377.83	12	Combination
14	Pipe - (49)	11.15	24	Cir	31.516	375.83	375.99	0.501	377.83	377.90	0.13	378.03	13	Combination
15	Pipe - (48)	10.39	24	Cir	27.860	376.09	376.23	0.499	378.03	378.07	0.18	378.25	14	Combination
16	Pipe - (58)	9.84	18	Cir	25.968	376.73	376.96	0.886	378.25	378.46	0.48	378.94	15	DropGrate
17	Pipe - (11)	9.35	24	Cir	71.389	374.10	374.48	0.532	376.52*	376.64*	0.21	376.85	11	Combination
18	Pipe - (10)	7.40	24	Cir	110.816	374.58	375.13	0.496	376.85	376.95	0.06	377.01	17	Combination
19	Pipe - (9)	7.17	24	Cir	133.897	375.23	375.90	0.500	377.01	376.85	0.81	376.85	18	Combination
20	Pipe - (8)	3.03	18	Cir	260.141	376.02	377.30	0.491	376.85	377.96	n/a	377.96 j	19	Combination
21	Pipe - (7)	1.24	15	Cir	25.751	377.55	377.72	0.660	377.96	378.16	n/a	378.16	20	Combination
22	Pipe - (59)	2.36	15	Cir	28.157	376.03	376.66	2.237	376.85	377.27	n/a	377.27 j	17	DropGrate
23	Pipe - (55)	1.24	15	Cir	24.491	376.45	376.58	0.531	376.89	377.02	n/a	377.02	19	Combination
24	Pipe - (70)	0.42	15	Cir	24.507	376.87	377.05	0.734	377.46	377.30	n/a	377.30	12	Combination
Projec	t File: Outfall #1.stm								Number o	f lines: 50		Run [		3/2024

NOTES: Return period = 25 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

## Storm Sewer Summary Report

25-Year Report

Page 2	2
--------	---

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
25	Pipe - (60)	2.13	15	Cir	23.549	376.05	376.22	0.722	376.85	376.80	0.34	376.80	19	DropGrate
26	Pipe - (71)	0.90	15	Cir	100.850	376.32	376.85	0.526	376.80	377.22	n/a	377.22	25	DropGrate
27	Pipe - (57)	14.60	24	Cir	41.676	364.00	364.35	0.840	365.66	365.73	n/a	365.73 j	4	Combination
28	Pipe - (56)	12.39	24	Cir	88.898	364.57	366.35	2.002	365.73	367.61	0.22	367.61	27	Manhole
29	Pipe - (39)	12.43	24	Cir	80.422	366.55	368.16	2.001	367.61	369.43	0.81	369.43	28	Combination
30	Pipe - (37)	10.92	18	Cir	166.115	368.68	371.67	1.800	369.67	372.94	1.02	372.94	29	Combination
31	Pipe - (36)	8.94	18	Cir	161.824	371.77	374.90	1.934	372.94	376.06	n/a	376.06 j	30	Combination
32	Pipe - (42)	7.50	18	Cir	24.500	375.00	375.12	0.490	376.26	376.38	0.17	376.55	31	Combination
33	Pipe - (61)	5.51	15	Cir	22.252	375.42	375.64	0.989	376.55	376.59	0.47	376.59	32	DropGrate
34	Pipe - (62)	0.42	15	Cir	20.817	375.15	375.30	0.721	376.06	375.55	n/a	375.55	31	DropGrate
35	Pipe - (69)	0.97	18	Cir	32.881	374.07	374.43	1.095	374.37	374.80	0.13	374.80	9	DropGrate
36	Pipe - (54)	1.99	15	Cir	25.642	372.50	372.68	0.702	373.02	373.24	n/a	373.24	8	Combination
37	Pipe - (22)	0.46	15	Cir	29.330	372.80	373.68	3.000	373.24	373.94	n/a	373.94 j	36	Combination
38	Pipe - (41)	1.24	15	Cir	26.271	371.92	372.30	1.446	372.94	372.74	n/a	372.74	30	Combination
39	Pipe - (40)	1.27	15	Cir	34.056	368.81	369.03	0.646	369.43	369.48	n/a	369.48 j	29	Combination
40	Pipe - (43)	1.31	15	Cir	24.427	368.75	369.01	1.064	369.54	369.46	n/a	369.46	7	Combination
41	Pipe - (63)	5.02	18	Cir	123.325	368.30	368.97	0.543	369.54	369.84	0.34	370.19	7	DropGrate
42	Pipe - (24)	1.19	15	Cir	28.012	365.72	366.10	1.357	366.45	366.53	n/a	366.53 j	5	Combination
43	Pipe - (53)	0.42	15	Cir	29.509	366.20	366.35	0.508	366.53	366.61	0.09	366.69	42	Combination
44	Pipe - (17)	1.58	18	Cir	24.451	364.85	365.10	1.022	365.73	365.57	n/a	365.57	27	Combination
45	Pipe - (28)	0.93	15	Cir	24.503	363.42	363.65	0.939	364.36	364.03	n/a	364.03	3	Combination
46	Pipe - (26)	1.20	15	Cir	25.748	359.09	359.26	0.660	362.17*	362.18*	0.01	362.20	1	Combination
47	Pipe - (67)	16.81	36	Cir	38.074	352.90	353.09	0.499	355.90	355.92	0.05	355.96	End	DropGrate
48	Pipe - (66)	14.91	30	Cir	98.975	353.19	353.69	0.500	355.96	356.08	0.02	356.11	47	Manhole
Proiec	t File: Outfall #1.stm								Number o	l lines: 50		Run	 Date: 12/2	3/2024

NOTES: Return period = 25 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

## Storm Sewer Summary Report

25-Year Report

	Pipe - (65) Pipe - (29)	14.96 15.03	30 24	Cir	48.268									
50	Pipe - (29)	15.03	24		40.200	353.79	354.03	0.497	356.11	355.33	0.50	355.33	48	Manhole
				Cir	109.030	353.79 355.35	354.03	0.497 2.200	356.11 356.29			355.33	48 49	Manhole DropGrate
Project Fil	e: Outfall #1.stm								Number o	f lines: 50		Run F	Date: 12/23	/2024
	e: Outfall #1.stm Return period = 25 Yrs. ; *Surcha								Number o	r lines: 50		Run L	pate: 12/23	/2024

### **Inlet Report**

25-Year Report

Page 1
--------

ine Io	Inlet ID	Q = CIA	Q	Q	Q	Junc	Curb lı	nlet	Gra	ate Inlet				G	utter					Inlet		Byp Line
		(cfs)	carry (cfs)	capt (cfs)	Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n		Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
1	EX. CB 375	0.04	0.00	0.04	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.07	1.13	0.00	0.00	0.0	Off
2	376	0.69	0.00	0.61	0.08	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.19	5.53	0.09	1.49	0.0	Off
3	377	0.81	0.00	0.70	0.12	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.20	5.99	0.10	1.70	0.0	Off
4	377B	0.04	0.00	0.00	0.04	мн	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.060	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
5	378	0.73	0.00	0.64	0.09	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.19	5.69	0.09	1.56	0.0	Off
6	379	0.27	0.00	0.27	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.14	3.00	0.02	0.39	0.0	Off
7	380	1.20	0.00	0.95	0.25	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	7.25	0.14	2.80	0.0	Off
8	381	0.77	0.00	0.67	0.10	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.20	5.84	0.10	1.64	0.0	Off
9	381C	0.35	0.00	0.34	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.15	3.63	0.04	0.67	0.0	Off
10	382	0.31	0.00	0.30	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.15	3.33	0.03	0.54	0.0	Off
11	382A	0.04	0.00	0.00	0.04	мн	6.0	0.00	0.00	3.00	2.50	Sag	2.00	0.060	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
12	395	0.27	0.00	0.27	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.14	3.00	0.02	0.39	0.0	Off
13	396	0.93	0.00	0.77	0.15	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.21	6.40	0.11	1.89	0.0	Off
14	396A	0.81	0.00	0.70	0.12	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.20	5.99	0.10	1.70	0.0	Off
15	396B	0.58	0.00	0.53	0.05	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.18	5.00	0.08	1.26	0.0	Off
16	396C	9.84	0.00	9.84	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.55	112.36	0.55	112.36	0.0	Off
17	383	0.04	0.00	0.04	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.07	1.13	0.00	0.00	0.0	Off
18	384	0.46	0.00	0.44	0.03	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.17	4.38	0.06	0.99	0.0	Off
19	385	1.16	0.00	1.06	0.10	Comb	6.0	1.50	0.00	6.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	7.13	0.10	1.63	0.0	Off
20	386	1.81	0.00	1.58	0.24	Comb	6.0	1.50	0.00	6.00	2.50	0.005	2.00	0.060	0.020	0.013	0.26	8.76	0.13	2.67	0.0	Off
21	386A	1.24	0.00	1.12	0.12	Comb	6.0	1.50	0.00	6.00	2.50	0.005	2.00	0.060	0.020	0.013	0.23	7.35	0.10	1.71	0.0	Off
22	383A	2.36	0.00	2.36	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.21	44.52	0.21	44.52	0.0	Off
23	385A	1.24	0.00	1.12	0.12	Comb	6.0	1.50	0.00	6.00	2.50	0.005	2.00	0.060	0.020	0.013	0.23	7.35	0.10	1.71	0.0	Off
Projec	t File: Outfall #1.str	 n										1		Number	of lines:	50		R	un Date:	12/23/20	 24	

NOTES: Inlet N-Values = 0.016; Intensity = 65.79 / (Inlet time + 11.50) ^ 0.75; Return period = 25 Yrs.; * Indicates Known Q added.All curb inlets are throat.

### **Inlet Report**

25-Year Report

Page 2

Line	Inlet ID	Q = CIA	Q	Q	Q	Junc	Curb lı	nlet	Gra	te Inlet				G	utter					Inlet		Byp Line
No		(cfs)	carry (cfs)	capt (cfs)	Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
24	395A	0.42	0.00	0.40	0.02	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.16	4.15	0.05	0.90	0.0	Off
25	385B	1.38	0.00	1.38	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.15	31.80	0.15	31.80	0.0	Off
26	385C	0.90	0.00	0.90	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.020	0.020	0.013	0.11	13.19	0.11	13.19	0.0	Off
27	390	0.85	0.00	0.72	0.13	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.20	6.13	0.11	1.76	0.0	Off
28	390B	0.04	0.00	0.00	0.04	мн	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.060	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
29	391	0.42	0.00	0.40	0.02	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.16	4.15	0.05	0.90	0.0	Off
30	392	0.93	0.00	0.77	0.15	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.21	6.40	0.11	1.89	0.0	Off
31	393	1.08	0.00	0.87	0.21	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	6.90	0.13	2.35	0.0	Off
32	393A	2.01	0.00	1.72	0.28	Comb	6.0	1.50	0.00	6.00	2.50	0.005	2.00	0.060	0.020	0.013	0.26	9.15	0.14	3.11	0.0	Off
33	393B	5.51	0.00	5.51	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.37	76.93	0.37	76.93	0.0	Off
34	393C	0.42	0.00	0.42	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.07	15.56	0.07	15.56	0.0	Off
35	381D	0.97	0.00	0.97	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.12	25.45	0.12	25.45	0.0	Off
36	381A	1.54	0.00	1.15	0.39	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.24	8.15	0.16	3.94	0.0	Off
37	381B	0.46	0.00	0.44	0.03	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.17	4.38	0.06	0.99	0.0	Off
38	392A	1.24	0.00	0.97	0.27	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.23	7.35	0.14	2.95	0.0	Off
39	391A	1.27	0.00	0.99	0.28	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.23	7.46	0.14	3.08	0.0	Off
40	380A	1.31	0.00	1.02	0.29	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.23	7.57	0.14	3.21	0.0	Off
41	380B	5.02	0.00	5.02	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.35	72.43	0.35	72.43	0.0	Off
42	378A	0.77	0.00	0.67	0.10	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.20	5.84	0.10	1.64	0.0	Off
43	378B	0.42	0.00	0.40	0.02	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.16	4.15	0.05	0.90	0.0	Off
44	390A	1.58	0.00	1.17	0.41	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.24	8.24	0.16	4.05	0.0	Off
45	377A	0.93	0.00	0.77	0.15	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.21	6.40	0.11	1.89	0.0	Off
46	375A	1.20	0.00	0.95	0.25	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	7.25	0.14	2.80	0.0	Off
Projec	t File: Outfall #1.stm			1					_				· · · · ·	Number	oflinger	. 50		·	Run Date:	12/22/20	124	

NOTES: Inlet N-Values = 0.016; Intensity = 65.79 / (Inlet time + 11.50) ^ 0.75; Return period = 25 Yrs.; * Indicates Known Q added.All curb inlets are throat.

### **Inlet Report**

25-Year F

Report	Page 3
--------	--------

ine o	Inlet ID	Q = CIA	Q	Q capt	Q	Junc	Curb Ir	nlet	Gra	ate Inlet				G	utter					Inlet		Byp Line
0		(cfs)		(cfs)	Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
47	31A	2.24	0.00	2.24	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.21	43.13	0.21	43.13	0.0	Off
48	EX. 31	0.04	0.00	0.00	0.04	мн	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.060	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
49	EX. 32	0.04	0.00	0.00	0.04	мн	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.060	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
50	32A	15.03	0.00	15.03	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.73	148.40	0.73	148.40	0.0	Off
roiec	t File: Outfall #1.st	 m				<u> </u>								Number	r of lines:	50	1		un Data	12/23/20	24	
														Indution	or intest	50			un Dale	12/23/20	24	

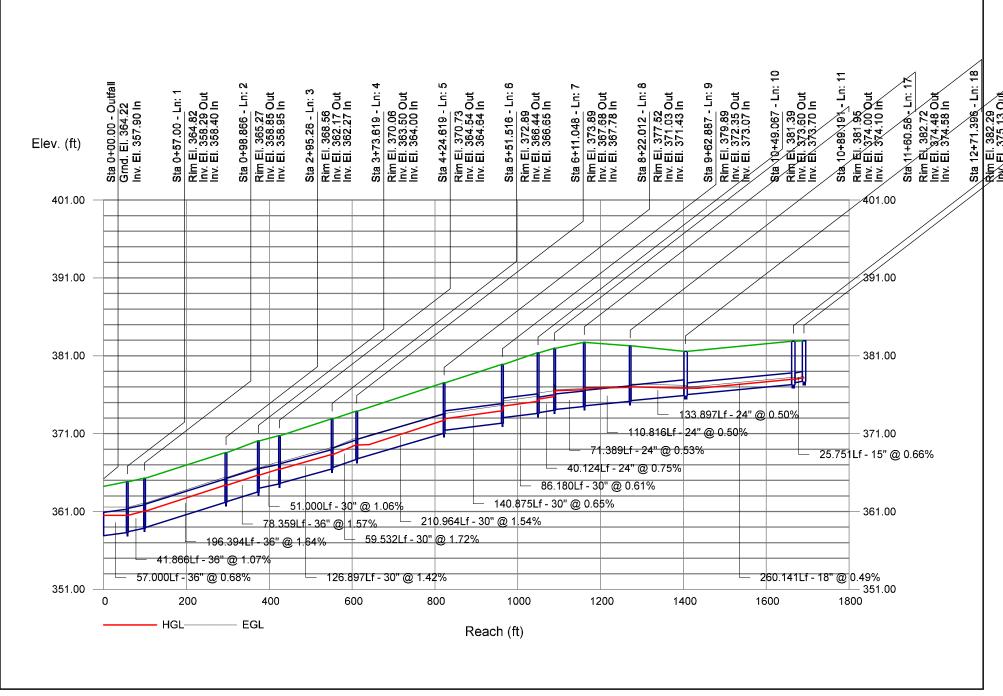
# Hydraulic Grade Line Computations

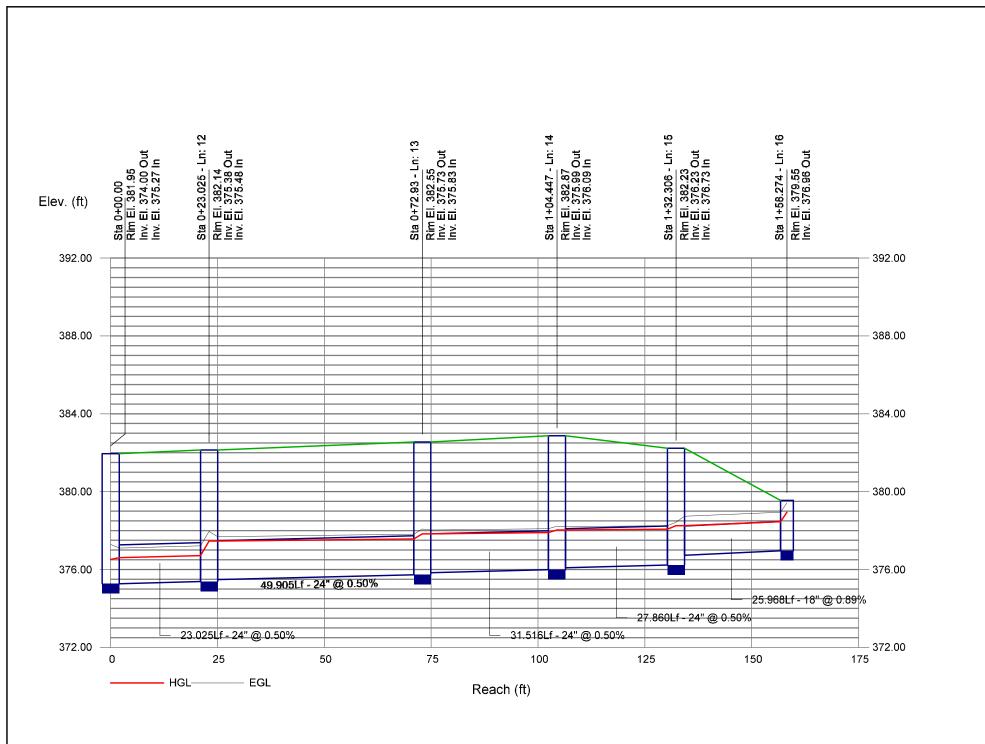
25-Year Report

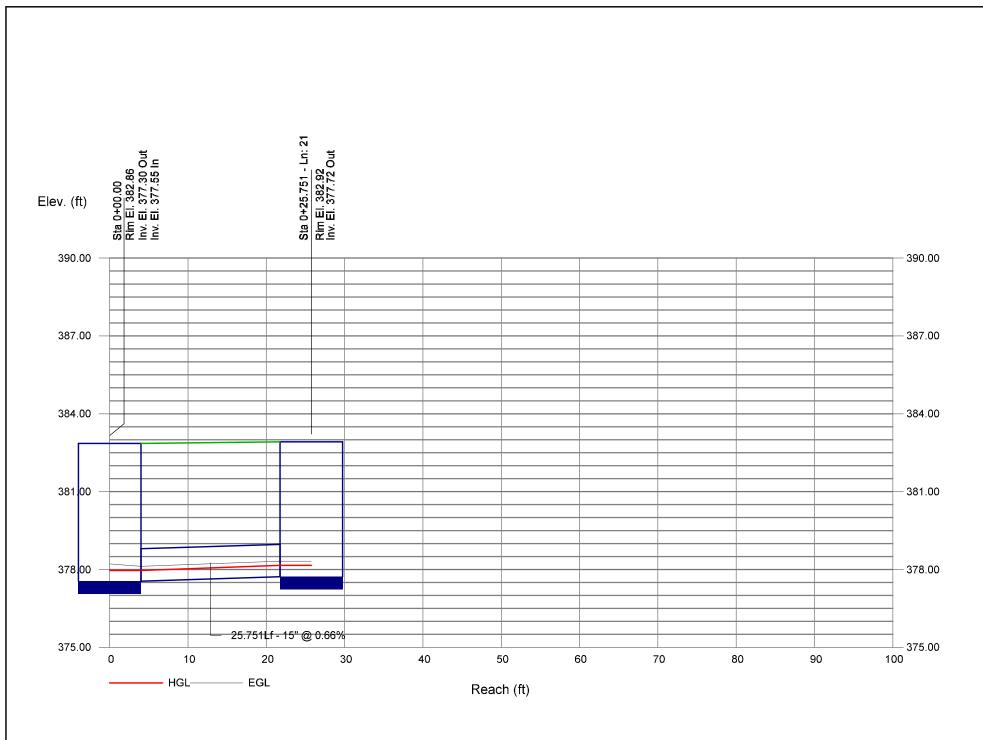
_ine	Size	Q			D	ownstre	eam				Len				Upsti	eam				Chec	k	JL	Mino	
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	Coeff (K)	loss (ft)	
1	36	46.35	357.90	360.90	3.00	7.07	6.56	0.67	361.57	0.483		358.29	361.13	2.84	6.92	6.70	0.70	361.83	0.418	0.451	0.257	1.50	1.0	
2	36	45.47	358.40	362.17	3.00	7.07	6.43	0.64	362.82	0.465		358.85	362.37	3.00	7.07	6.43	0.64	363.01	0.465	0.465	0.195	0.50	0.3	
3	36	45.44	358.95	362.69	3.00	5.54	6.43	0.64	363.33	0.464	196.39	4362.17	364.36 j	2.19**	5.54	8.20	1.05	365.41	0.593	0.528	n/a	1.50	n/a	
4	36	44.18	362.27	364.36	2.09	5.27	8.39	1.02	365.38	0.000	78.359	363.50	365.66	2.16**	5.46	8.10	1.02	366.68	0.000	0.000	n/a	1.00	n/a	
5	30	31.44	364.00	365.66	1.66	3.47	9.06	0.95	366.61	0.000	51.000	364.54	366.45	1.91**	4.02	7.82	0.95	367.40	0.000	0.000	n/a	1.30	n/a	
6	30	30.05	364.64	366.45	1.81	3.80	7.90	0.91	367.36	0.000	126.89	7366.44	368.31	1.87**	3.93	7.64	0.91	369.22	0.000	0.000	n/a	0.50	0.4	
7	30	29.92	366.65	368.31	1.65	3.44	8.69	0.90	369.21	0.000	59.532	367.68	369.54	1.86**	3.92	7.63	0.90	370.45	0.000	0.000	n/a	1.50	n/a	
8	30	23.91	367.78	369.54	1.76	3.47	6.48	0.74	370.28	0.000	210.96	4371.03	372.69 j	1.66**	3.47	6.89	0.74	373.43	0.000	0.000	n/a	1.44	1.0	
9	30	21.73	371.43	372.91	1.48*	3.02	7.20	0.68	373.59	0.000	140.87	5372.35	373.93	1.58**	3.28	6.63	0.68	374.62	0.000	0.000	n/a	1.50	1.0	
10	30	20.72	373.07	374.53	1.46*	2.98	6.96	0.66	375.19	0.000	86.180	373.60	375.15	1.54**	3.18	6.51	0.66	375.80	0.000	0.000	n/a	0.50	n/a	
11	24	20.51	373.70	375.45	1.75*	2.91	7.05	0.77	376.22	0.747	40.124	374.00	375.75	1.75	2.91	7.05	0.77	376.52	0.747	0.747	0.300	1.00	0.7	
12	24	12.60	375.27	376.60	1.34*	2.24	5.64	0.49	377.10	0.499	23.025	375.38	376.72	1.34	2.23	5.64	0.50	377.21	0.501	0.500	0.115	1.50	0.7	
13	24	12.01	375.48	377.46	1.98	3.14	3.83	0.23	377.69	0.260	49.905	375.73	377.57	1.84	3.02	3.97	0.25	377.81	0.245	0.252	0.126	1.07	0.2	
14	24	11.15	375.83	377.83	2.00	3.14	3.55	0.20	378.03	0.241	31.516	375.99	377.90	1.91	3.09	3.61	0.20	378.10	0.211	0.226	0.071	0.65	0.1	
15	24	10.39	376.09	378.03	1.93	3.11	3.34	0.17	378.20	0.185	27.860	376.23	378.07	1.84	3.02	3.44	0.18	378.25	0.183	0.184	0.051	0.99	0.1	
16	18	9.84	376.73	378.25	1.50	1.77	5.57	0.48	378.73	0.879	25.968	376.96	378.46	1.50	1.77	5.57	0.48	378.94	0.854	0.866	0.225	1.00	0.4	
17	24	9.35	374.10	376.52	2.00	3.14	2.98	0.14	376.66	0.171	71.389	374.48	376.64	2.00	3.14	2.98	0.14	376.78	0.171	0.171	0.122	1.50	0.2	
18	24	7.40	374.58	376.85	2.00	3.14	2.36	0.09	376.93	0.107	110.81	6375.13	376.95	1.82	3.00	2.47	0.09	377.04	0.094	0.100	0.111	0.66	0.0	
19	24	7.17	375.23	377.01	1.78	1.47	2.42	0.37	377.38	0.106	133.89	7375.90	376.85	0.95**	1.47	4.88	0.37	377.22	0.138	0.122	n/a	2.18	0.8	
20	18	3.03	376.02	376.85	0.83	0.75	3.04	0.14	376.99	0.241	260.14	1377.30	377.96 j	0.66**	0.75	4.04	0.25	378.21	0.516	0.379	n/a	1.50	n/a	
21	15	1.24	377.55	377.96	0.41*	0.35	3.49	0.16	378.12	0.000	25.751	377.72	378.16	0.44**	0.38	3.22	0.16	378.32	0.000	0.000	n/a	1.00	n/a	
22	15	2.36	376.03	376.85	0.82	0.60	2.77	0.24	377.09	0.000	28.157	376.66	377.27 j	0.61**	0.60	3.93	0.24	377.51	0.000	0.000	n/a	1.00	0.2	
Proi	oject File: Outfall #1.stm													Number of lines: 50						Run Date: 12/23/2024				
		- aciuli # 1																		24.0.	, _0, 20,	- '		

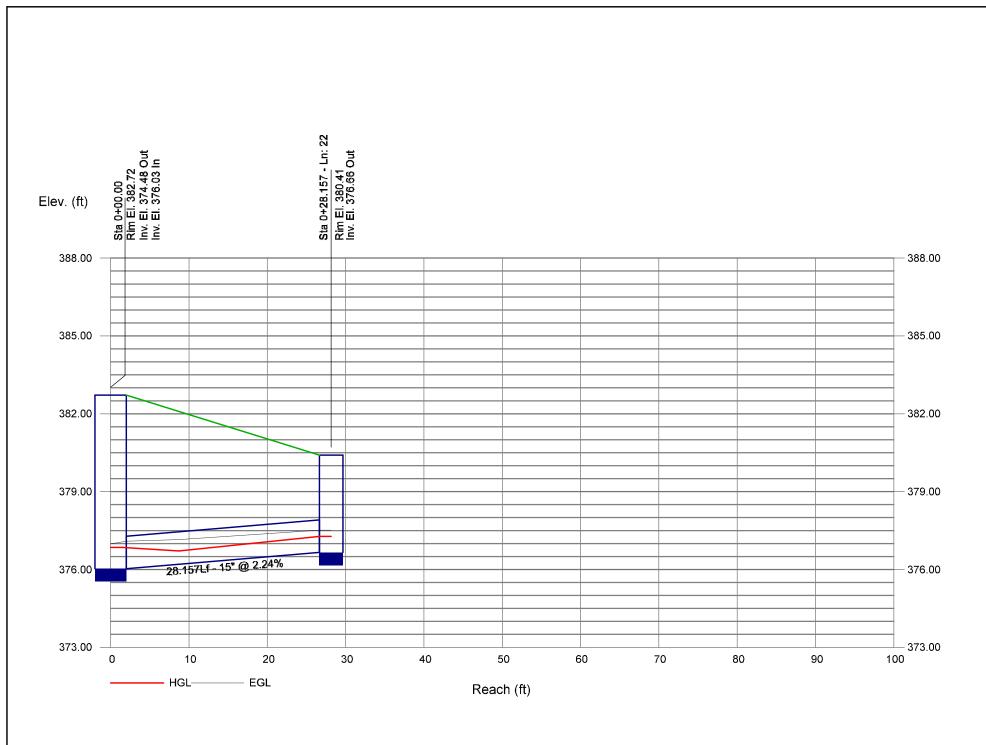
# Hydraulic Grade Line Computations

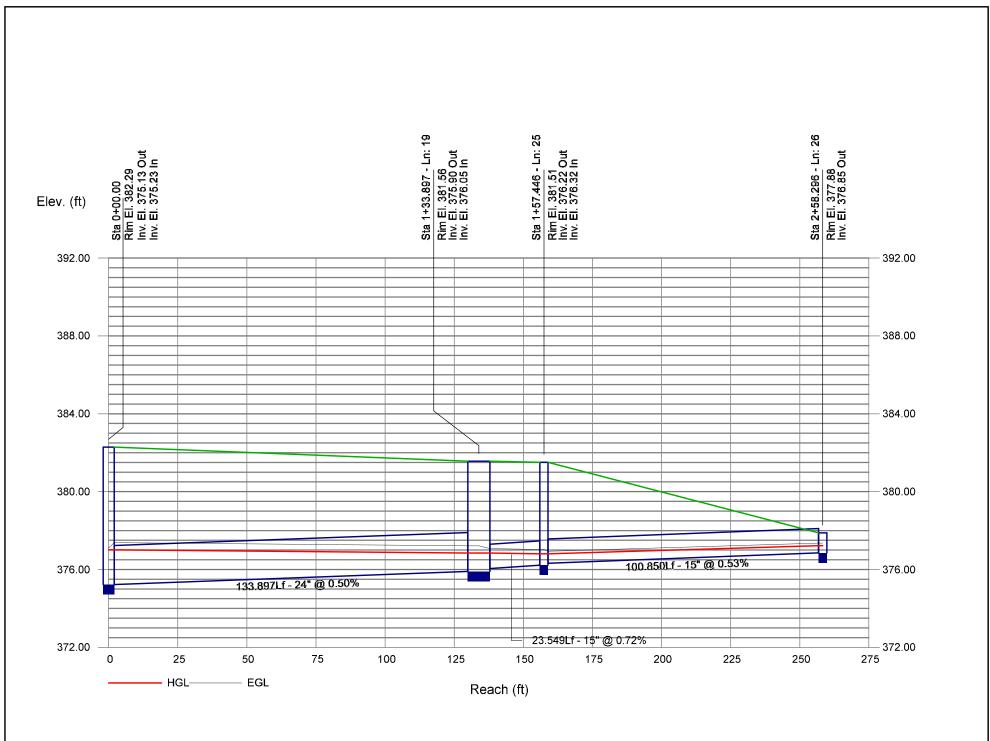
25-Year Report


Page 2	2
--------	---


.ine	Size	Q			D	ownstre	eam				Len				Upstr	eam				Chec	k	JL	Min
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	coeff (K)	los: (ft)
23	15	1.24	376.45	376.89	0.44*	0.38	3.23	0.16	377.05	0.000	24.491	376.58	377.02	0.44**	0.38	3.22	0.16	377.18	0.000	0.000	n/a	1.00	n/a
24	15	0.42	376.87	377.46	0.59	0.18	0.74	0.09	377.55	0.000	24.507	377.05	377.30	0.25**	0.18	2.39	0.09	377.39	0.000	0.000	n/a	1.00	n/
25	15	2.13	376.05	376.85	0.80	0.56	2.57	0.23	377.08	0.119	23.549	376.22	376.80	0.58**	0.56	3.81	0.23	377.03	0.119	0.119	n/a	1.49	0.
26	15	0.90	376.32	376.80	0.48	0.31	2.06	0.13	376.94	0.019	100.85	0376.85	377.22	0.37**	0.31	2.94	0.13	377.36	0.024	0.022	n/a	1.00	n/
27	24	14.60	364.00	365.66	1.66	2.30	5.23	0.62	366.29	0.000	41.676	364.35	365.73 j	1.38**	2.30	6.34	0.62	366.35	0.000	0.000	n/a	1.42	0
28	24	12.39	364.57	365.73	1.16	1.88	6.58	0.54	366.27	0.000	88.898	366.35	367.61	1.26**	2.09	5.92	0.54	368.16	0.000	0.000	n/a	0.41	0
29	24	12.43	366.55	367.61	1.06	1.70	7.33	0.55	368.16	0.000	80.422	368.16	369.43	1.27**	2.10	5.93	0.55	369.97	0.000	0.000	n/a	1.48	0
30	18	10.92	368.68	369.67	0.99*	1.24	8.81	0.73	370.41	0.000	166.11	5371.67	372.94	1.27**	1.59	6.87	0.73	373.67	0.000	0.000	n/a	1.39	1
31	18	8.94	371.77	372.94	1.17	1.46	6.07	0.58	373.52	0.000	161.82	4374.90	376.06 j	1.16**	1.46	6.12	0.58	376.64	0.000	0.000	n/a	2.22	n
32	18	7.50	375.00	376.26	1.26*	1.58	4.74	0.35	376.61	0.490	24.500	375.12	376.38	1.26	1.58	4.73	0.35	376.73	0.489	0.490	0.120	0.50	C
33	15	5.51	375.42	376.55	1.13	1.00	4.71	0.47	377.02	0.000	22.252	375.64	376.59	0.95**	1.00	5.50	0.47	377.06	0.000	0.000	n/a	1.00	0
34	15	0.42	375.15	376.06	0.91	0.18	0.45	0.09	376.14	0.000	20.817	375.30	375.55	0.25**	0.18	2.39	0.09	375.64	0.000	0.000	n/a	1.00	n
35	18	0.97	374.07	374.37	0.30*	0.25	3.82	0.13	374.50	0.000	32.881	374.43	374.80	0.37**	0.33	2.89	0.13	374.93	0.000	0.000	n/a	1.00	0
36	15	1.99	372.50	373.02	0.52*	0.49	4.07	0.22	373.24	0.000	25.642	372.68	373.24	0.56**	0.53	3.73	0.22	373.46	0.000	0.000	n/a	0.50	n
37	15	0.46	372.80	373.24	0.44	0.19	1.20	0.09	373.33	0.000	29.330	373.68	373.94 j	0.26**	0.19	2.45	0.09	374.04	0.000	0.000	n/a	1.00	0
38	15	1.24	371.92	372.94	1.02	0.38	1.16	0.16	373.10	0.000	26.271	372.30	372.74	0.44**	0.38	3.22	0.16	372.90	0.000	0.000	n/a	1.00	n
39	15	1.27	368.81	369.43	0.62	0.39	2.11	0.16	369.59	0.000	34.056	369.03	369.48 j	0.45**	0.39	3.25	0.16	369.64	0.000	0.000	n/a	1.00	n
40	15	1.31	368.75	369.54	0.79	0.40	1.60	0.17	369.71	0.000	24.427	369.01	369.46	0.45**	0.40	3.28	0.17	369.63	0.000	0.000	n/a	1.00	n
41	18	5.02	368.30	369.54	1.24	1.57	3.21	0.16	369.70	0.224	123.32	5368.97	369.84	0.87	1.07	4.71	0.34	370.19	0.558	0.391	0.482	1.00	0
42	15	1.19	365.72	366.45	0.73	0.37	1.60	0.16	366.61	0.000	28.012	366.10	366.53 j	0.43**	0.37	3.18	0.16	366.69	0.000	0.000	n/a	0.50	n
43	15	0.42	366.20	366.53	0.33	0.18	1.65	0.04	366.57	0.188	29.509	366.35	366.61	0.26**		2.35	0.09	366.69	0.516	0.352		1.00	0
44	18	1.58	364.85	365.73	0.88	0.48	1.48	0.17	365.90	0.000	24.451	365.10	365.57	0.47**	0.48	3.32	0.17	365.74	0.000	0.000	n/a	1.00	n
Proj	ect File: (	∣ Outfall #1	.stm					<u> </u>						   N	l umber o	f lines: 5	50		Rur	Date: ´	12/23/20	 24	1


## Hydraulic Grade Line Computations


25-Year Report


_ine	Size	Q			D	ownstre	am				Len				Upstr	eam				Chec	k	JL	Minor
			Invert elev	elev	Depth				EGL elev	Sf		lnvert elev	elev	Depth			Vel head	EGL elev		Sf	Enrgy loss	coeff	loss
	(in)	(cfs)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(%)	(ft)	(K)	(ft)
45	15	0.93	363.42	364.36	0.94	0.31	0.93	0.14	364.50	0.000	24 503	363.65	364.03	0.38**	0.31	2.97	0.14	364.16	0.000	0.000	n/a	1.00	n/a
46	15	1.20	359.09	362.17		1.23	0.98	0.01	362.19			359.26	362.18	1.25		0.98	0.01	362.20	0.034		0.009	1.00	0.01
47	36		352.90	355.90		7.07	2.38	0.09	355.99			353.09	355.92	2.83		2.43	0.09	356.01			0.023	0.50	0.05
48	30		353.19	355.96	2.50	4.91	3.04	0.14	356.11	0.132	98.975	353.69	356.08	2.40		3.08	0.15	356.23		0.124	0.122	0.15	0.02
49	30	14.96	353.79	356.11	2.32	2.59	3.15	0.52	356.63	0.000	48.268	354.03	355.33	1.30**	2.59	5.78	0.52	355.85	0.000	0.000	n/a	0.96	0.50
50	24	15.03	355.35	356.29	0.94*	1.45	10.38	0.64	356.93	0.000	109.03	0357.75	359.15	1.40**	2.34	6.42	0.64	359.79	0.000	0.000	n/a	1.00	n/a
Proje	Project File: Outfall #1.stm													N	umber o	f lines: 5	0		Run	Date: 1	2/23/20	24	1
-				al depth.;	i Line ca	ntaina b	und in maria			h = herr									[				

